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Abstract

The concept of transactions is not only indispensable in database applications, but also useful

in building robust software for mission-critical applications. This paper presents an

implementation of the Object Transaction Service (OTS) based on CORBA specification.

Transactional applications developed with the support of our OTS implementation are able to

assure the ACID properties even in the presence of node crashes, software system failures and

process hangs. The preliminary results obtained from the experiments on Sun workstations

with Orbix 1.3 show that the overhead due to the OTS service is satisfactory for most

applications.

1. Introduction

The concept of transactions has been successfully applied in database applications

to model many business events. As the client-server model been accepted as the

common programming paradigm in distributed systems, transactions have been found

as a useful application design philosophy to build reliable mission-critical

applications[1,2]. Recently, the distributed object technology has been recognized as

an effective distributed programming paradigm since this emerging technology is

designed to support heterogeneous computing over networks with embedded object-

oriented concept[3]. As a result, it is highly desirable if a distributed object

programming environment with the support of transaction service is available to

implement client-server based applications.

The most mature distributed programming environment designed for transactional
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applications is Transaction Monitor. Popular products are CICS [4], Tuxedo [5], and

Encina[6]. These products all support transaction service over heterogeneous platforms.

They are, however, built with traditional programming paradigm instead of object-

oriented programming paradigm. The emerging distributed object technologies

including Microsoft’s COM[7], IBM’s DSOM [8, 9] and OMG’s CORBA [10] are all

built with object-oriented technology. COM and DSOM are designed mainly for

document processing and are less emphasized on transaction processing. CORBA, on

the other hand, is designed to support general distributed applications.

As shown in Figure 1, CORBA consists of four major components: object request

broker (ORB), common object service specification (COSS), common facility

architecture (CFA), and application objects. In OMA model, an object that provides

service to clients over network is called an object implementation. ORB serves as a

software interconnection bus between clients and object implementations. COSS

defines several commonly used services in distributed systems, such as Object

Transaction Service, Persistent Object Service, etc. CFA specifies a few facilities that

are closer to the application level and are more toward to specific application domains,

such as common task management tools and facilities for financing and accounting

systems. CORBA (Common Object Request Broker Architecture) defines the

interfaces and functionality of ORB via which client programs may access services from

application servers and/or services provided by COSS and CFA.

The objective of this research is to implement the Object Transaction Service

(OTS) defined by the CORBA specification on both Unix and Windows 95 platforms

so that distributed transactional applications can be efficiently developed with

embedded transactional properties. Furthermore, we wish to implement the OTS with

fault-tolerant capability to such an extend that distributed applications can be built to

tolerate both software as well as hardware failures.

The basic concept of how a transaction proceeds within the framework of OTS is

briefly described below. In a typical scenario, a client first begin a transaction by issuing

a request to the OTS manager which establishes a transaction context associated with

the client thread. The client then issues transactional operations on the target data

objects. A data object (called resource object) shall register themselves to the

transaction context (maintained by the OTS manager) when it joins the transaction.

Eventually, the client ends the transaction by issuing another request to the OTS which

coordinates the commit procedure with all objects involved in this transaction on behalf

of the client. Thus, the OTS manager is responsible of maintaining the ACID properties

[11] of the registered resource objects with respect to a transaction in the presence of
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failures.

Application Objects

Client Object Implementation

Common Object Services
(COSS)

Common Facilities
(CFA)

Object  Request  Broker (ORB)

Figure 1. The OMA Framework.

There are many CORBA compliant commercial products available, such as Iona’s

Orbix [12,13,14], IBM’s SOM [8], Sunsoft’s NEO [15], and Digital’s ObjectBroker

[16]. We choose Orbix as our development platform for two reasons; first, it supports

both Unix and Window NT platforms, and secondly, it is a more mature products.

The design of the OTS consists of three parts: the OTS manager (a run-time

daemon), a library and associated header files (used by application clients and

application data servers), and the base classes that defines the fundamental transactional

operations for application resource objects to inherit. Application programmers can

create a resource object (discussed in Section 2) by inheriting those transactional

classes offered by the OTS so that it is able to participate transactions in a proper

manner. Furthermore, the ACID properties of a resource object  is guaranteed by the

OTS manager even if failures occur. Transactional applications developed with the

support of our OTS implementation are able to tolerate the node crashes, software

system failures and process hangs. More over, checkpoint techniques are deployed to

ensure the data consistency of transactional objects. The current version of our OTS

supports only flat transactions on Unix machines (Sun workstations with Orbix 1.3), no

nested transactions are supported. The Window NT version of the OTS shall be ready

soon. The preliminary results show that the overhead due to the OTS service is

between 15% to 90% depending on the nature of the applications. Possible approaches

to reduce the OTS overhead will also be discussed in this paper.
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In section 2, we briefly introduce the background of CORBA and the OTS

specifications. In section 3, we explore the design of our OTS system architecture. In

section 4, we discuss the failure recovery of OTS. In section 5, we discuss the

implementation issues of OTS. In section 6, we describe the performance experiment of

our work. In section 7, we summarize the contribution of this paper and discuss the

future works.

2. Background

In this section, we introduce the basic concepts of CORBA and the Interface

Definition Language (IDL). Then, we give an overview of the OTS specifications.

2.1 Application Development in CORBA

As shown in Figure 2, the CORBA environment consists of four major

components: the client, the object implementation (or server), the IDL compiler and the

ORB. We briefly describe the functionality of each of these components, and then we

explore their interactions during run time and the program development phase

Client IDL Compiler

Object Server

IDL Interface
Specification

Object
Implementaion

Client
Stub

Implementaion
Skeleton

ORB

Runtime Communication

Application Program
Code Generation

Gnerated by
the IDL Compiler

Library Linking
CORBA 
Components

Figure 2. Common Object Request Broker Architecture.

In CORBA, the service of an object server is specified in terms of the application

program interface (API) using the standard CORBA interface definition language
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(IDL). An object that implements the service (or API) according to an IDL interface

specification is called an object implementation (with respect to that IDL interface). In

particular, an object implementation is an executable entity that is capable of providing

the service specified by the IDL interface to clients over the network. A client makes a

request to an object implementation and expects the reply from it via ORB. In this sense,

the ORB serves as a software interconnection bus between the client and the object

implementation. As shown in Figure 2, a client is able to access the services provided

by an object implementation only if it has the handle of that object, i.e., the client stub.

The client stub is generated by IDL compiler after it compiles the IDL interface of the

object server. On the other hand, an object implementation can provide its services over

the network via ORB only if it has the implementation skeleton, which is also generated

by the IDL compiler. Figure 3 illustrates the development of the object implementation

and the client program.

interface account {
  read-only attribute float balance;
  void makeLodgement(in float f);
  void makeWithdrawal(in float f);
};

IDL interface
specification

IDL
Compiler

Client stub

IDL C++ class

Implementation skeleton

Client source code

C++ compiler

C++ compiler

Source code 

Application programCode generated by IDL compiler

Code generation

Object 
Implementation

Client

Server

Figure 3. The application development in CORBA.

We now briefly describe the basic concept of how CORBA and its components

operate. To invoke an operation on a remote object implementation, a client must first

bind to that object. ORB first checks if the remote object implementation exists; if not,

a new instance of the object implementation will be invoked. The object implementation

replies the results of the invocation to the client via ORB after the object
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implementation completes the execution of the invocation. The client may send

subsequent requests to the same object implementation without the re-establishment of

the communication channel.

Notice that the IDL is a definition language; it is not an operational programming

language such as C or C++. Given an IDL interface, there may exist many object

implementations for that interface. Moreover, these object implementations may be

implemented in various programming languages for different operating systems or

hardware platforms. To reduce the coupling between the IDL interface and the object

implementation, an IDL compiler must be able to compile the IDL interface then

produce the client stub and the implementation skeleton into many target programming

languages according to CORBA language bindings, such as C, C++, FORTRAN,

PASCAL, etc. We notice that the client stub acts as an local proxy to the client process

on behalf of an object implementation that provides the actual service; more precisely,

the client stub shields the complex operations, such as remote request preparation,

parameters interpretation, request invocation and reply delivery from the client.

Similarly, the implementation skeleton acts as the local proxy of a client that makes the

request. Finally, we turn our attention to exception handling. ORB raises an exception

signal to the client proxy (the client stub) if the peer object implementation crashes or

hangs during the request invocation; the client may react to this signal via an exception

handling routine. This exception handling mechanism is used to implement the failure

recovery process of the OTS implementation.

2.2 Overview of the OTS Specification

This section introduces Object Transaction Service (OTS). As shown in Figure 4,

the OMG’s specifications for OTS consists of several components. In this section, we

briefly describe the functionality of these components and their interrelationship.

Interested readers are referred to [1] for detail.
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Figure 4. Overview of object transaction service.

Applications supported by OTS consist of the following entities: Transaction

Client (TC), Transaction Objects (TO), Recoverable Objects (RO), Transactional

Servers (TS), and Recoverable Servers (RS).

A transaction client (TC), also called a transaction originator, is a process that

initiates a transaction. To initiate a transaction, a TC first binds to OTS manager

(described later) by means of ORB, and then requests the OTS manager to create a new

transaction context associated with the client program. After that, the TC may invoke

transactional operations to transactional objects (described below). TC is also

responsible to initiate the termination process.

A transactional object (TO) is an object whose behavior is influenced by being

invoked within the scope of a transaction. It is not necessary that all methods of a

transactional object are transactional. A TO can provide both transactional and non-

transactional operations. In opposite, an object of which none of the methods is

transactional is a non-transactional object. Typically, a transactional object contains

(“is-a”) or indirectly refers to (“has-a”) the persistent data that can be modified by

requests from the TC. A transactional object receives the transactional operations from

the TC and these operations will be forwarded to the ROs.

The object updating data during transaction processing is called recoverable object

(RO) for the object has the ability to recover itself in the presence of failures (see

Section 4). To complete a transaction, an RO has the responsibility to support the
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features defined in the OTS specification. With these features, an RO can cooperate

with OTS to ensure that all other participating objects (called transaction participants)

reach the same decision (commit or rollback) at the end of the transaction, even in the

presence of failures. When recoverable objects are invoked by a TC for the first time,

they should register themselves to OTS to become participants of the transactions. At

the end of the transaction, ROs also involve in the two-phase commit protocol

coordinated by OTS. During the processing of the transaction, ROs must store certain

information in the persistent storage. As a result, when the recoverable object restarts

after failures, it can recover their states and participate in the recovery protocol to

properly complete the transaction.

A transactional server (TS)  is a collection of transactional objects that have no

recoverable states of its own. A transactional server propagates the transaction context

to ROs when their methods are invoked. In other words, the transactional server

receives the transactional operations from the TC and forwards these operations to the

RO. The recoverable server (RS) is a collection of objects and at least one of these

objects is recoverable. Notice that in real applications the transactional servers may not

exist solely. It is common that the functionality of the TS and the RS are coexisted

within the same object implementation.

Next, we introduce the OTS manager. The major functionality of the OTS

manager is to cooperate with transaction participants so that a transaction can proceed

with ACID properties been enforced. OTS manager is composed of the following

functional components: Factory, Control, Terminator, Coordinator and

RecoveryCoordinator. These components are specified with IDL by which other

objects may access their services via ORB (see Appendix A). The functionality of these

components is illustrated via the following example.

Figure 5 depicts the scenario that a TC cooperates with various functional

components of the OTS manager to complete a transaction.

1. The transaction originator begins a new transaction by issuing a request to the

Factory and a unique Control object is returned.

2. Through Control, the client can get Coordinator to provide the service throughout

the transaction.

3. The transaction originator then begins invoking operations on the ROs (through

TOs) with the information of Coordinator as an input parameter.

4. ROs will register themselves to the Coordinator the first time they are invoked

within the transaction domain and thus get the Recovery Coordinator.
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5. The client uses the Control object to get the Terminator object which is in charge

of the termination process of the transaction.

6. The Terminator will coordinate the termination process among Resource objects

using a proper commit protocol.

Transaction
Originator

Transactional
Object

Recoverable
Object

Factory
Object Coordinator

Object

Recovery-
Coordinator

Object

Control
Object

Terminator
Object

1

1

2, 5

3

2

4

5

6 

6

ORB

OTS Manager

1
5 2

6 

4

2

Figure 5. The functional diagram of the applications and the OTS manager.

3. System Architecture

The objective of this research is to implement the Object Transaction Service

(OTS) defined by the CORBA specification on both Unix and Windows NT platforms

so that distributed transactional applications can be efficiently developed to tolerate

both software as well as hardware failures. In this section, we present the design of the

current OTS implementation on the platform of Sun Solaris 4.1.3 and Orbix 1.3. The

current version of our OTS supports only flat transactions, no nested transactions are

supported.

As described in the previous section, the applications supported by the OTS are
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TC, TO, and RO. In the following section, we first present the development

environment of TC, TO and RO. Then, we present the design of the OTS manager.

3.1 The design of TC and RO

Figure 6 depicts the implementation of the RO and TC. As described in the OTS

specification [1], an RO is by definition a TO. In fact, the semantic of ROs is usually

rich enough to implement most transactional applications. As a result, we present the

development of the RO only. For the implementation of the RO, its IDL definition must

inherit the OTS IDL definition. The code of the internal functionality of the RO has to

compile with the RO server stub (generated by the IDL compiler) and linked with our

OTS library and OTS stub. Next, we introduce the development of a TC. The

development of a TC is similar to an RO as depicted in Figure 6. The application

program of the TC has to be compiled with the client stubs of those ROs needed to

complete the transaction. (Note that those client stubs are generated by the IDL

compiler from the IDL of the corresponding ROs.)  Furthermore, the TC’s application

program has to link the OTS stub to produce the TC executable codes.

TC
executable
codes

RO
executable
codes

OTS  IDL

IDL interface
of object server IDL compiler

OTS Library &
Declaration

TC Stub

RO Stub

Common header

client main lines

OTS Library &
Declaration

RO impl. codes

C++ 
compiler

C++ 
compiler

our OTS provide

user define

generated by IDL compiler

Figure 6. The OTS programming development environment.
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3.2 The Design of the OTS manager

The design of the OTS consists of three parts: the OTS manager (a run-time

daemon), a class that defines the behaviors of the transactional participants required by

the OTS for inheritance purpose, and a library and header files (used by users’ client

and server) . Application programmers can create an RO by inheriting the interfaces

offered by the OTS so that it is able to properly participate transactional activities upon

the invocations from TCs. (The OTS interfaces specified by the OMG are listed in

Appendix A. Interested readers may refer to [1] for details.) A typical life cycle of a

transaction consists of three phases: transaction initialization, operation invocations,

and transaction termination. We will introduce these interfaces in the order of the life

cycle of a typical transaction.

Transaction Initialization

The procedure to initialize a new transaction in OTS is illustrated in Figure 7. In a

distributed environment, there may exists multiple OTS managers. A TC first binds to

an available OTS manager and then invokes the operation Factory::create() to initialize

a new transaction. Upon receiving the request, the Factory object creates a Control

object and return its object reference to the TC. The Control object defines the

transaction context and is responsible for the following processing of that transaction.

Notice that the TC may set a time-out value to limit the transaction processing time. If

the time-out period expires, the transaction shall roll back. The Control object can be

used to create the other two important entities, the Coordinator and the Terminator, via

the interfaces: Control::get_coordinator() and Control::get_terminator(). The

functionality of these two objects will be discuss later.

Transactional 
Client Factory

Control

create

return Control

OTS Manager

Figure 7. Transaction initialization in OTS.
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Operation Invocation

A transaction can involve multiple ROs with multiple requests. All involved ROs

(or called transaction participants) share the same transaction context referenced by the

Control object. Therefore, we need a mechanism to ensure the ACID properties of all

transaction participants upon the completion of that transaction. The Coordinator in

OTS serves the purpose. A Coordinator object is responsible for maintaining the

transaction context and for governing the coordination among all transaction

participants during the commit phase. The TC gets a reference to the Coordinator via

the interface Control::get_coordinator(). A transaction participant must issue a

Coordinator::register_resource() operation to the Coordinator object when one of its

transactional operations is invoked by the transaction originator for the first time.

Because we adopt the explicit mode to propagate the transaction context, all

transactional operations of an RO must have an object reference to the Coordinator

object as the last parameter.

CoordinatorTerminator

Control

op(..., Coordinator*)

register_resource() RecoveryCoordinator

Recovery-
Coordinator

Recoverable
Object

Transactional 
Client
(TC)

Figure 8. The propagation of transaction context.

Transaction Termination

At the end of the transaction, the TC commits or aborts the transaction via

Terminator object. The TC invokes Control::get_terminator() and gets a reference to

the Terminator object. The TC issues the Terminator::commit() operation to mark the
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end of the transaction. In some cases, a transaction originator may wish to roll back the

transaction, then it uses a Terminator::rollback() operation to end the transaction. The

TC can invoke Terminator::commit() to start the commit procedure. In this work, two-

phase commit protocol (2PC) is implemented as the default commit protocol. It is the

TC that issues commit (or abort) request to the transaction and the request is directed

to the Coordinator object through the corresponding Terminator Object. Then the

Coordinator object communicates with the transaction participants to complete the

2PC. In addition to their own operations, transaction participants must implement

transactional behaviors to ensure the ACID properties. To complete a transaction,

transaction participants have the responsibilities to: to register themselves to the

Coordinator object in the beginning; to participate in 2PC protocol; and to support

transaction recovery in case of failures. The ROs must provide the proper APIs via

which the Coordinator object may invoke to conduct the commit procedure.

Control

Terminator

Coordinator

recoverable
object 1

recoverable
object 2

recoverable
object 31. prepare()

2. return VoteCommit/VoteRollback/
    VoteReadOnly
3. commit()/rollback()/commit_one_phase()

1

2
3

1

2

3

1
2

3

Transactional 
Client

Figure 9. Communication in the Two-phase Commit Protocol.

We now briefly describe the interactions between the Coordinator object and other

ROs during the 2PC protocol. Figure 9 depicts the scenario. The processing of two-

phase commit protocol can be divided into the following four steps:

1. The Coordinator object invokes the Resource::prepare() method on each of the

ROs.

2. When a RO’s Resource::prepare() is invoked, it checks its own state to see if it

can commit its part of the transaction, then replies its vote to the Coordinator
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object. The vote can be VoteReadOnly, VoteCommit or VoteRollback.

3. The Coordinator object collects the votes from each RO. If any of ROs returns

VoteRollback, the Coordinator object decides to roll back the transaction and

invokes the Resource::rollback() on all ROs which reply VoteCommit. If at least

one RO votes VoteCommit and others vote VoteCommit or VoteReadOnly, the

Coordinator object commits the transaction by invoking the Resource::commit()

on each of ROs. If all ROs vote VoteReadOnly, the transaction completes

immediately and there is no further operation is required.

4. ROs that vote VoteCommit are waiting for a Resource::commit() or a

Resource::rollback() from the Coordinator object. Each of the ROs must

implement its commit and rollback operations, so that they can act accordingly.

There is a special case that only one participant registered to the transaction. The

first phase (voting phase) is not necessary here. Instead of issuing prepare(), commit()

or rollback() on the single RO, the Coordinator object can invoke

Resource::commit_one_phase() on it.

4. Failures and Recovery

In this section, we present the design of the failure recovery protocols of OTS.

Fault tolerance mechanisms for both the OTS manager and the transaction participants

to tolerate the transient failures were designed to ensure the ACID properties of a

transaction. We first  define a few terminology, and then discuss the failures and the

recovery of the OTS manager as well as the transaction participants. Finally, we argue

the robustness of the fault-tolerance protocols.

Failure Models

OTS ensures an atomic outcome for transactions even if processes, systems or

communication failures occurred. For an object involved in a transaction, we can divide

the possible failures into two types, depending on where these failures take place [1].

They are local failures, where the failures that affect the object itself, and external

failures, where the failures that are external to the object. We will consider the failure

behaviors and the recovery of different objects in a transaction in both local and

external failures in the following discussion.

Recovery Point

To ensure the atomicity of a transaction, we must have some extra controls over
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the processing of the 2PC protocol. By recording states in the persistent storage at the

proper time, OTS can recover the transaction in case of errors. For efficiency, we adopt

the presumed abort strategy with the 2PC protocol. In other words, the objects

involved in the transaction defer the message logging until the commit decision is made

by the TC. We name the point at which logging takes place as recovery point. When

reaching the recovery point, the object has to record the necessary information to the

persistent storage. These data will be cleared when the transaction completes

successfully.

The recovery of the transaction service can be divided into two categories: the

recovery of the Coordinator object (the OTS manager) and the recovery of the

Resource object  (or the RO). We will describe both types of recovery  in the

following sections.

If the Coordinator object collects all votes and finds that at least one of these votes

is VoteCommit (The other votes can be either VoteCommit or VoteReadOnly), the

Coordinator object will make the commit decision and reaches its recovery point. As

for the recovery point of the Resource object, it is the time when the Resource object

decides to vote VoteCommit to the Coordinator object.

4.1 The Failure Recovery of OTS manager

Local Failure

In this subsection, we are going to discuss the local failure and the recovery of the

OTS manager. As shown in Figure 10, the process of a transaction is divided into three

phases. There is no additional operation needed for the OTS manager but to roll back

the transaction in Phases I and II. For an RO participating a transaction, it inquires the

transaction outcome when its time-out period has expired, and it will find that the

transaction is rolled back.  However, if an error occurs in phase III, the recovery of

the OTS manager becomes necessary.

x x x

(1) (3)(2)

transaction
begin

begin commit
process

recovery
point

transaction
commit

Figure 10. The failure cases of the OTS manager.
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Figure 11 shows the recovery of the OTS manager. The RO will issue

RecoveryCoordinator::replay_completion() to initiate the recovery of the transaction

Coordinator. If the OTS manager does fail, this failure is detected by examining a flag

raised by the ORB. The failure recovery process of the OTS manager is then initiated

by a mechanism provided by Orbix called Loader[6]. We will discuss Loader in  more

detail in Section 5.

Recovery
Coordinator

recoverable
object1

recoverable
object3

recoverable
object2

1. Replay_Completion()
2. The Recovery Coordinator issues the transaction decision 
    again (Commit() or Rollback())

1. Reply_Completion()

2. Commit or Abort

Figure 11. The recovery of the OTS manager.

External Failure

There may be two possible types of external failures: the participants and the

communication errors. From the exception return, programmers can distinguish these

two types of failures. If the Coordinator finds that the participant does not exist, it will

complete the commitment. If the Coordinator receives an exception that reports the

communication failure, it will retain the outcome and try sending it again later.

4.2 The Failure Recovery of the Recoverable Objects

Local Failure

In this section, we discuss the local failure and the recovery of ROs. As shown in

Figure 12, the process of a transaction is divided into three phases. In Phases I and II,

no recovery is needed since the failure occurs before the recovery point. In these cases,

the transaction is forced to roll back when the Coordinator object can not access the

RO. However, if the failure occurs in Phase III, that is, the failure occurs after the

recovery point, the RO ought to be recovered when the Coordinator issues
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commit()/rollback(). The ROs participating in a transaction have the obligation to

follow the rules set by OTS.

x x x

(1) (3)(2)

recovery 
point

commit()/rollback(),
transaction complete

prepare()

Figure 12. The failure cases of the RO.

External Failure

There are two possible types of external failures: the Coordinator and the

communication errors. From the exception return, programmers can distinguish these

two types of failures. If an exception indicating that the Coordinator is no longer exists

received, i.e., the Coordinator fails before making the commit decision, then the

transaction is rolled back. However, if the exception is caused by the communication

failure, the prepared Resource will try to complete the transaction later until the

communication resumes.

5. Implementation Issues

This section describes some of the implementation details of OTS, including the

OTS Manager, Recoverable Object, Object Loader (a unique feature in Orbix), and the

concurrency control mechanism in OTS.

The OTS manager

When a TC initiates a new transaction, a set of functional components, including

Control, Terminator, Coordinator and RecoveryCoordinator, will be created by the

OTS manager to serve this transaction. The benefit of abstracting the OTS manager

into several functional components is that it provides different views of the OTS

manager. In our implementation, however, the OTS manager is implemented as a single

composite object with all functional entities specified in the OTS.

The Coordinator object is the part that drives the 2PC protocol. The 2PC

protocol is straight forward if the transaction can commit normally. We list the
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algorithm of the 2PC protocol below. It should be noted that all the exception handling

codes are omitted for simplicity.

begin
              read_only = true
              for ( each node r in the Resource list)
              begin

vote = r->res->prepare()
r->vote = vote
if (vote == VoteCommit)

read_only = false
else if (vote == VoteRollback)
begin /* second phase of 2PC */

                         read_only = false
       Status = StatusRollback
       for (each node r in the Resource list has replied VoteCommit)

r->res->rollback()
end

            end
            if (read_only == true) /* all participants are read only */

return
            if (store the recoverable data in stable storage successfully)
            begin /* second phase of 2PC */

Status = StatusCommitted
if (there is only one node r in the Resource list)

 r->res->commit_one_phase()
for (each node r in the Resource list)

r->res->commit()
           end
           return
end

As shown above, each object “r” contains two flags, “res” and “vote”, that

represent the object reference of the Resource object and its vote, respectively. The

Coordinator object issues Resource::prepare() on these Resource objects and records

their votes in the vote field of the corresponding nodes.

It is necessary to keep critical information in the persistent storage to ensure

completion of a transaction in case that failures occur. The Coordinator can also use

these data to continue the 2PC protocol when failures occur. The information that we

retain in the persistent storage includes the  transaction ID, the status of the current

transaction (commit or rollback), the list of  the transaction participants.

The Recoverable Object

In OTS, an RO is designed and implemented as an application program.
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Although different applications have different design philosophy and their own special

requirements, OTS impose certain obligations on the ROs to ensure the proper

execution of the transaction. The responsibilities of an ROs can be divided into two

categories. The first one is to register the object to the Coordinator to become a

participant of the transaction. The other obligation is that the object must support

proper commit protocols. In our OTS, the recovery objects are recommended  to

implement 2PC protocol. Each RO must design proper  rules to make the decision

about whether to vote commit, rollback, or read-only. When the Coordinator issues

prepare() on each Resource, how and what to reply is dependent on the design of the

RO. Programmers of ROs also have to set up their own rules about the decision making

for voting commit, rollback, or read-only.

If the RO decides to reply VoteRollback or VoteReadOnly, it is not necessary to

log anything in the stable storage. The RO can discard the modification and return to its

previous consistent states immediately. However, if the RO decides to reply

VoteCommit to prepare(), it must stores the object reference of its Coordinator and

RecoveryCoordinator to the persistent storage, so that it can complete the transaction

even when some failures occur.

The information that an RO must store at its recovery point includes its states

(commit or abort) , the object references of the Coordinator and RecoveryCoordinator,

and the status that concerned with the concurrency control.

Object Loader

The Loader mechanism provided by Orbix is used to implement our recovery

protocol. The basic concept of Loader is described as follows. When an object

invocation arrives at a process but the target object does not exist, then Orbix will raise

an object fault. Orbix will return an exception to the caller to handle the object fault. In

a similar way, we can design a loader for every specific object to detect the object fault

and then start the recovery process.

By designing the loader object, we can recover our OTS manager objects if

necessary. Figure 13 illustrates the scenario. In (a), the server operates normally. The

Factory object accepts a request to create an "A" object. The client gets the object

reference to the "A" object and keeps invoking operations on it. In (b), the host fails

and restarts later and re-initializes the environment. In (c), when an invocation on "A"

object arrives again, the Orbix launches this server but cannot find the "A" object. In

the mean time, Orbix raises an object fault, and our loader object will recover the "A"

object from the persistent storage and continue the invocation.
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Figure 13. Using Loader Object to Implement the Recovery.

With the Loader mechanism, application programmers can design proper

exception handling routines upon the detection of failures. Moreover, the above

processes of using the Loader object to implement the recovery is transparent to the

client.

Concurrency Control

It is natural that the objects in our system, either the Coordinator object or ROs,

will be accessed by different clients at the same time. The current version of Orbix does

not support multi-threaded programming, thus the current version of OTS handles one

invocation on an RO at one time. If there are multiple requests from different clients on

an RO at the same time, OTS buffers these requests and process them one by one. The

performance can be a problem if the communication between the server and its clients

becomes frequent.

In our implementation, the granularity of the concurrency control is at the object

level. Each object has its own private data and public member functions that manipulate

its data. These member functions can be more complex than ordinary read and write
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operations. A programmer can define its own protocol and embed some control codes

in each member function to achieve the concurrency.

The current version of OTS adopts an exclusive lock mechanism _TxnCheck(), so

that it does not allow the overlap between transactions. Since our concurrency is per-

object-based and the size of an object is scaleable, we can decrease the scope of an

object to increase the degree of concurrency if necessary.

It will be easy for programmers to choose their desired methods of concurrency

control in our OTS implementation, but programmers of the object servers must keep

the following issues in mind:

� The concurrency control must support transaction duration locks to protect the

data of one transaction from being overwritten by other transactions.

� An RO must store the states related to its concurrency control in the persistent

storage when it reaches its recovery point.

6. Performance

In this section, we examine the performance overhead of the OTS via comparing

the response time of the applications that use the OTS service with those of the same

applications that do not use the OTS service.

6.1 Benchmark Environment

To measure the overhead of our object transaction service, we write an account

server that provides both transactional and non-transactional operations. We make our

measurement on a Sun ELC workstation that runs SunOS 4.1.3. For the purpose of

testing the overhead of a transactional, the operations include the following:

1. The client connects to the OTS manager daemon to initiate a new transaction.

2. The client invokes the transactional operations of the account server, and accounts

register themselves to the OTS manager.

3. The client commits the transaction, and the Coordinator initiates the 2PC to

complete the transaction.

However, for the purpose of comparison, the client also invokes the same set of

operations to ROs in an environment without OTS support.
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The IDL interface of the account object is listed below:

interface account : Transactions::Resource {
     float x_deposit(in float amt, in Transactions::Coordinator co)
     float deposit(in float amt);
     float x_withdrawal(in float amt, in Transactions::Coordinator co)
     float withdrawal(in float amt);
     float x_getBalance(in Transactions::Coordinator co)
     float getBalance();
};

Notice that in the above program listing, x_deposit(), x_withdraw() and

x_getBalance() are transactional operations, whereas deposit(), withdraw() and

getBalance() are non-transactional operations. We use one client to invoke a set of

transactional operations within a transaction, and use another client to invoke the same

but non-transactional operations to compare the elapsed time they take.

6.2 Performance Analysis

The overhead evaluation of our object transaction service is carried out in several

different cases. We measure the results of issuing 10, 50 and 100 transactional or non-

transactional operations to account objects, and the numbers of account servers are 1, 5

and 10 respectively. The results are illustrated in Table 1.

Total no. 
of invocations

Overhead %Total no. 
of servers

10 invocations 50 invocations 100 invocations

1 server

10 servers

5 servers

98%

73%

63%

90%

65%

60%

78%

61%

61%

Table 1. The Result of Overhead Evaluation.

From Table 1, we notice that the major factors that influence the overhead are, the

number of the extra message exchange, the operations that store recoverable data to
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the persistent storage, and the concurrency control behavior in every transactional

operations.

The time used to activate factory server and account servers are excluded in both

transactional and non-transactional cases. From these results, we can find that the more

the number of operations, the less the overhead is when issuing operations to a fixed

number of account servers. In addition, when issuing 10 operations to one server, 50

operations to  five servers and 100 operations to ten servers, each server takes 10

operations. However, from the experiment, we find that the more numbers of the

servers are, the less the overhead is.

In a transaction, the client needs to communicate with the factory server to create

a new transaction, and the Coordinator also needs to issue prepare() and

commit()/rollback() to the object servers. Furthermore, during the processing of a

transaction, the Coordinator object and Recoverable Servers (the account server in this

case) need to store their states in the persistent storage at certain critical time. This is

the major part of the overhead.

In our testing cases, the Recoverable Servers (the account objects)  store their

balance in the persistent storage. However, the real-world scenario, the information

that needs to be stored in the persistent storage will be much more complex. As a result,

the overhead will be higher in a normal application.

For the transaction Coordinator, the information that needs to be stored depends

on the number of Recoverable Servers involved in the transaction. However, for a

Recoverable Server, the information that needs to be stored in the persistent storage

depends on the attributes of the server objects.

As discussed in the previous section, each transactional operation has to perform

some operations to check if this object has already involved in a transaction and if the

transaction context associated with the operation is the same as the transaction in which

this RO participates. These operations are also the overhead that comes with our OTS.

In summary, the overhead to develop transactional applications using our OTS

implementation is 60% to 90% as opposed to traditional application without

transactional support. The amount of overhead depends on the following factors: the

number of transactional invocations, the number of Recoverable Servers involved in the

transaction and the amount of recoverable states needed to be stored in the persistence

storage.
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7. Conclusion

The concept of transactions is not only useful in database applications, but also

useful in building robust software for distributed mission-critical applications. Over

these years, it has been shown that distributed applications can be built effectively using

distributed object technology for its strong support of heterogeneous platforms. The

Object Transaction Service (OTS) specification advocated by OMG’s CORBA

standard defines the fundamental transaction service to support rapid development of

transactional applications in a distributed object environment.

This paper presents an implementation of the Object Transaction Service (OTS)

based on the CORBA specification. Two types of applications are supported by the

OTS: the transactional clients (that initiate transactions) and the ROs (that maintain

the consistence of the data objects accessed and modified by transactional clients during

the execution of transactions.) The OTS implementation itself is composed of three

components: the OTS manager, the OTS library and the virtual class declarations for

the development of ROs. The development of the transactional clients and ROs and

their interaction with the OTS manager are also discussed in this paper.

Transactional applications developed with the support of our OTS implementation

are able to maintain the ACID properties of the data objects even in the presence of

node crashes, software system failures and process hangs. The current OTS

implementation support the Unix platform (Solaris 4.1) using a CORBA compliant

environment, ORBIX 1.3. This version of OTS supports only flat transactions. The

preliminary results obtained from the experiments on Sun workstations with Orbix 1.3

show that the overhead due to the OTS service is 60% to 90% depends on the specific

applications.

The next version of our OTS implementation shall focus on several areas. Firstly,

nested transaction shall be supported. More platforms, such as Window NT and

Window’95, in particular, will also be supported. Furthermore, we wish to integrate the

OTS with other common object services such as the Concurrency Control Service and

Persistent Object Service [3] to provide a more comprehensive environment for

application programmers.
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Appendix: IDL specification of OTS

Here is the subset of IDL interfaces defined in the OMG’s "Object Transaction

Service" specification. The pseudo object Current, Transactional Object, operations

about nested transaction and heuristic exceptions are not included in our OTS.

// DATATYPES

enum Status {

StatusActive,

StatusMarkedRollback,

StatusPrepared,

StatusCommitted,

StatusRolledBack,

StatusUnknown,

StatusNoTransaction

};

enum Vote {

VoteCommit,

VoteRollback,

VoteReadOnly

};

interface Factory {

Control create(in unsigned long time_out);

};

interface Control {

Terminator get_terminator();

Coordinator get_coordinator();

};

interface Terminator {

void commit(in boolean report_heuristics);

void rollback();
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};

interface Coordinator {

RecoveryCoordinator register_resource(in Resource r);

void rollback_only();

string get_transaction_name();

};

interface RecoveryCoordinator {

Status replay_completion(in Resource r);

};

interface Resource {

Vote prepare();

void rollback();

void commit();

void commit_one_phase();

void forget();

};


