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Abstract

In camera calibration, due to the correlations between certain camera parameters, e.g, the
correlation between the image center and the camera orientation, an estimate of a set of cam-
era parameters which minimizes a given criterion does not guarantee that the physical camera
parameter estimates are themselves accurate. This problem has not drawn much attention from
our computer vision society because most computer vision applications require only accurate
3D measurements and do not care much about the values of the physical parameters as long
as their composite effect is satisfactory. However, in calibrating an active vision system where
the cameras are motorized such that their parameters can be adapted to the environment, ac-
curacy of the physical parameters is very critical because we need accuracy to establish the
relation between the motor positions and the camera parameters (both intrinsic and extrinsic).
The contribution of this work is mainly in error analysis of camera calibration, especially in the
accuracy of the physical camera parameters themselves, for four different types of calibration
problems. The first type is estimation of all the camera parameters simultaneously. The second
type is estimation of all the other camera parameters given the image center. The third type is
estimation of the extrinsic parameters given the intrinsic parameters. The last one is estimation
of the intrinsic parameters given the extrinsic parameters. For each type of calibration problem,
we derive (i) the covariance matrices of the estimated camera parameters and (ii) the sensitivity
matrices of the estimated parameters with respect to the error of the given parameters. Factors
that affect calibration accuracy are found to be the focal length, the area and resolution of the
image sensor, the average object distance, the relative object depth, the 2D observation noise
and the number of calibration points. Our theoretical analysis has been verified by computer
simulations. With our error analysis, the most suitable camera calibration technique and cal-
ibration configuration for providing accurate camera parameters can be determined. Also, the

accuracy of the estimated physical parameters can be predicted by using our analysis results.
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I. INTRODUCTION

Camera calibration in the context of computer vision is the process of determining the
geometric parameters of a mathematical camera model. In general, camera parameters
can be divided into two categories, namely, intrinsic parameters and extrinsic parameters.
Intrinsic camera parameters are independent of the position and orientation of the camera.
They may include the effective focal length, the width and height of a photo sensor cell,
the lens distortion and the image center (i.e, the image coordinates of the intersection of
the optical axis and the image sensor plane). Extrinsic camera parameters are essentially
the position and orientation of a camera. Hence, they are independent of the intrinsic
parameters.

Usually, camera calibration is performed for two major purposes. One purpose is to
identify the camera geometry of a 3D computer vision system. Another purpose is to
calibrate a robot (either a robot arm or a robot head) by using the extrinsic parameters
obtained in the camera calibration process. Due to the strong demands of many computer
vision and robotics applications, extensive work has been devoted to the development of
accurate and efficient camera calibration techniques, e.g, [1]-[10], [12], [16], [18], [19], [20],
[24]-]26], [30]. Among all the existing calibration techniques, the Tsai method [22] may
be the most popular one because of its efficiency and accuracy (accurate enough for most
vision applications). Also, the source code for the Tsai method is available in the public
domain. The Tsai method is a two-stage algorithm, where most of the parameters are
solved with a linear method in the first stage, and the remaining parameters are solved
in the second stage with a nonlinear optimization method based on the initial values
provided by another linear method. Unlike most of the other methods of using non-
coplanar calibration points, e.g, [7], [8], [19], [25], [26], and [30], the image center is not
estimated in the Tsai method [22]. Instead, the image center and one scale factor are
solved in another process described in [16] .

We have noticed that the nonlinear methods which estimate all the camera parameters
including the image center can usually obtain more accurate results than can the Tsai
method, especially when the given image center is not accurate enough. However, while

3D vision accuracy can be improved by estimating the image center simultaneously with



the other parameters, the orientation parameters of the camera become more sensitive to
noise than in the original Tsai method. Previous work on the sensitivity problem was
done by Kumar and Hanson [13] and Lai [14], where they showed that there was linear
dependency on small variations of the image center and the camera orientations and on
small variations of the effective focal length and the translation in the optical axis direction.
This problem has not drawn much attention from our computer vision society because our
emphases have usually concentrated on how accurately we could model

1. the projection of a 3D coordinates in the OCS (Object Coordinate System) to 2D

image coordinates in the ICS (Image Coordinate System), and

2. the back-projection of a 2D image point into a 3D ray.
For this reason, little attention has been devoted to the variances of camera parameters
in the traditional computer vision literature. However, when applying camera calibration
techniques to robot calibration (including hand/eye calibration), e.g, [17], [21], [23], [28]
and [31], it is important to have accurate estimates of extrinsic camera parameters. Fur-
thermore, when calibrating an active vision system [15] [27] [30] , the accuracy of both
extrinsic and intrinsic parameters is of equal importance. In this case, accurate estimates of
extrinsic camera parameters are helpful for calibrating the kinematic model of a binocular
head, and accurate estimates of intrinsic camera parameters can simplify the calibration
work for a motorized lens used in an active vision system, as explained below. In an active
vision system, the intrinsic parameters are controlled by using motorized lenses. However,
the relationships between the motor positions and the intrinsic parameters of a motorized
lens are too complex to exactly express as analytic functions [27]. Therefore, in general,
look up tables are used for mapping the motor positions to the intrinsic parameters. If the
estimated camera parameters are too sensitive to noise such that no systematic behavior
can be observed, then a huge comprehensive look up table is required to record the intrin-
sic parameters with respect to each motor position, which is an impractical approach. On
the other hand, if the camera parameters can be estimated accurately, then only several
samples are required to describe the correspondence between the camera parameters and
the motor position.

When dealing with the above-mentioned problems which require accurate estimates of



camera parameters, one may ask:
1. How accurate will the estimated camera parameters be when all the parameters in-
cluding the image center are estimated simultaneously?
2. Will the accuracy of the estimated extrinsic parameters be improved by using a lens
with longer focal length?
3. Which pairs of camera parameters are linearly dependent on each other when the
variations are small?
4. What kind of camera calibration configuration will provide the most accurate extrinsic
(or intrinsic) parameters?
Our theoretical analysis does reveal something that is not straightforward from intuition.
For example, we have found that the answer to the second problem is that accuracy will
depend on whether or not the image center is an unknown which needs to be estimated:
if the image center is given, the estimation error will be inversely proportional to the focal
length; otherwise, a longer focal length will not promise a more accurate result.
Relatively less work has been devoted to finding the relations among the calibration
setup, the 2D measurement noise and the variances of camera parameters. Hui and Ng
[11] has developed a method for computing the covariance matrix of the estimated camera
parameters. However, they only provided a numerical solution, from which the factors
that affected parameter accuracy could not be determined. Kumar and Hanson [13] and
Lai [14] showed that there was some linear dependency between some of the extrinsic and
intrinsic parameters when the variations are small, but they did not address how seriously
the above facts will affect estimation accuracy. In this paper, error analysis on camera
parameter estimation is investigated for the following four different types of calibration
problems:
o Type 1 calibration problem: to estimate all the camera parameters simultaneously.
o Type 2 calibration problem: to estimate all the other camera parameters given the
image center.
« Type 3 calibration problem: to estimate the extrinsic parameters given the intrinsic
parameters.

« Type 4 calibration problem: to estimate the intrinsic parameters given the extrinsic



parameters.
Table I lists the major applications related to the four types of calibration problems. In
this work, we have also derived the sensitivity matrix of the estimated parameters with
respect to the error of the given parameters. The covariance and the sensitivity matrices
of the camera parameters were derived as functions of the effective focal length, the size
of the CCD sensor area, the size of one photo sensor cell, the average object distance and

the relative object depth (i.e, the ratio of the object depth to its average distance).

TABLE 1
THE RELATION BETWEEN THE APPLICATIONS AND THE FOUR TYPES OF CAMERA CALIBRATION

PROBLEMS

Applications Type 1 | Type 2 | Type 3 | Type 4

Stereo Vision Vv Vv

Robot Calibration i Vv Vv

Calibration of
Active Vision

System Vv Vv Vv Vv

This paper is organized as follows. Section II describes the camera model and a direct
nonlinear calibration technique used for error analysis. Section IIT addresses the procedures
for deriving both the covariance and sensitivity matrix of the camera parameters. Section
IV gives the computer simulation results to verify our error analysis. Conclusions are given

in Section V.

II. CAMERA MODEL AND THE DIRECT NONLINEAR CALIBRATION TECHNIQUE
A. The Perspective Projection Camera Model with Radial Lens Distortion

The camera model considered in this paper is the perspective projection model with
radial lens distortion, which is commonly used in the field of computer vision. Let po be
an object point in 3D space, and let (zo,yo, z0) be its coordinates, in millimeters, with
respect to a fixed object coordinate system (OCS). Let the projected image coordinates, p;
in pixels, of the object point po be (u;,v;). The camera model used in this paper requires

twelve camera parameters, i.e, ug, Vo, Su, Sv, fy Ky, Oz, Gy, ¢z, ta, t, and t,, where vy and



vg are the coordinates of the image center, s, and s, are the horizontal and vertical pixel
spacings, f is the effective focal length, k is the coefficient of radial lens distortion, ¢, ,
¢y , and ¢, are the camera orientation parameterized as the X-Y-Z Euler angles, and ¢,
, t, and t, are the location of the optical center. Equations that relate the 3D and 2D

coordinates can be written as follows (refer to [19] or [22]):

(1= kp?) (ur — u)s, = fﬁ—j (1)
(1 — kp?) (o7 — vo) s, = y— (2)

where

yc | =R |yo | +t,

0] 20
R is the 3 by 3 rotation matrix composed by using the X-Y-Z Euler angles ¢,, ¢, and

“r’ denotes

¢.,and t = [t, t, t,] isthe 3 by 1 translation vector, where the notation
the transpose operation. Notice that three of the camera parameters, i.e, the effective
focal length, f, the vertical and horizontal pixel spacing, s, and s,, can only be solved
up to a scale factor. In general, there are two ways to approach this problem. One is to
compose f, s, and s, into two effective focal length parameters, namely, the horizontal
and vertical effective focal length which eliminates the extra degree of freedom (refer to
the Weng method [25]). Another way is suitable for a solid state camera and is adopted in
the well known Tsai method [22]. This is because the horizontal and vertical pixel spacing
of the solid state camera can be directly obtained from the camera supplier. However,
the horizontal pixel spacing will be rescaled with an unknown factor after the image is
sampled by a frame grabber (refer to [16]). Therefore, only the vertical pixel spacing, s,,
is known and can be used in the calibration process. Nevertheless, if the vertical pixel

spacing is unknown, we can simply set s, to 1, which yields the same representation as in

the Weng method [25].



B. Direct Nonlinear Calibration Technique

In general, variances of the camera parameters are relevant to the calibration technique
used. In this paper, we chose to use a direct nonlinear calibration technique, because the
direct nonlinear calibration technique not only can deals with all four types of calibration
problems, but also provides the most accurate calibration results if the given initial value

is good enough. The error function for the direct nonlinear calibration technique is defined

as follows:
M
J(Bp; ﬁg) = Z[Ei(po(i),pr(i)a Bp; ﬁg) + Eg(po(i),pl(i), Bp; ﬁg)]a (3)
i=1
where
Eu(po.pr. By; By) = (1 — kp?)(ur — ug)s, — fj—z + Sutus (4)
Eo(pos v, By; B) = (1 — kp®) (o7 — vo)s, — ff;—(f + 5,60, (5)
Tc o tx
Yo | = R(¢x7 ¢y7 ¢z) Yo | + Zty )
Zc 20 i,

M is the number of calibration points, po(i) and pr(i) are the 3D and 2D coordinates of
the ith calibration point, 8, and (3, are the unknown and given parameter vectors which
will be discussed later, and €, and €, are the 2D measurement noise (in pixel) in the
horizontal and vertical directions, respectively. For instance, when dealing with the Type

1 calibration problem, all the camera parameters are unknown; hence,

ﬁp:[uo vo Su f K ¢ ¢y ¢, ty Ly tz]a

and [, only contains the vertical pixel spacing, s,. Table II lists the given parameters
corresponding to different types of calibration problems.

III. COVARIANCE AND SENSITIVITY MATRICES OF THE CAMERA PARAMETERS
A. Derivation of the Covariance and Sensitivity Matrices of the Camera Parameters

Before we can derive the covariance and sensitivity matrices of the camera parameters,
we have to solve a rather basic problem, i.e, the parameterization stability problem of a

rotation matrix when using the X-Y-Z Euler angle representations, where the variations



TABLE 11

THE GIVEN PARAMETERS VERSUS THE PROBLEM TYPE

Parameters || Type 1 | Type 2 | Type 3 | Type 4

m Vv
Vo Vv
Su
Sv Vv Vv
S
K
Dz
Py
2

N A A
<

N A U A

“V/": indicates the parameter is given in this type of problem.

of the Euler angles may be dominated by the representation instability rather than the
measurement noise. However, since our goal is not to investigate the estimation error
of the camera parameters with respect to the true value of the extrinsic parameters, the
orientation and position of the CCS can be arbitrarily assigned. In other words, if the

estimated transformation matrix from the OCS to the CCS is
Ty = 6T T, (6)

then we are interested in 6“7} rather than ¢T}, where 6T, and Ty are the estimation
error and the true value of the transformation matrix, respectively. Therefore, without
loss of generality, we may assume that the true values of the extrinsic parameters, i.e,
Gz, Dy, @z, tz, ty and t,, are all zero. Notice that this amounts to saying that the true
transformation matrix from the OCS to the CCS is identity, and it can be shown that the

X-Y-Z Euler angle representation is stable for rotation matrices which are close to identity.
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By computing and neglecting the high order terms of the Taylor series expansion of
the error function (3) about the true values of the camera parameters and noise free 2D
measurements, we have

M

T(0853089) = S (lau(i)08, + bu ()08, + sueull” + llav(1)3B, + by(1)38, + sueul*) ,  (7)

i=1
where 63, and 63, are the deviations of the camera parameters from their true values, and

_ aEu (pO(i)apI(i), /Bp; ﬁg)
0B, ’

OE,(po (i), p1(i), By; By)
0B, ’

aE’u, (pO (Z)a p[(2)7 ﬁpa ﬂg)
0B, ’

OE, (po (i), pr(i), By; By)
9%, | "

are the gradient row vectors of the 2D prediction error functions (4) and (5) with respect

ay (1)

(8)

a, (i) =

(9)

bu(i) = (10)

by (i) =

to the unknown and given camera parameters, i.e, 3, and f3,, respectively. Notice that by
ignoring the high order terms of 03, and 03, when deriving equation (7), we implicitly
assume that the given and the estimated camera parameters, i.e, Bg and Bp, are close
enough to their true values. In general, the deviations of camera parameters are due
to measurement noise, the error of given parameters and the local minima of the error
function. However, in this paper, only the first two factors were considered, which is
equivalent to making the following assumption:

Assumption 1: Optimal Solution Assumption — When deriving the covariance matrix of
the estimated camera parameters, we assume that the direct nonlinear method will always
result in an optimal solution.

Based on Assumption 1, it follows that the estimation error of the camera parameters,
df3p, should satisfy the normal equation:

0J(6y;00,)

555, =" (12)

By solving the above equation, we have

6B, = —(A"A) 1A' (B8, + €), (13)
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where

A=la,(1) a(1) - au(M) a,(M)'] (14)
B =[b,(1)" b(1)" -+ bu(M) by(M)] (15)

and
¢ =[sueu(l) sueo(l) -+ sueu(M) spe,(M)]. (16)

In general, the aspects of both the sensor cell and the image sensor are close to square.
In order to simplify the results of the derived covariance matrix, we made the following
assumption:

Assumption 2: Square Imager Assumption — Assume that the aspects of both the sensor
cell and the total sensing area are square; i.e, we assume that s, = s,, and that the acquired
image is square (e.g, 512 by 512). Henceforth, we will use s to denote the value of the pixel
spacing of a square image sensor, and use s, and s, to denote, respectively, the parameters
of the vertical and horizontal pixel spacing, specifically.

Based on the square imager assumption and supposing that the probability distribution
functions of the 2D measurement noise, €,(¢) and €,(i), ¢ = 1, 2, 3, ..., M, are identically
independent Gaussian distributions with zero mean and variance, o2, then the covariance

matrix of the estimated camera parameters can be derived as follows:
Var[08,] = s*0? (A'A) . (17)

Also, the sensitivity of the estimated camera parameters with respect to the given pa-

rameters can be derived from (13) as follows:
E[0f,) = — (A'A) "' (A'B) 56, (18)

Notice that A and B are matrix functions of the true camera parameters and the 3D and
2D coordinate pairs of the calibration points. In order to achieve highly accurate camera
calibration results, one should use as much as possible calibration points such that the 3D
and 2D coordinates of the calibration points are uniformly distributed in the 3D working
space and the image plane, respectively. The following assumption states the condition

for deriving the camera parameter covariances.
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Assumption 3: Uniform Distribution Assumption — Assume that the calibration points
are uniformly distributed within the depth range [Z,,in, Zimaz] in the z-axis direction, and
that their corresponding horizontal and vertical image coordinates of the calibration points
are uniformly distributed within the region [0, I,,4,] (see Fig. 1). In general, if the number
of calibration points is large enough, then this assumption can be well approximated;
otherwise, the derived covariance matrix is simply a lower bound of the real one since we

use an integral to approximate the summation operation in the following derivation.

Z X

c
Optical L The Distribution Range
Center C Image Sensor of 3D Calibration Points
Yc Imax
Fig. 1. The distribution range of the calibration points.
Based on Assumption 3, we have
WA~ M [ymes fOIm” fZZ,:Z(:f [a! a, + ala,] dzcdurdoy (19)
[gwx (Zmax - me) ’
M [Fmes fImaz (Zmaw [0y 4 ! b1 dzodurdv
A/B ~ fO fO mem [ u v ] C I I, (20)
[g,wm (Zma:L‘ - me)
subject to
Zc
To = 7 [(1 - l€p2) (UI - UO) Su] s (21)
and
e
Yo = - [(1 - /<;p2) (vr — o) SU] : (22)

By using Mathematica, we are able to compute equations (19) and (20) and even the
matrix inverse of equation (19). However, the results are too complex to analyze. There-
fore, we concentrate on the case of calibrating a camera with a non-wide angle and low

distortion lens, and make the following two assumptions,
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Assumption 4: Low Lens Distortion Assumption — Assume that the amount of lens

distortion is less than 1% at the four edges of the image, i.e,

(slmax ) 2
K
2

Assumption 5: Non-wide Angle Lens Assumption — Assume that the effective focal

< 0.01.

length is larger than the dimension of the image sensor. Or, more specifically, suppose
that
f>1.3s1 4z,

which is equivalent to having a view angle of less than 42°.
Based on the above two assumptions, the covariance matrix of the estimated camera

parameters, s202 (A’A)~"

, and their sensitivity matrix with respect to given parameters,
— (A’A)"" (A'B), can be derived and easily simplified. The criterion for simplifying the
derived results is that for every two terms, both from the denominator or the numerator
of an expression, the GCD (greatest common divider) is first computed, and that if we
can determine that one of the remainders is at least ten times larger than another, then
the smaller one is eliminated; otherwise, both of them are reserved. The notations used
in the derived results are summarized in Table III. The variances of the estimated camera
parameters with respect to the four types of calibration problems are listed in Table IV.
The normalized correlation values of some camera parameters are listed in Table V, where
the normalized correlation value of two zero-mean random variables, say dx and dy, are
defined as follows:

E [6xdy] T 50y

= ) 23
E 622 E[6y?]  OsTsy 29)

Furthermore, the sensitivity values of some estimated camera parameters with respect to

the given parameters are listed in Table VI for the four types of calibration problems.

B. Notes for Robot Kinematic Calibration

When using the results of camera calibration for robot kinematic calibration, it is very
important to choose a calibration technique which provids accurate extrinsic parameters.
Based on the derived variances of the estimated parameters as listed in Table IV, we

find that the techniques for solving the Type 1 calibration problem are not suitable for
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TABLE III

NOTATION TABLE

02 — The variance of the 2D measurement noise.

0x — A small variation of the parameter x.

o2, — The variance of dz.

Oszsy — The covariance of dz and dy.

Z4wg — The average object distance.

n — The relative object depth, i.e, Z”“’gai’jm"

(up,v9) — The coordinates of the image center.

sy — The horizontal pixel spacing.

s, — The vertical pixel spacing.

f — The effective focal length.

k — The coefficient of the radial lens distortion.

(¢z, ¢y, #.) — The X-Y-Z Euler angles.

(tz,ty,t,) — The translation vector of a camera.

l,,0c — The size of the digitized image, e.g, I, = 512 for a 512 by 512 image.
s — The horizontal and vertical pixel spacing of a square image sensor.
a — The area of a square image sensor, i.e, 2 s°.

M — The number of calibration points.

kinematic calibration. Notice that, for a distortion-free camera, as the image center drifts
to a new position, this is equivalent to a change in the direction of the optical axis such
that the piercing point of the optical axis with repsect to the image plane is right at the
new image center. However, after doing so, the optical axis is no longer perpendicular
to the image plane, which will cause a kind of distortion known as thin prism distortion
(refer to Weng [25]). The amount of distortion caused by a slightly tilt of optical axis is
large when the effective focal length is small. In contrast, if the effective focal length is
large, then the amount of thin prism distortion is small (see Fig. 2). Hence, the estimated
image center and the direction of the optical axis (i.e, the camera orientation) can drift

farther than it can for a camera with a short effective focal length. However, when the



TABLE IV

VARIANCES OF THE CAMERA PARAMETERS FOR THE FOUR TYPES OF CALIBRATION PROBLEMS
Type 1 Type 2 Type 3 Type 4
5 (108a2-+720n2 f*) 0 2
T §ug P(f’k)a’n®>M M
5 (10842 +7207° f*) 0 2
O5uo P(f2k)a2n*M M
o2 245402 245402 _ 245202
05y aM aM aM
2 — — — —
0-651,
o2 72f25%02 72f25%02 _ 45.2f%5%0>
of an’M an’M aM
2 609.68s202 609.6852 02 _ 609.68s5202
Ok a3 M a3 M adM
0_2 720 f25%02 240125202 240125202 _
0pa P(f2k)a?M (3a2+20f42)M | (3a2+20f%4n2)M
0_2 720 %5252 240f252%02 240f25%02 _
dgy P(f2k)a2M (3a2+20f4n2)M | (3a2+20fin>)M
0.2 65202 65202 65202 _
0z aM aM aM
2 12231,95202 240f2Z3v95202 240f2Z3v95202 _
O5t, 2 f2 Ba21200° JOM | (Ba2120m2 JOM
2 12231,95202 240f2Z3v95202 240f2Z3v95202 _
I5t, 22 Ba21200° JOM | Ba2120m2 JOM
9 7272, 8202 7272, 5202 622,,8%02 _
Ot nZaM n2aM aM

Note: P (f?k) = 60 (f2/-f + %)2 + 4

lens distortion is not negligible, misalignment of the image center will cause another kind
of residual error. Therefore, variances of both the estimated image center and camera
orientation will not be simply proportional to the the focal length when considering the
effects of lens distortion. Notice that the center of the radial lens distortion (i.e, the image
point where the amount of radial lens distortion is exactly zero) and the piercing point (i.e,
the image center) are aligned in the camera model. As a result, the radial lens distortion
will help us to locate the image center, (ug,vy). The above qualitative analysis of the
effects of the effective focal length and the radial lens distortion is consistent with the
derived theoretical results. Notice that one of the common denominators of the variances
of the estimated image center and camera orientation is the following bivariable polynomial
(refer to Table IV):

(24)

11\2 14
2 o 2 - -
P(f Ii) _60<f I€+30> + 5
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TABLE V

NORMALIZED CORRELATIONS OF CAMERA PARAMETERS

Parameters Type 1 Type 2 | Type 3 | Type 4
dugV.s.0¢, \/180(§22—{220n2f4) - _ _
Ovov.8-00, \/180(§ng20n2 1) - B -
dugv.s.ot, || — \/3P(S‘92:)2(2i3];22?;0n2f4) - - -
dvgVv.s.ot, — \/3P(S‘92:)2(2i;;22?;0772f4) - - _
0S,v.s8.0f 0.29n 0.29n - 0.36
0S,V.8.0K —-0.2Kka —-0.2K5a - —-0.2Kka
0fv.s.0k —0.68n —0.68n - —0.86
dfv.s.dt, 1 1 - -
Sbev.s.0t, —0'26:‘:}%2”) 1 1 -
Syv.s. 0ty —0'26:0:}%2“) 1 1 -

Note: P (f?k) = 60 (f2/-€+ %)24-%

Because the coefficient of radial lens distortion can be either positive or negative, equation

(24) has a minimum at
11

f?= ~3on (25)

Therefore, around the above minimum in (25), there exist a maximum of the estimation
variance. For those cameras having an effective focal length and a coefficient of radial lens
distortion which approximately satisfy equation (25), the techniques for solving the Type
1 calibration problem will cause large deviation when estimating the image center and the
camera orientation.

Furthermore, there is yet another pair of camera parameters that are linearly dependent
when the variations are small, i.e, the effective focal length and the Z-component of the
translation vector (refer to Table V). Therefore, to improve the accuracy of the estimated
extrinsic parameters, the three intrinsic parameters, ug, vg and f, should be determined

in one process, and the remanding parameters should then be estimated in another in-
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TABLE VI

SENSITIVITY OF THE ESTIMATED CAMERA PARAMETERS WITH RESPECT TO THE ERROR OF THE

GIVEN PARAMETERS

Type 1 Type 2 Type 3 Type 4

Oug - - - b
Oy s
vy - - - I
8¢71 S
dug _ _ _ i
Oty $Zavg
Oug - - - f
8t1, SZa'uq
JSy -

. 1 1 1
of Ji Ji - Ji
08y s s s
af - - - i
ot, Zavg
ok 2 2 _ 2
08y s s s
O0da _ 20m2 f3s 20m2 f3s _
Ovg 3a24-20n2 f4 3a24-20n2 f4

Oy _ 20n> f3s 20n> f3s _
Oug 30242072 f4 30242002 f4

Ot saQZavg(9+22f2n) sazZavg (9+22f2n)

duo ~37(3a2420n2 %) ~3f(3a2+20021%)

ot 50> Zavg (9422fk) 50> Zavg (94221 k)

Bug ~ T 3f(3a24+2002 %) T T 37(3a2+2002 %)

Otz - - _ Zavg _
08y 2s

otz - - _ Zavg -
08y 2s

ot _ _ Zavg -
of f

oty _ _ TaZqvg _
Ok 30

dependent process. However, so far as we know, there is no calibration method which

performs exactly in this way. On the other hand, there is a simple, inexpensive and very

accurate method for calibrating the image center, (ug,v), namely, the auto-collimated

laser technique, which is one of the methods frequently used to determine the optical axis

of lenses in the field of optics (refer to [27] for a description of this method). Since the

auto-collimated laser technique is a kind of direct optical method which can be performed

independently of the extrinsic parameters, we strongly recommend that this be done first;

then the techniques for solving either the Type 2 or Type 3 calibration problems can be
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/ObjectPointl

a

b \b
Short
Long Focal Length Focal Length f\v
Original . Tl'latle;?ane Object Point 2
Image Plane g

Fig. 2. The amount of thin prism distortion versus two effective focal lengths when lens distortion is

negligible. Notice that a’ is approximately equal to a, but that b’ obviously deviates from b.

applied to obtain accurate calibration results. Moreover, the accuracy of the estimated pa-
rameters obtained by using the Type 2 technique is approximately equal to that obtained
using the Type 3 technique. To summarize, the conditions for achieving highly accurate
extrinsic calibration results are listed in the following:

« The image center should be calibrated using another independent process such as the
auto-collimated laser technique or the Lenz and Tsai method [16]. Otherwise, the
estimated camera orientation will be very sensitive to noise.

o The object distance should be made as small as possible because the estimation error
of the camera is proportional to the object distance.

« Calibration points should be uniformly distributed in the 3D space, and the relative
depth should be made as large as possible.

o The Number of calibration points should be selected to be as large as possible, and

the measurement noise should be made small.

C. Notes for Calibration of an Active Vision System

Calibration of an active vision system consists of two major steps: one is extrinsic
calibration and another is intrinsic calibration. The purpose of extrinsic calibration of
an active vision system is to obtain the kinematic model of the vision system, which is
exactly a robot calibration problem. Some important issues for accurately calibrating a
robot based on camera calibration techniques were discussed in the previous subsection.

The intrinsic calibration problem is trivial if the active vision system contains no motorized
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lens. However, the intrinsic calibration problem for a motorized lens is more complicated.
As can be seen from Table IV and Table V, the linear dependency of small variations of
some parameters will cause the estimated intrinsic parameters to be very sensitive to noise.
Fortunately, there are two approaches for solving this problem. One is to use the auto-
collimated laser technique to estimate the image center with respect to each lens setting so
as to eliminate the most sensitive parameters (refer to Willson[27]). Another approach is to
make full use of the extra small degrees of freedom, i.e, the linear dependency between some
parameters for small variations. For instance, we can assume that the camera orientation
is independent of the lens setting and use the image center to compensate for the error
induced by the incorrect orientation parameters. Also, from the sensitivity analysis results
listed in Table VI, we find that the intrinsic parameters are less sensitive to the error of the
z-component of the translation vector. Additionally, in our experience, the drifting of the
x- and y-components of the translation vector is negligible when the lens setting is changed.
Therefore, if the variation of the focal length is not very large (e.g, the focus setting only
is changed), then we may assume that the position of the camera is independent of the

focus setting when solving the Type 4 calibration problem.

IV. EXPERIMENTS

Two computer simulations were performed to verify our theoretical analysis. In the
computer simulations, the 3D and their corresponding 2D calibration data were generated
according to a set of given camera parameters. Then, Gaussian random noise was added
to the 2D calibration data to simulate the measurement noise. The initial estimate of
the camera parameters required by the direct nonlinear optimization method was simply
assigned to be the true values of the camera parameters in the computer simulations.
For each set of given camera parameters, the above process were repeated several times,
and the sample mean and variance of the estimated camera parameters were computed to
verify our theoretical analysis.

In the first experiment, we set ¢ = 0.1 pixel, M = 100, s = 0.01mm, xk = —0.0002mm 2,
Lnax = 512 (e, a = 26.2mm?), n = 0.2, Z,,, = 1200mm, and f = 10, 20, 30, - - -, 100, and
set all the extrinsic parameters to zero. For each effective focal length, the corresponding

mean and variance of the estimated parameters were computed from 100 random trials.
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Fig. 3 shows some of the results of the first experiment, where the theoretical prediction

results and the sample variances of the camera orientation estimation error are plotted.

Both the theoretical and experimental results show that the Type 2 and Type 3 calibration

techniques can provide much better orientation estimation than can the Type 1 technique.

Notice that the theoretical prediction results deviate slightly from the simulation results.

We believe that this is partially because of the effects of eliminating the high order terms

and partially because of the local minima of the nonlinear error functions. Nevertheless,

the theoretical analysis results are accurate enough to serve as a guideline for selecting

calibration techniques to fit different kinds of requirements.
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Fig. 3.

calibration techniques.

The orientation estimation error versus the effective focal length for the first three types of

In the second experiment, we randomly generated 100 sets of camera parameters, where

the true value of the image center and the extrinsic parameters were set to zero, and

the camera parameters were generated uniformly from the ranges, s, € [0.005,0.02],
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Sy = Su, [ € [8,100], £ € [—.0008,.0008], 50 < M < 200, o € [0,0.5], n € [0.01,0.5],
and Z,,, € [100,2000]. For each set of camera parameters, 100 random trials were per-
formed to compute the mean and variance of the estimated parameters. The computed
sample variances were then normalized by the theoretical variances. The mean, minimum,
maximum and standard deviation of the 100 normalized variances are listed in Tables
VII-VIII. Notice that the means of the normalized variances are close to unity, and that
their standard deviations are small, which means that the derived theoretical variances

are very accurate.

TABLE VII
SOME STATISTICS OF THE NORMALIZED VARIANCES OF THE ESTIMATED CAMERA PARAMETERS FOR

THE TYPE 1 AND TYPE 2 CALIBRATION PROBLEMS

Type 1 Type 2

min | mean | max | std.dev. | min | mean | max | std.dev.

2, 110.6| 1.5 | 10 1.4 - - - -

2, 110.7] 1.4 | 6 0.9 - - - -

5(? 0.711.2 |7.1 0.9 0.7 1 1.3 0.1

O5s, - - - - - - - -
g3 0.8 1.2 | 1.8 0.2 0.8 1.1 | 1.8 0.2
52 0.8 1.2 (1.8 0.2 0.7 1.1 | 1.8 0.2
535, /0.7 1.6 | 10 1.3 0.7 1.1 | 1.5 0.2
s, | 07| 1.7 | 10 1.5 0.7 1 |1.3 0.1
Gip. || 0.7 | 1.1 | 4.7 0.4 0.7 1 |1.3 0.1
o5, ||0.5] 1 2 0.2 0.7 1 |1.4 0.1
Oy, | 0.7 1.1 | 4.7 0.4 0.7 1 |1.4 0.2
o ||0.8] 1.1 |1.6 0.2 0.7 1.1 | 1.6 0.2

V. CONCLUSION

In camera calibration, due to the correlation between certain camera parameters, e.g, the

correlation between the image center and the camera orientation, an estimate of a set of
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TABLE VIII
SOME STATISTICS OF THE NORMALIZED VARIANCES OF THE ESTIMATED CAMERA PARAMETERS FOR

THE TYPE 3 AND TYPE 4 CALIBRATION PROBLEMS

Type 3 Type 4
min | mean | max | std.dev. | min | mean | max | std.dev.
Oy ||~ - - - 0.8 1 |1.4 0.1
G5 I~ - - - 0.7 1 |1.4 0.1
G5 || - - - - 0.7 1 |1.3 0.1
a5 || - - - - 0.7 1 |1.4 0.2
i |l - - - - 0.7 1 |1.5 0.2
G5, | 0.7 1 | 1.4 0.2 - -] - -
Oss, [ 0-6] L |1.3 0.1 - - - -
05, | 0.7 1 |1.3 0.1 - - - -
6%, /0.6 0.9 | 1.3 0.1 - - - -
Gy, ||0-7] 1 | 1.4 0.2 - - - -
o5 0.7 1 |1.5 0.2 - - - -

camera parameters which minimizes a given criterion does not guarantee that the physical
camera parameter estimates are themselves accurate. This problem has not drawn much
attention from our computer vision society because most computer vision applications
require only accurate 3D measurements and do not care much about the values of the
physical parameters as long as their composite effect is satisfactory. However, in calibrating
an active vision system where the cameras are motorized such that their parameters can be
adapted to the environment, accuracy of the physical parameters is very critical because
we need accuracy to establish the relation between the motor positions and the camera
parameters (both intrinsic and extrinsic). The contribution of this work has mainly been in
error analysis of camera calibration, especially with regard to the accuracy of the physical

camera parameters themselves, for four different types of calibration problems.
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In this work, we have successfully derived the formulas for the covariance matrix of the
estimated camera parameters and for the sensitivity matrix of the estimated camera pa-
rameters with respect to the error of the given parameters. From the derived results, we
conclude that the most accurate estimation technique among the four types of calibration
techniques is to split the camera calibration process into two independent processes; the ex-
trinsic parameters are calibrated in one process, i.e, the Type 3 technique, and the intrinsic
camera parameters are calibrated in another process, i.e, the Type 4 technique. However,
since there is no easy way to estimate accurate intrinsic parameters independently of the
extrinsic parameters, or vice versa, a second best choice is to use the Type 2 calibration
technique where the image center can be estimated by using the auto-collimated laser
technique. If one does not want to use the auto-collimated laser technique yet wants to
estimate the extrinsic parameters with high accuracy, we recommand use of the Type 1
calibration technique first and then use of the estimated intrinsic parameters as the given
parameters for the Type 3 technique in subsequent calibration tasks. In this way, the
Type 3 technique will usually provide more accurate results. Notice that when using the
Type 1 or Type 2 technique, one should follow the guidelines listed below to achieve more
accurate estimation results:

o The relative object depth, n, should be made as large as possible.

« For the Type 2 technique, the focal length of the camera lens should be selected to be

as large as possible.

» The object distance, Z,,,, should be made as small as possible.

o The number of calibration points, M, should be made as large as possible.

o The standard deviation of the 2D measurement noise, o, should be reduced to be as

small as possible.
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