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Abstract� A graph is componentwise fully biconnected if every connected component either is an
isolated vertex or is biconnected� We consider the problem of adding the smallest number of edges to make
a bipartite graph componentwise fully biconnected while preserving its bipartiteness� This problem has
important applications for protecting sensitive information in cross tabulated tables� This paper presents a
linear�time algorithm for the problem�
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�� Introduction� The problem of adding the minimum number of edges to make a
given graph biconnected is called the smallest biconnectivity augmentation problem� This
problem has been extensively studied for general graphs ��� ��� ��	� A simpli
ed sequential

algorithm which corrects an error in ���	 and an e�cient parallel algorithm are reported in
���	� E�cient algorithms for other vertex connectivity augmentation problems can be found
in �� ��� ��	�

A graph is componentwise fully biconnected if every connected component either is bicon�

nected or is an isolated vertex� This paper presents a linear�time algorithm for the problem
of adding the smallest number of edges into a given bipartite graph to make it component�
wise fully biconnected while maintaining its bipartiteness� Our problem arises naturally from
research on data security of cross�tabulated tables ���	� To protect sensitive information in

a cross tabulated table� it is a common practice to suppress some of the cells in the table�
A fundamental issue concerning the e�ectiveness of this practice is how a table maker can
suppress a small number of cells in addition to the sensitive ones so that the resulting table
does not leak signi
cant information� This protection problem can be reduced to augmenta�

tion problems for bipartite graphs ��� �� ��� ��� ��� ��	� In particular� a linear�time algorithm
for our augmentation problem yields a linear�time algorithm for suppressing the minimum
number of additional cells so that no nontrivial information about any individual row or

column is revealed to an adversary ���	�
In x�� we formally de
ne our problem and give some basic de
nitions� In x�� we review a

data structure for representing a graph that is not biconnected� In x�� we give a lower bound
on the minimum number of additional edges necessary for achieving the desired bipartite

biconnectivity� We prove a matching upper bound for a special case in x� and for the general
case in x�� We conclude this paper with a linear�time algorithm for our augmentation
problem in x��
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�� Problem formulation and basic de�nitions� In this paper� all graphs are undi�
rected and have neither self loops nor multiple edges� unless explicitly stated otherwise�

Given a graph G�� an edge subset E� and a vertex subset V �� G� V � denotes G� without the
vertices in V � and their adjacent edges� G� � E� is G� without the edges in E�� G� � E� is
the resulting G� after the edges in E� are added to G�� Most of the de
nitions below can be

found in ��� �� ��� ��	�
Throughout this paper� let G � �A�B�E� denote a bipartite graph�

���� The augmentation problem� A trivial connected component is an isolated ver�

tex� A cut vertex �or cut edge� is one whose removal increases the number of connected
components� A connected graph is biconnected if it has at least three vertices and no cut
vertex� A biconnected component is a maximal subgraph that is biconnected� A graph is fully
biconnected if it either consists of a single vertex or is biconnected� A graph is componentwise

fully biconnected if every connected component is fully biconnected�
A legal edge of G is an edge in A � B but not in E� A biconnector of G is a set L of

legal edges such that G � L is componentwise fully biconnected� A biconnector is optimal

if it is one with the smallest number of edges� Note that if A � � or B � �� G is trivially

componentwise fully biconnected� If jAj � � and B �� � �or jBj � � and A �� ��� G has no
biconnector� If jAj � � and jBj � �� G has a biconnector� In light of these observations� the
optimal biconnector problem is the following� given G � �A�B�E� with jAj � � and jBj � ��


nd an optimal biconnector of G�
The remainder of this paper assumes that jAj � � and jBj � ��

���� Basics� A block in a graph is either the set of a single vertex that is not in any

biconnected component or the set of vertices in a biconnected component� A block with
exactly one vertex is a singular block� Let nc�G� denote the number of connected components
in G� A strict cut vertex is a cut vertex c such that ��� c is not an endpoint of a cut edge�
or ��� nc�G � fcg�� nc�G� � �� A singular block consisted of a strict cut vertex is a strict

cut block�
Definition ��� ����� ��	
� A block is a leaf�block if it either ��� is a singular block

which contains one endpoint of a cut edge or ��� contains exactly one strict cut vertex and

no endpoint of any cut edge� A vertex is demanding if ��� it is the only vertex in a leaf�block
or ��� it is neither a cut vertex nor an endpoint of a cut edge�

We classify the vertices and leaf�blocks of G with the following de
nitions� A vertex is
of type�A if it is in A� A vertex is of type�B if it is in B� A leaf�block is of type�A if all of its

demanding vertices are in A� A leaf�block is of type�B if all of its demanding vertices are in
B� A block is of type�AB if it has at least one demanding vertex in A and one demanding
vertex in B�

Lemma ����

�� A biconnected component in a bipartite graph must contain at least two vertices in

A and at least two vertices in B�

�� A nontrivial leaf�block is type�AB�

�� A singular leaf�block is either type�A or type�B�

Proof� Straightforward�
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Let �� be a set of leaf�blocks in G� A legal pair of �� is two distinct elements in ��

that are paired according to the following rules� Type�A may pair with type�B or type�AB�

Type�B may pair with type�A or type�AB� Type�AB may pair with all three types�
A corresponding legal edge of G for a legal pair is a legal edge whose two endpoints

are demanding vertices in the blocks� A legal matching of �� is a set of legal pairs of ��

such that each element in �� is contained in at most one legal pair� A legal matching of ��

with the largest cardinality can be obtained by iteratively applying any rule below whenever
applicable�

� If all unpaired elements are type�AB� we pair two type�AB elements�

� If there are one unpaired type�A element and one unpaired type�B element� we pair
a type�A element and a type�B element�

� If there is no unpaired type�B element and there are one unpaired type�A element
and one unpaired type�AB element� we pair a type�A element with a type�AB

element�
� If there is no unpaired type�A element and there are one unpaired type�B element
and one unpaired type�AB element� we pair a type�B element with a type�AB
element�

��G� denotes the set of leaf�blocks of G� For �� 	 ��G�� M���� denotes the maximum
cardinality of a legal matching of ��� For a maximum legal matching of ��� R���� denotes
the number of elements in �� that is not in the given maximum legal matching� Note that

R���� is the same for any maximum legal matching of ���
For all vertices u 
 G� D�u�G� denotes the number of connected components in X�fug

where X is the connected component of G containing u� C�G� denotes the number of
connected components in G that are not fully biconnected� B�G� denotes the number of

edges in an optimal biconnector of G� The next notation denotes our target size for an
optimal biconnector of G�

��G� � max
u�G

fD�u�G� � C�G� � ��M���G�� �R���G��g�

Note that ��G� � O�n�� where n is the number of vertices in G�

�� A bc�forest� We construct a forest ��G�� called the bc�forest of G� to organize the

non�strict cut blocks� cut edges� and strict cut vertices in G� Our augmentation algorithm
works with this forest instead of G directly� The construction below is a variant of the bc�
forest given in ��� �� ��	� Let Y�� � � � � Yb be the blocks of G that are not strict cut blocks�

Let u�� � � � � uc be the strict cut vertices� Let e�� � � � � ew be the cut edges�
The vertex set of ��G� is fY�� � � � � Ybg � fu�� � � � � ucg � fe�� � � � � ewg� i�e�� each non�strict

cut block� strict cut vertex or isolated edge of G is regarded as a vertex in ��G�� The vertices
in ��G� corresponding to blocks are called the b�vertices� and those corresponding to strict

cut vertices and cut edges are called the c�vertices�
The edge set of ��G� is the union of the sets f�Yi� ej� j an endpoint v of ej is in Yi and

v is not a strict cut vertexg� f�ui� ej� j ui is an endpoint of ejg� and f�Yi� uj� j uj 
 Yig� In
other words� there is an edge between Yi and uj if and only if uj is a vertex in the block Yi�

There is an edge between Yi and ej if and only if one endpoint of ej is in the block Yi and
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this endpoint is not a strict cut vertex� There is an edge between ui and ej if and only if ui
is an endpoint of ej� Remark that if a strict cut vertex v forms a block fvg by itself� then

fvg does not appear in the bc�forest as a b�vertex� Instead� v appears as a c�vertex in the
bc�forest�

By our de
nition of a bc�forest� given any path P between two vertices u and v� P has

a c�vertex if u and v are both b�vertices� If u and v are both c�vertices with degree at least
three� then P has a b�vertex� It is also true that a b�vertex that is no isolated is adjacent to
only c�vertices� The number of vertices in ��G� is O�n�� where n is the number of vertices
in G�

Lemma ��� ���	
�
�� ��G� is a forest� where the leaves are leaf�blocks in G�

�� Each connected component in G forms a tree in ��G�� Moreover� a connected com�

ponent that is trivial or biconnected forms an isolated vertex in ��G��

�� A leaf�block of G is a b�vertex of degree one in ��G��
�� For all cut vertices u in G� D�u�G� equals the degree of u in ��G��

It is obvious to update ��G� after adding a legal edge to G between demanding vertices
in two distinct connected components� We simply add a new cut edge to G to connect

the two trees corresponding the two connected components in question� The next lemma
analyzes the case of adding an edge within a connected component�

Lemma ��� ���� �� ��	
� For simplicity� assume that G is connected� Let Y� and Y� be

leaf�blocks in G� Let e be a legal edge between a demanding vertex in Y� and one in Y�� Let

G� � G � feg� Let P be the tree path of ��G� between Y� and Y��

�� The blocks of ��G� on P are merged into a new block Y � in ��G��� All the other

blocks remain the same�

�� The c�vertices of ��G� on P that are of degree two are no longer c�vertices in ��G���
All the other c�vertices remain the same�

�� If a c�vertex is adjacent to a block on P in ��G�� then it is adjacent to the new block

Y � in ��G��� All the other edges remain the same�

�� A lower bound on the size of optimal biconnectors�

Lemma ���� G is componentwise fully biconnected if and only if ��G� � ��
Proof� Straightforward�

The next lemma is useful for bounding the size of an optimal biconnector�
Lemma ���� G has an optimal biconnector L such that the connected components of G

which are not fully biconnected are all contained in the same connected component of G�L�

Proof� Let K be an optimal biconnector of G� If K connects all connected components
of G which are not fully biconnected� then the lemma is true� Otherwise� let X� and X� be
two connected components of G which are not fully biconnected and are contained in two
di�erent connected components X �

� and X �
� of G � K� respectively� Let e� � �u�� v�� and

e� � �u�� v�� be two edges in K with e� 
 X �
� and e� 
 X �

�� Such e� and e� exist because
X� and X� are not fully biconnected in G� but X �

� and X �
� are fully biconnected in G �K�

Next� let e�� � �u�� v�� and e�� � �u�� v��� Then� K � � �K n fe�� e�g� � fe��� e
�
�g is an optimal

biconnector of G� Also� K � connects X �
� � fe�g and X �

� � fe�g� which include X� and X��
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The lemma is proven by repeating this endpoint switching process�
A nontrivial connected component is biconnectable if it is neither an isolated edge nor

a biconnected component� To motivate for the lower bound on B�G�� observe that if G is
made componentwise fully biconnected� then G has neither isolated edges nor biconnectable
components� In light of Lemma ���� legal edges should be added to G between demanding

vertices in biconnectable components and isolated edges to merge all isolated edges and
biconnectable components into one biconnectable component� By Lemmas ���� legal edges
should be added between demanding vertices to componentwise fully biconnect the resulting
biconnectable component� Note that if G is componentwise fully biconnected� then ��G�

contains no leaf� Adding a legal edge to G can merge at most two leaf�blocks into a block
that might or might not be a leaf�block� These observations suggest the next theorem�

Theorem ���� B�G� � ��G��
Proof� Note that ��G� � maxu�GfD�u�G� � C�G� � ��M���G�� �R���G��g� We 
rst

prove that B�G� � M���G�� � R���G��� If G is componentwise fully biconnected� then
j��G�j � M���G�� � �� Thus� it su�ces to prove that adding a legal edge can decrease
M���G�� �R���G�� by at most one� If the two endpoints in the added legal edge are in
two leaf�blocks that are a legal pair� then M���G�� decreases by at most one and R���G��

remains unchanged� Otherwise� either R���G�� decreases by at most one and M���G��
remains unchanged or M���G�� decreases by one and R���G�� increases by one� We now
prove that B�G� � maxu�GfD�u�G� � C�G�� �g� If G is componentwise fully biconnected�

then D�u�G� � �� C�G� � �� and the lemma holds� Otherwise� let X�� � � � �XC�G� be the
connected components in G that are not fully biconnected� Let v be a vertex such that
D�v�G�� C�G�� � � maxu�GfD�u�G�� C�G�� �g� Then� v must be a cut vertex� Without
loss of generality� assume that v 
 X�� By Lemma ���� G has an optimal biconnector L

such that the connected components Xi are all contained in some connected component X �

in G�L� Because the removal of v breaks X� into D�v�G� connected components� X ��fvg
contains D�v�G� � C�G�� � connected components of G� fvg� Because X � is biconnected�
X � � fvg is connected and L must contain at least D�v�G� � C�G� � � edges�

	� Determining the optimal biconnector size for a special case� In this section�
we consider the case when the graph is connected with with at least two vertices in A and
two vertices in B� During the discussion� we also assume that j��G�j � �� since otherwise

it is obvious to prove ��G� �M���G�� �R���G��� Note that ��G� � maxu�GfD�u�G� �
��M���G�� �R���G��g for this case� The next theorem is the main result of this section�

Theorem ��� There is a legal edge e such that ��G � feg� � ��G�� ��

Before we prove this theorem� we give the next corollary�
Corollary ��� B�G� � ��G��
Proof� Theorem ��� can be iteratively applied to add ��G� edges to G so that the ����

value of the resulting G is zero� By Lemma ���� this resulting G is componentwise fully

biconnected� Thus� B�G� � ��G�� The corollary then follows from Theorem ����
We will prove Theorem ��� through a sequence of lemmas in x����x����
Definition �� ����	
�
�� A cut vertex u is massive if D�u�G� � � �M���G�� �R���G���
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�� A cut vertex u is critical if D�u�G� � � �M���G�� �R���G���
�� A graph with no massive c�vertex is balanced�

Lemma �� ���� ��� ��	
� Assume that ��G� has more than three leaves�

�� There is at most one massive vertex�

�� If there is a massive vertex� then there is no critical vertex�

�� There are at most two critical vertices�

�� If there are two critical vertices� then j��G�j � � �M���G�� and R���G�� � ��
Lemma �� At least one of the following four cases holds for G�

� Case I� M���G�� � ��

� Case II� M���G�� � � and there are two critical c�vertices�

� Case III� M���G�� � �� G is balanced and there is at most one critical c�vertex�

� Case IV� M���G�� � � and there is one massive c�vertex�

Proof� By de
nition� either Case I holds or M���G�� � �� The latter case is further

divided by Lemma ����
In x��� through x���� the proof of Theorem ��� is divided into the four cases stated in

Lemma ����

	��� Case I of Theorem 	��� This case assumes M���G�� � ��
Lemma ��� ��G� � j��G�j�
Proof� Let u be a vertex in G� If u is a noncut vertex� by de
nition D�u�G� � ��

otherwise� by Lemma ������� D�u�G� � j��G�j� Then� because G is connected �i�e�� C�G� �
�� and M���G�� � �� ��G� � j��G�j�

Lemma ��� Theorem 	�� holds for Case I�

Proof� Let k � j��G�j� By Theorem ��� and Lemma ���� it su�ces to construct a

biconnector L of k edges for G� Let Y�� � � � � Yk be the leaf�blocks in G� BecauseM���G�� �
�� by the way a legal matching is de
ned these blocks are all type�A or all type�B� By
Lemma ������� each block is also singular� Assume without loss of generality that they are
type�A� Then� there is a cut edge �xi� yi� for each Yi � fyig� Because we assume there are

at least two type�B vertices in G and M���G�� � �� there are at least two distinct vertices
u and v among x�� � � � � xk� We construct an optimal biconnector L as follows�

� Let �u �respectively� �u� be the set of all Yi with xi � u �respectively� xi �� u��
� For each Yi 
 �u �respectively� �u�� let ei � �yi� v� �respectively� �yi� u���

� Let Lu �respectively� Lu� be the set of all ei associated with the blocks in �u �re�
spectively� �u��

� Let L � Lu � Lu�

Thus jLj � k� To shows that L is an optimal biconnector� it remains to show that L is a
biconnector of G� By Lemma ������� ��G� is a tree� By Lemma ������� the blocks in �u are
leaves in ��G�� We will prove that G � L has no cut edge or cut vertex�

First we observe that adding edges to G creates neither a new cut edge nor a new cut

vertex� For each cut edge e in G� G�feg consists of two connected components G� and G��
where G� contains a vertex v� in �u and G� contains a vertex v� in �u� Note that there are
two internally vertex�disjoint paths between v� and v� in G � L� one being v�� v� v� and the
other being v�� u� v�� Thus v� and v� are connected in �G � L�� feg� Thus e is no longer a
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cut edge in G � L�
For each cut vertex c in G� G � fcg consists of connected components G�� G�� � � � � Gr�

For each connected component Gi containing a vertex in �u� we can 
nd another connected
component Gj containing a vertex in �u� By an argument similar to the one given in the
previous paragraph� Gi and Gj are connected in �G � L�� fcg� Thus G�� G�� � � � � Gr are all

connected in �G � L�� fcg� This implies c is no longer a cut vertex in G � L� Thus� L is a
biconnector of G�

	��� Case II of Theorem 	��� This case assumes that M���G�� � � and there are

exactly two critical vertices� Let P � u�� � � � � uk be a path in G� P is branchless if for all i
with � � i � k the degree of ui in G is two� P is branching if it is not branchless� A subtree
rooted at a child of the root of a rooted tree is a branch of the given tree�

In this case� ��G� has a very special shape as described in the next lemma�

Lemma �� ����	
� Let T be a tree with k leaves such that there are two vertices u and

v each of degree � � k

� �

�� The value k is even�

�� There is a unique branchless path in T that connects u and v�

�� For each leaf� there is a unique branchless path in T that connects the leaf to either

u or v and does not go through the other�

We call the T in Lemma ��� a double star centered at u� and u�� The two vertices u�
and u� are critical vertices� We say that a leaf is clung to ui if it is connected to ui through
a path as described in the lemma�

By Lemma ���� R���G�� � � in this case� The next lemma analyzes how to construct
a maximum legal matching of cardinality M���G���

Lemma ��� There is a maximum legal matching of cardinality M���G�� such that

each pair in it consists of a leaf�block clung to u� and one clung to u��

Proof� We construct M���G�� as follows� Let b�� � � � � br�� br���� � � � � br�� br���� � � � � br� be
the leaves clung to u�� where bi� � � i � r� are type�A� bi� r� � i � r� are type�AB� and

bi� r� � i � r� are type�B� Let w�� � � � � ws� � ws���� � � � � ws�� ws���� � � � � ws� be the leaves clung
to u�� where wi� � � i � s� are type�B� wi� s� � i � s� are type�AB� and wi� s� � i � s�
are type�B� By Lemma ���� r� � s� � �� where � � � is the number of leaves in ��G�� We
construct a legal matching Q � f�bi� wi� j � � i � �g� In order for Q to be a legal matching�

we must verify that r� � s� and r� � s� in order for the pairs to satisfy the matching rule�
Assume that r� � s�� then there are r���s��s���� � � type�A leaves� HenceR���G�� � ��
This is a contradiction to the assumption� Thus r� � s�� Using an argument that is similar

to the above� we can prove r� � s�� Since Q is a legal matching and jQj � �� Q is a maximum
legal matching�

Lemma ���� Theorem 	�� holds for Case II�

Proof� We use Lemma �� to 
nd a maximum legal matching� For each pair in the

matching� we 
nd a legal pair� By adding all legal pairs� G is biconnected ��� ��	� The size
of the maximal legal matching is equal to M���G���

	��� Case III of Theorem 	��� This case assumes that M���G�� � �� there is no

massive c�vertex� and there is at most one critical c�vertex�
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Let c� be a c�vertex in ��G� of the largest degree among all c�vertices� The next lemma
identi
es the conditions under which adding an edge can decrease the number of leaves in

��G� by two�
Definition ��� ����	
� Let P be the path in ��G� between two leaf�blocks B� and

B� that are a legal pair� The pair B� and B� �or the path P � satisfy the leaf�connecting

condition if P has ��� a b�vertex of degree at least four or ��� two vertices each of degree at
least three�

Lemma ��� ����	
� Let G� be the resulting graph obtained from G after adding a

corresponding legal edge between a legal pair that satisfy the leaf�connecting condition� Then

��G�� � ��G� � � and M���G��� �R���G��� �M���G�� �R���G��� ��
Lemma ���� Assume that ��G� has more than three leaves and is rooted at a vertex r

of degree more than two� Let h be a vertex in ��G� other than r with degree at least three�

If M���G�� � �� then there are two leaves w� and w� with the following properties


� w� and w� are a legal pair�

� the path in ��G� between w� and w� passes through h and z� where z is a vertex of

degree at least three and z �� h�

Proof� Let Th be the subtree of ��G� rooted at h� There are three cases�

Case �� Th has a type�AB leaf� Let this leaf be w�� Let w� be a leaf in a branch of r
not containing h� Thus w� and w� are the pair we want� i�e�� z is r�

Case �� Th has both type�A and type�B leaves� but no type�AB leaves� Let w� be a leaf

in a branch of r not containing h� If w� is type�AB or type�A �respectively� type�B�� then
let w� be a type�B �respectively� type�A� leaf in Th� Thus w� and w� are the pair we want�
i�e�� z is r�

Case �� Th has type�A �respectively� type�B� leaves only� Let w� be a leaf in T � Without

loss of generality� w� is type�A� Since M���G�� � �� some leaf w� can match with w�� It is
either the case that w� is in a branch of r not containing h or the case that there is a vertex
x �� r in the path from h to r such that w� is a descendent of x� In the former case� let
z � r� In the latter case� x is of degree at least three� Thus let z � x�

Lemma ���� Some legal pair in ��G� satisfy the leaf�connecting condition� Moreover�

if c� is critical� the path in ��G� between this legal pair also contains c��

Proof� There are two cases�
Case �� The degree of c� is two� Since j��G�j � �� there is no critical vertex� We root

��G� at a b�vertex r of the largest degree� Thus it is either the case that the degree of r is
at least four or the case that the degree of r is three and there is another vertex r� of degree
at least three� In the former case� using a simple argument we can prove that there must

exist two distinct leaves w� and w� such that they are in di�erent branches of r and they are
a legal pair� This pair satisfy Condition ��� of the leaf�connecting condition� In the latter
case� we use Lemma ���� by setting h � r� to 
nd a legal pair that satisfy Condition ��� of
the leaf�connecting condition�

Case �� The degree of c� is greater than two� Since c� is not massive� there must exist
another vertex r of degree at least three� We root ��G� at r and then use Lemma ���� by
setting h � c� to 
nd a legal pair that satisfy Condition ��� of the leaf�connecting condition�
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Lemma ��� Theorem 	�� holds for Case III�

Proof� By Lemma ����� D�c�� G�� � D�c�� G��� andM���G����R���G��� �M���G���

R���G�� � ��

	��� Case IV of Theorem 	��� This case assumes that M���G�� � � and there is

exactly one massive c�vertex�
Let r be the massive cut vertex of G with D�r�G� � � � M���G�� � R���G��� For

technical convenience� consider ��G� as a tree rooted at r�
Lemma ���� ��G� � D�r�G��� �M���G���R���G�� � D�u�G� for all cut vertices

u in G such that u �� r�

Proof� The lemma follows from the assumptions that there is exactly one massive c�
vertex and there is no critical vertex�

Based on Lemma ����� to prove Case IV of Theorem ���� we will add a legal edge to G

to reduce D�r�G�� Note that adding a legal edge to G never increases M���G�� �R���G��
or D�u�G��

Lemma ���� D�r�G� � ��
Proof� Straightforward�

A branch of T is a chain if it contains exactly one leaf in T �
Lemma ���� Let ��G� be rooted at a non�leaf vertex� Then ��G� contains two leaves

Y� and Y�� and two distinct branches T� and T� with the following properties


�� T� is a chain�

�� Y� is in T� and Y� is in T��

�� Y� and Y� form a legal pair�

Proof� By Lemmas ������ and ���� the number of children of r in ��G� is greater than

half the number of leaves in ��G�� Therefore� at least one branch of r is a chain� Let T� be
such a chain� Let Y� be the unique leaf of T�� Because M���G�� � �� ��G� contains a leaf
that is di�erent from Y� and forms a legal pair with Y�� Let Y� be such a leaf� Let T� be the
branch of r that contains Y� as a leaf� By choice� Y�� Y�� T� and T� satisfy the three desired

properties�
Lemma ���� Theorem 	�� holds for Case IV�

Proof� Let Y�� Y�� T� and T� be two leaves and two subtrees of ��G� that satisfy
Lemma ����� Let e be a legal edge between a demanding vertex in Y� and one in Y�� Let

G� � G � feg� Let P be the tree path of ��G� between Y� and Y�� By Lemma ������� the
blocks of G on P are merged into a new block Y � in G�� By Lemmas ������ and ����� r
remains a cut vertex in G�� Because T� has only one leaf� by Lemma ������� it is absorbed

into T� in ��G
��� Thus� D�r�G�� � D�r�G���� By Lemma ������� D�v�G�� � D�v�G� for all

remaining cut vertices v of G in G�� Because D�r�G� is greater than D�u�G� for all other cut
vertices u in G� D�r�� G� is at least D�v�G�� for all other cut vertices v in G�� On the other
hand� if T� has exactly one leaf� then Y � is a leaf in ��G��� otherwise� it is an inner vertex�

In either case� M���G��� � R���G��� � M���G�� � R���G��� Thus� ��G�� � ��G� � ��
We repeat this process until the massive cut vertex becomes critical� which is Case III of
Theorem ����
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� A tight bound for the general case� Let C��G� be the number of connected com�
ponents in G that are not biconnected and have two or more vertices each� Let C��G�� C��G�

and C��G� be the numbers of isolated edges� isolated vertices� and biconnected components�
respectively�

Theorem ����

�� If C��G� � � and C��G� � �� then B�G� � ��G��
�� If C��G� � C��G� � �� then B�G� � ��G��
�� If C��G� � �� C��G���� and C��G���� then B�G� � ��
�� If C��G� � �� C��G���� and C��G���� then B�G� � ��

	� If C��G� � � and C��G���� then B�G� � ��
Proof� Case � is obvious� The other four cases are proved below�
Case �� Let G� be the nontrivial connected component in G that is not biconnected�

Theorem ��� covers the case that G� contains at least two vertices in A and at least two

in B� Thus� we assume without loss of generality that G� contains exactly one vertex
u 
 A� Hence G� is a star centered at u� Let the other vertices in G� be v�� v�� � � � � vr�
Then every fvig is a leaf�block and B�G� � ��G��� If there is an isolated vertex w 
 B�
let L � f�w� v��� � � � � �w� vr�g and G � L is biconnected� If there is a biconnected com�

ponent G� in G� by Lemma ��� G� contains two vertices w�� w� 
 B and f�w�� v��g �
f�w�� v��� �w�� v��� � � � � �w�� vr�g is an optimal biconnector�

Case �� Case � proves that if C��G� � � and C��G� � �� then B�G� � ��G�� We show by

the following iterative algorithm that by adding one edge at a time carefully� we can reduce
this case to Case �� We add an edge by one of the following two subcases depending on the
current value of M���G���
Case ���� M���G�� � �� We can 
nd a legal pair w� and w�� If they are in di�erent con�

nected components� then we add a corresponding legal edge� Let G� be the resulting
graph� Then C��G�� � C��G�� � C��G� � C��G� � �� Since C�G�� � C�G� � � and
M���G��� �M���G����� maxu�GfD�u�G���C�G�����M���G����R���G���g �
maxu�GfD�u�G��C�G����M���G���R���G��g��� If w� and w� are in the same

connected component� then there is a vertex w� in another connected component
such that w� and w� are also a legal pair� We then apply an argument similar to
that for the case that w� and w� are in di�erent connected components�

Case ���� M���G�� � �� Thus C��G� � �� Without loss of generality� all leaves are type�A�

We can 
nd a vertex x in a type�A leaf�block and a type�B vertex y in another con�
nected component� Let G� be the resulting graph after adding the edge �x� y�� Then
C�G�� � C�G�� � and R���G��� � R���G��� �� Thus maxu�GfD�u�G�� � C�G���

��M���G����R���G���g � maxu�GfD�u�G��C�G����M���G���R���G��g���
In both cases� we combine two connected components into a connected component
with more than two vertices� Thus it is impossible that C��G� � � and C��G� � ��

Note that by adding edges one by one at a time according to the above steps� We will

eventually reach the point that C��G� � � and C��G� � � in the current G� Thus we can
apply Case � to wrap up the proof�

Case �� Let G� be a biconnected component in G� Let r and c be two vertices in G��
where r is type�A and c is type�B� Let �r�� c�� be the isolated edge of G� We choose L �
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f�r� c��� �r�� c�g� which is obviously an optimal biconnector of G�
Case �� Let �r� c� be the isolated edge and let r� and c� be two isolated vertices such that

r and r� are type�A� and c and c� are type�B� We choose L � f�r� c��� �r�� c�� �r�� c��g� which
is clearly an optimal biconnector of G�

�� Computing an optimal biconnector in linear time� Since ��G� can be com�
puted in linear time ��� �� �	� so can ��G�� To 
nd an optimal biconnector� we can iteratively
add one legal edge at a time to reduce ��G� by one� With a naive implementation� this
process may take quadratic time to 
nd an optimal biconnector� However� with the data

structure presented below� we can 
nd an optimal biconnector in linear time� It is obvious
to compute in linear time an optimal biconnector for Cases � through � of Theorem ���� For
Cases � and �� if C��G� � �� these two cases can be reduced in linear time to the case that
C��G� � � and Ci�G� � � for � � i � �� It is also easy to compute an optimal biconnector

in linear time for Cases I� II and IV of Theorem ���� For the rest of the section� we assume
Case III of Theorem ����

Given two blocks in ��G�� their corresponding path is the tree path in ��G� that contains
those two blocks� The linear time algorithm in ���	 uses the fact that ��G� is rooted at an

internal b�vertex� Each time an edge e is added� it is added between leaf�blocks whose
corresponding path P passes through the root� Thus ��G � e� can be computed from ��G�
by local operations in O�jP j� time� Note that if P passes the root� then the new root of

��G � e� is the new block created by merging all blocks in P �
Unfortunately� the key step of our algorithm as given in the proof of Lemma ���� �which

uses Lemma ����� cannot guarantee that P passes through the root because we have to 
nd
speci
ed leaf�blocks satisfying the matching rules in addition to satisfying the leaf�connecting

condition� We will prove in the following sections that we can satisfy the requirement of P
passing the root� if we reroot ��G� while 
nding the legal edge to be added� In order to
have a linear�time implementation� the total amount of time used for rerooting and 
nding
two endpoints of the legal edge to be added must be also linear� Below� we describe a data

structure and also a new proof for Lemma ���� to achieve all of the above goals�

���� Data structure� A vertex u in ��G� is pure�A if it is a type�A leaf or all leaves

in the subtree rooted at u are type�A� We similarly de
ne a pure�B vertex� A vertex u in
��G� is hybrid if it is neither type�A nor type�B� Note that a branch of a hybrid vertex may
or may not contain a type�AB leaf�

We use the following data structure to represent ��G� as a tree rooted at a given non�

leaf b�vertex� The siblings of a vertex are doubly linked from left to right� In this list�
hybrid vertices whose branches contain type�AB leaves appear 
rst� Hybrid vertices whose
branches contain no type�AB leaves appear next� These vertices are followed by the pure�A
vertices and then the pure�B vertices� Each vertex has two values� ��� a �ag indicating

whether it is pure�A� pure�B� or hybrid and ��� the number of leaves in the subtree rooted
at it� Each hybrid vertex also keeps the number of type�AB leaves in the subtree rooted
at it� Each vertex maintains 
ve pointers� ��� a parent pointer� ��� a child pointer to the
leftmost pure�A child� ��� a child pointer to the leftmost pure�B child� ��� a pointer to the

leftmost hybrid child who has a branch containing a type�AB leaf and ��� a pointer to the
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leftmost hybrid child whose branches contain no type�AB leaf� Each pointer is null if no
such vertex exists� In addition to the above pointers� each vertex also has a pointer to the

leftmost child and one to the rightmost child�
Given ��G�� we can construct the above data structure and root ��G� at a given non�

leaf b�vertex all in linear time� This construction and rooting process is called ordering� The

resulting ��G� together the data structure is called an ordered tree�
Using the ordered tree data structure� we can walk down the tree from a vertex v toward

one of its child pointers� If there is a leaf with a certain type �i�e�� type�A� �B� or �AB� in a
subtree rooted at a vertex v� Using one of the � child pointers� we can walk down the tree

to 
nd such a leaf with the given type� We can walk up the tree from the vertex v through
its parent pointer� We can walk down the tree from a vertex v toward one of its dependents
u by 
rst 
nd the path P between u and v by walking up through the parent pointer until
v is encountered� Then we follow P to walk down the tree� All of the walking operations

mentioned above take time linear in the distance �number of vertices and edges� traversed�
Lemma ���� Let e be a legal edge in G whose endpoints are in leaf�blocks w� and w�� If

the path P between w� and w� in the ordered tree ��G� passes through the root of the tree�

then we can order ��G � feg� in O�jP j� time�

Proof� By Lemma ���� all blocks in P are merged into the root� Let this newly created
block be the new root� We can keep track of the �ag and pointers of each vertex� except its
parent pointer� all in O�jP j� time� Since a parent pointer of a vertex points to its parent as

before in ��G� or to the root of the resulting ordered tree� we can update the parent pointers
of the vertices in P only� The order of each sibling link can be properly updated in O�jP j�
time� By keeping track of the current root� we can order ��G � feg� in O�jP j� time�

���� Rerooting and path �nding�

Lemma ���� Let T be an ordered tree rooted at r� Let r� be another vertex in T � Let P

be the path in T from r to r�� Given P � we can order T to be rooted at r� in O�jP j� time�

Proof� The proof is straightforward�

Lemma ���� The vertices w�� w�� and z of Lemma 	��� can be found in O�jP j� time in

an ordered ��G�� where P is the tree path between w� and w��

Proof� We consider the same three cases as in the proof of Lemma �����
Case �� This case is straightforward�

Case �� We can 
nd w� by 
rst walking up ��G� from h until we reach the root� Then
we walk down ��G� from a branch di�erent from the one we walk up� Thus w� can be any
leaf in this branch� A type�A �respectively� type�B� leaf w� can be found by walking down

��G� from h and chooses the leftmost �respectively� rightmost� child pointer each time we
walk down�

Case �� We can 
nd w� by walking down ��G� from h using an arbitrary child pointer�
We walk up ��G� from h until we reach the root� Either we 
nd z on the way up or z � r�

The rest of the proof is straightforward�
Note that in Case �� rerooting ��G� at z is needed if the root is a b�vertex and we

require the corresponding path between the two found leaves to pass the root� Note also
that rerooting happens only when the current root is pure�A or pure�B�



optimal biconnectivity augmentation ��

���� Choosing a legal pair in Lemma 	���� We now give another proof for Lemma ����
on an ordered ��G�� which may have to be rerooted� The rerooting process will be performed

only if necessary� For ease of description� we split Lemma ���� into two lemmas which cor�
responds to the two cases in its proof�

Lemma ���� Lemma 	��� holds for an ordered ��G� if each c�vertex is of degree two�

Proof� Let r be the current root of the ordered tree� The vertex r is a b�vertex� Note
that the degree of every c�vertex is two� Since ��G� has at least four leaves� there is no
critical vertex� There are three cases�

Case �� The root r is of degree at least four� The leftmost and the rightmost leaves are

the desired legal pair� This pair satisfy Condition ��� of the leaf�connecting condition�
Case �� The root r is of degree three� Let h be the root of a branch of r that is not a

chain� Since ��G� has at least four leaves� there exists a vertex h �� r whose degree is at
least three� We use Lemmas ���� and ��� to 
nd the desired legal pair�

Case �� The root r is of degree two� If both branches of r are not chains� then the
leftmost and the rightmost leaves are a legal pair� This pair satisfy Condition ��� of the
leaf�connecting condition� If one branch of r is a chain� then let r� be the 
rst vertex of
degree at least three when we walk down ��G� from r through the branch of r that is not

a chain� Since the degree of every c�vertex is two� the vertex r� is a b�vertex� We reroot
��G� at r�� We reroot ��G� at r�� We can now reduce this case to either Case � or Case �
depending on the degree of the new root r��

Let T be the original rooted tree� Let T � be the rerooted tree obtained in Case �� Note
that the rerooting operation performed in Case � moves the root from r to r�� where every
vertex in the corresponding path between r and r� is of degree �� Let Tr� be the subtree of T
rooted at r�� Let T �

r be the subtree of T
� rooted at r� It is true that whenever this rerooting

operation is performed� Tr� contains more than one leaf and T �
r is a chain�

Lemma ��� Lemma 	��� holds for an ordered ��G� if the degree of some c�vertex is

greater than two�

Proof� Let c� be a c�vertex of the largest degree among all c�vertices� Let r be the

current root of ��G�� If there is a critical vertex in ��G�� then c� is that vertex� The vertex
r is a b�vertex� Let T� be the branch of r containing c�� Let Px�y be the corresponding path
in T between two vertices x and y� There are three cases�

Case �� The degree of r is at least three� If c� is a hybrid vertex� we use Lemmas ����

and ��� by setting h � c� to 
nd a legal pair� No rerooting is needed� Otherwise we have
the following three subcases� Assume without loss of generality that c� is pure�A� Let y be
the 
rst non�pure�A vertex encountered on the way walking down ��G� from r to c�� Since

c� is pure�A� y 
 Pr�c� � The degree of y is at least three�
Case ���� There is a branch T� of r� T� �� T�� containing a leaf that is not type�A� We can


nd a leaf in T� and a leaf in T� to form a legal pair� This pair satisfy Condition ���
of the leaf�connecting condition�

Case ���� Every branch of r other than T� is pure�A and y is a b�vertex� If y is a b�vertex�
we reroot ��G� at y and use Lemmas ���� and ��� by setting h � y to 
nd a legal
pair�

Case ���� Every branch of r other than T� is pure�A and y is a c�vertex� If y is a c�vertex� we
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reroot ��G� at y� where y� is the 
rst b�vertex encountered by walking down ��G�
from y towards c�� The vertex y� is in Py�c� because there is a b�vertex between two

c�vertices whose degrees are more than two� We 
nd an arbitrary leaf w� in the
subtree rooted at c�� We can 
nd another leaf w� in the subtree rooted at y such
that w� and w� are a legal pair� The leaves w� and w� satisfy Condition ��� of the

leaf�connecting condition� The path between them passes through c� and r�
Case �� The degree of r is two and the branch T� of r not containing c� is not a chain�

Let Tc� be the subtree rooted at c�� We have three subcases�
Case ���� T� is not a chain and c� is hybrid� We can 
nd a legal pair w� and w� where

w� 
 Tc� and w� 
 T�� This pair satisfy Condition ��� of the leaf�connecting
condition�

Case ���� T� is not a chain� c� is pure �assume without loss of generality is pure�A�� and T�
is non�pure�A� This case is similar to Case ����

Case ���� T� is not a chain� c� is pure �assume without loss of generality is pure�A�� and T�
is pure�A� Thus there is a non�pure�A vertex in Pr�c� and the degree of this vertex
is at least three� We reroot ��G� at y or y� where y and y� are de
ned in Case ���
and Case ���� We also apply the same method to 
nd a legal pair as given in Case

��� or Case ����
Case �� The degree of r is two and the branch T� of r not containing c� is a chain� We


rst walk down ��G� from r to c� and 
nd the 
rst vertex v whose degree is at least three�

Case ���� v �� c� and v is a b�vertex� We reroot ��G� at v� We can apply the method given
in Case � to 
nd a legal pair�

Case ���� v �� c� and v is a c�vertex� We reroot ��G� at the 
rst b�vertex encountered when
walking down ��G� from v towards c�� Such b�vertex exists since there is a b�vertex

between the corresponding path of two c�vertices whose degrees are at least three�
We can apply the method given in Case � to 
nd a legal pair�

Case ���� v � c�� Let w be a child of c� with where the subtree rooted at w is not a chain�
Such a vertex w exists because c� is not massive� We reroot ��G� at w� We can

apply the method given in Case � to 
nd a legal pair�

Corollary ���� The path between the legal pair found in Lemmas ��� and ��	 passes

through the root of ��G� after rerooting if necessary�

Proof� Straightforward�
We de
ne a rerooting operation to be the process of moving the root �if needed� from

its current root before applying the proof of Lemma ���� to 
nd a legal pair to its new root

after 
nding a legal pair� We de
ne a rerooting step to be the rerooting of a tree from its
current root r to a child w of r� We say the above rerooting step begins from r and stops at
w� Given w� a rerooting step can be done in constant time� Note that to reroot a tree from
its current root r to a new root r�� we may consider this as the process of applying rerooting

steps along the path between r and r�� In order to bound the total time of rerooting during
the execution of 
nding all legal pairs� the following lemma bounds the number of rerooting
steps�

Lemma ���� Let T be the input bc�forest� During the entire execution of our algorithm
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for nding all legal pairs� the rerooting steps are applied O�q� times� where q is the number

of vertices in T �

Proof� Assume that we need to perform a rerooting from r to r�� Let the path between
r and r� be r � w�� w�� � � � � wk��� wk � r�� Note that r and r� are both b�vertices� Thus
wk�� is a c�vertex� We decompose a rooting operation into a sequence of rooting steps w�

to w�� w� to w�� � � � � wk�� to wk� Those rerooting steps are classi
ed into two categories�
The 
rst category consists of those rerooting steps from ws to ws��� � � s � k � �� The
second category consists of the rerooting steps from wk�� to wk�� and from wk�� to wk�
We collect all rerooting operations performed during the entire execution of 
nding all legal

pairs� Those rerooting operations are decomposed into rerooting steps� All rerooting steps
are classi
ed into the above two categories� We will analyze the number of rerooting steps
in each category�

For a rooting step from w to w� in the 
rst category� the following observations are

useful� Let T be the rooted tree before the rerooting step and let T � be the rooted tree after
the rerooting step� Either the vertex w is a pure vertex in T � or the subtree of T � rooted at
w is a chain� Before the rerooting step the vertex w� is neither pure�A nor pure�B in T � The
subtree rooted at r� in T is also not a chain� After the rerooting step� a pure�A �respectively�

pure�B� vertex in T remains pure�A �respectively� pure�B� in T �� Given any vertex v� no
rerooting step in the 
rst category stops at v twice� Thus the total number of rerooting steps
in the 
rst category is O�q�� where q is the number of vertices in the bc�forest of the given

graph�
Note that for each legal pair found� we apply the rerooting operation once� For each

rerooting operation� there are two rerooting steps in the second category� Note that we found
only O�q� legal pairs� Thus the total number of rerooting steps in the second category is

O�q��
Theorem ���� Given a bipartite graph with n vertices and m edges� an optimal bicon�

nector can be computed in O�n �m� time�

Proof� It takes O�n�m� time in total to 
rst construct ��G� and then maintain it while

adding edges ���	� By Lemma ��� and Corollary ���� each update of the ordered ��G� takes
time linear in the length of the path between the chosen legal pair� Thus by Lemmas ����
���� ���� and ���� using the data structure of ���	 to maintain the degrees of c�vertices� it
takes O�jP j� time in total to 
nd a legal pair each time we are in Case III of Theorem ����

It also takes O�jP j� time to update ��G�� After each update� the size of ��G� decreases by
jP j� Eventually� ��G� is an isolated vertex� Since the size of ��G� is linear in the size of
G� the total time spent in Case III of Theorem ��� is linear� We have already shown that

Cases I� II� and IV can be processed in linear time� Hence we prove the theorem�
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