
The Bounded Loss Rate (BLR)
Problems in Multicast Networks

Part I : Problem Formulation

Deron Liang and Da-Wei Wang

Institute of Information Science
Academia Sinica

Taipei, Taiwan 11529
Republic of China

1. Introduction

Multicasting is the simultaneous transmission of data to multiple destinations.

Problems of the multicast routing in high speed networks, such as ATM networks,

have been recognized as important problems because of its application in video

conferencing [1] and HDTV broadcasting [2]. The multicast routing problem has

usually been formalized as an off-line allocation problem , where the network is

normally modeled by the graph representation [4] and the set of multicast streams to

be considered is static and given [5][6]. When a multicast stream arrives at the

network, the multicast routing algorithm is responsible for finding routes from the

source to each of the destinations; each route should have bandwidth available to

support the stream. If multiple routes exist for a given multicast stream, the routing

algorithm will choose one so as to optimize a certain objective function.

The existing algorithms can be classified into two categories in terms of objective

functions: the shortest-path algorithms [3]and the minimum cost algorithms [4][9].

In the former category, the routes are computed independently form the source to

each destination using Dijkstra's shortest path algorithms [3], then the multicast route

is merged to form a multicast tree. For the algorithms in the second category, the

multicast routes are constructed in such a way that the sum of the costs associated

with the used links is minimized. This problem is usually cited as the Steiner tree

problem, which is known to be NP-complete [4][5]. Numerous heuristic algorithms

have been proposed to study this problem [6][7]. Kompella proposes an extension to

the Steiner tree problem where the minimum cost is searched with delay constraints

[10]. Previous algorithms can handle a single multicast stream at a time, Noronha and

Tobagi study a routing problem with batch arrivals and propose an optimal algorithm

using integer programming approach [8].

Previous works have focused on the issue of efficient bandwidth allocation. As the

new applications emerge, in particular, the multimedia applications, the guarantee of

quality service (or QoS) becomes a major concern in designing new generation of

routing algorithms. In this paper, we propose a new problem, called Bounded Loss

Rate problem (BLR), where end-to-end total cell loss rate of each point-to-point

connection is taken into consideration when routing a multicast stream in the

network. The cell loss property of each communication channel in the network is

characterized by a loss rate function that is typically a function of the traffic loading

over that link. (See Figure 1 for example.) A new stream usually specifies not only the

�

minimum bandwidth requirement but also the end-to-end loss rate bound associated

with each destination. The loss rate bound may vary from destination to destination.

The goal of this research is to develop efficient algorithms to route these multicast

streams over the network in such a way that the loss rate bounds are all satisfied for

the new stream while the none of the loss rate bounds of the existing streams is

violated, provided such a routing exists.

Loss rate

l

Load

6l

3w 5w

Figure 1. An typical loss rate function of a link.

The organization of this report is as follows. In Section 2, a few of the related works

are reviewed. In Section 3, we formally define the BLR problems. In Section 4, the

complexity of the BLR problems are analyzed. Finally, the research contribution is

concluded in Section 5. The proofs of the NP-completeness of the BLR problems are

presented in the appendices.

2. Related Works

2.1 The Steiner tree problem

2.1.1 Problem definition:

Input:

1. A simple undirected graph G = (V, E), where V is the set of vertices in G,

and E is the set of edges in G.

2. A link-cost function associated with each edge C(e) : E  R  .

3. A set of destinations D and DV.

Goals:

Find a Steiner tree of G that spans D with minimal total cost on its edges.

2.1.2 KMB heuristic algorithm:

�

It has been shown that the minimum cost Steiner tree (MST) problem is a NP-

complete problem [4]. The KMB heuristic algorithm solves the MST problem

with near optimal performance [9].

Here are the 5 steps in the KMB algorithm:

Begin

Step 1. Find the shortest path for each pair of destinations to form a cost
graph � � .

Step 2. Find the minimum spanning tree �� of � � .

Step 3. Replace each edge in �� by its corresponding shortest path in G to

form � � .

Step 4. Find the minimum spanning tree of � � to form �� .

Step 5. Delete edges in �� , if necessary, so that all the leaves in �� are

destinations.

End.

The inputs and outputs in and from each step are illustrated in Table 1.

Input Output

1 G, D � � (cost graph of G)

2 � � �� (MST of � �)

3 G, �� � �

4 � � �� (MST of � �)

5 �� ��

Table 1. The inputs and outputs in/from each step in the KMB algorithm.

2.2 Multicast Routing for Multimedia Communication [10]

2.2.1 The Constrained Steiner Tree Problem definition:

Input:

1. A simple undirected graph G = (V, E), where V is the set of vertices in G,

E is the set of edges in G .

2. A source node s.

3. A link-cost function associated with each edge C(e) : E  R  .

4. A link-delay function associated with each edge L(e) : E  R  .

5. A set of destinations D and DV.

6. A bounded delay tolerance  .

Goals:

�

Find a Constrained Steiner Tree (CST) T such that the total cost � �
� �

� �

 is

minimized; i.e., T is the Minimal Cost Constrained Steiner Tree (MCST).

Note: a Constrained Steiner Tree (CST) T is a tree in G, rooted at s, that spans

the nodes in D such that for each node d in D, if P(s, d) is the path in T from s to

d, � �
� � � �

� �
� � �
  .

2.2.2 The source-based routing algorithms for the Constrained Steiner Tree(CST):

1. Definition:

� A constrained cheapest path between v and w is the least cost path from v

to w that has delay less than  . We denote the cost on such a path by
�� � � �v w and the delay on it by �	 � � �v w .

� The cost of the cheapest path from v to w with delay exactly d, � � � � �v w , if

there are multiple cheapest constrained paths with the same cost, then the
one with the least delay is chosen. We can formulate � � � � �v w and

�� � � �v w as follows:

� � � � �v w   ��	 � � � � � �� � �
u

v u v u u w


 

� 	� �

� ��
�

�� � � ��	 � � �v w v w


� A closure graph � on a set of nodes N is a complete graph on the nodes in
N with edge cost between nodes v, wN equal to �� � � �v w and edge delay

�	 � � �v w .

2. There are 3 steps in this algorithm:

Begin

Step 1. In order to compute the closure graph � , we determine the

constrained cheapest paths between all pairs of nodes in the set D 
s. Since �	 � � �v w is determined by the constrained cheapest path

that corresponds to �� � � �v w , thus we can construct the closure

graph � on the nodes in the set D s
Step 2. Construct a constrained spanning tree of � . We use a greedy

approach to add edges to a sub-tree of the constrained spanning tree

until all the destination nodes are covered. Assume v is in the tree

constructed thus far, and that we are considering whether to include

some edge adjacent to v. We have considered the following two

selection functions:

f
C

P L
if P L

otherwise
CD(,)

(,)

(() (,))
, () (,)

,
v w

v w

v v w
v v w  

 












and

f
C if P L

otherwiseC 
 






(,) , () (,)v w v v w 
 ,

The delay from source to v is within the delay bound, where P(v) is

the delay on the path from s to v in the spanning tree constructed

thus far.

Step 3. Expand the edges the constrained spanning tree into the constrained

cheapest paths they represent, and remove any loops that may be
caused this expansion. The edge selection functions, ��� and �� ,

give rise to two source-based heuristics: ����� and ���� ,

respectively.
� Heuristic ����� uses the selection function ��� , which explicitly

uses both cost and delay in its functional form. It tries to choose

low-cost edges, but modulates the choice by trying to pick edges
that maximize the residual delay.����� increases the chances of

extending the path through this edge, and beyond to another

destination. It reduces the cost of the tree through path sharing,

and it also has a tendency to optimize on delay. So it may find

paths with delays far lower than  , at the expense of added cost

to the tree.
� Heuristic ���� minimizes �� , thereby trying to construct the

cheapest tree possible while ensuring that the delay bound is met.

This tends to minimize the cost of the tree without unduly

minimizing the delay.

End.

2.2.3 Conclusion:

A. ����� and ���� always produce a constrained spanning tree, if one exists.

Moreover, ���� has better average performance than ����� . But for

distributed algorithms, we find that ����� works better than ���� .

B. ����� performs marginally worse than ���� � As the multicast group

increases in size, the algorithms ����� and ���� converge to the

minimum spanning tree. It means that the heuristics converge to the optimal

solution for large group sizes.

C. If adequate global information is available to the source, then the source-

based heuristics produce much better results than shortest delay routing.

�

2.3 Delay-Bounded Minimum Steiner Tree (DMST) problem [11]

2.3.1 Problem definition:

The problem of DMST is specified as follows:

Input:

1. A simple undirected graph G = (V, E), where V is the set of vertices in G, E

is the set of edges in G.

2. A source s .

3. A link-cost function associated with each edge C(e) : E  R  .

4. A link-delay function associated with each edge L(e) : E  R  .

5. A set of destinations D, DV.

6. A DDF (Destination Delay-bound Function) associated with each

destination in D, (d): D R  .

Goals:

Find a Steiner tree of G that spans D{s} so that the cost function of the tree is

minimized while DDF is satisfied.

2.3.2 The Bounded Shortest Multicast Algorithm (BSMA):

1. Definition:

� A tree obtained during each refinement is called a tree configuration, and
the j-th tree configuration is denoted by � � .

� Path switching means that a path in � � is replaced by a new path that is not

in � � , resulting in a new tree configuration � � � .

� � �

 is the collapsed tree of � � , for representing the candidate paths chosen

in the path switching. It consists of nodes and super-edges, where the set of

nodes of � �

 contains source node , destination nodes of � � and those

nodes of � � that are connected by more than two tree edges in � � .

� A superedge in � �

 is the longest simple path in � � in which all internal

nodes (i.e. excluding the end nodes of this path) are relay nodes and each

relay node connects exactly two tree edges.

2. The BSMA is summarized as follows:

Begin
Step 1. Construct the initial tree �� which is a minimum-delay Steiner tree,

with respect to the multicast source, using Dijkstra shortest path

algorithm.
Step 2. Then iteratively refines �� for low cost. The refinement from � � to

� � � (initially, j=0) is accomplished by path switching. An effective

delay-bounded path switching during the j-th refinement involves:

� Choosing the path to be taken out of � � :

Deletes a superego from � �

 , resulting in two sub-trees T �

� and

T �

� , where � � = T �

�  T �

� P (P is the superego that be deleted).

� Selecting the new path in G not in � � that replaces the path to

be deleted from � � :

Find a delay-bounded shortest path Ps to reconnect T �

� and

T �

� .A delay-bounded shortest path Ps between T �

� and T �

� is

defined as the path with the smallest cost, subject to the

constraint that the new tree � � � = T �

�  T �

� Ps is a delay-

bounded tree.

There are two heuristics: Path-Switching Heuristic and Greedy

Path-Switching heuristic.

1. Path-switching heuristic:

A. Initially, all super-edges are unmarked.

B. Among all unmarked super-edges, BSMA selects the

superego Ph with the highest path cost, and exchanges it

with another superego such that the resulting paths to

destinations are delay-bounded.

Note that the delay-bounded shortest path algorithm always

terminates, because at least the deleted path is found again.

2. Greedy Path-Switching heuristic:

Definition : Gain is the cost reduction after a round of path-
switching. Let p be a path in tree � � with cost c, and P* the

corresponding delay bounded shortest path to be added into tree
�
 � with cost c*.

The gain g of this path switching is defined as g = c - c*.

A. BSMA computes gains of all pairs of possible path switching
in � � , and then selects the one with the maximum gain.

B. BSMA continues the greedy path switching, and terminates

when the maximum gain is zero.

End.

2.3.3 Conclusion:

A. The Greedy Path-Heuristic gets the costs of trees within 2% difference but

much longer running time than Path-Switching Heuristic. So this paper

�

results are obtained based on BSMA's Path-Switching Heuristic.

B. The algorithm can handle two variants of the cost function:

For utilization-driven multi-casting, the path cost is the sum of link costs

along his path. For congestion-driven multicasting, the path cost is the

maximal link cost along the path.

C. Instead of using the one-pass growing of the multicast tree, propose an

iterative optimization process to further minimize the tree cost.

D. The simulation results show that BSMA produces delay-bounded multicast

trees that, depending on the delay bounds imposed, can be very close to

having minimum cost.

E. The performance comparisons between the Greedy Path Switching and

Path-Switching Heuristic algorithm.

2.4 Degree-Constrained Multi-casting Routing in Point-to-Point
Networks [14]

2.4.1 The Degree-Constrained Steiner Problem (DCSP):

DCSP is defined as follows:

Input:

1. A simple, undirected, connected graph G = (V, E), where V is the set of

vertices in G, E is the set of edges in G.

2. A source node s.

3. A link-cost function associated with each edge C(e) : E  R  .

4. A set of destinations D and DV.

5. The node degree constraints kv  2, vV .

Goals:
Find a MST, T in G, such that dv kv v in T and � �

� �

� �

 is minimized.

2.4.2 Algorithms for the MST problem:

A. Unconstrained Steiner Tree Heuristics:

A.1 Heuristic Naive: [13]

It starts with an arbitrary multicast member as the multicast tree. It then

repeatedly connects another random multicast member to the multicast tree

by the shortest path between the new member and the multicast tree until

all the members are in the multicast tree.

A.2 Shortest Path Heuristic (SPH): [16]

It initializes the multicast tree to an arbitrary multicast member. It then

joins the next closest multicast member to the multicast tree by the shortest

�

path between the multicast member and the tree. It terminates when all

members have joined the tree.

Note:

SPH is differs from Heuristic Naive because multicast members join in the

order determined by their distance to the multicast tree, rather than in

random order.

A.3 Heuristic SPH-Z: [16]

This variant of SPH applies the basic SPH algorithm described in above

once for each possible choice of the starting Z-node, returning the best

solution found.

A.4 Heuristic K-SPH: [17]

The Kruskal-based shortest-path heuristic, starts with the forest of multicast

member nodes. It repeatedly joins the two closest multicast member

subtrees until a single tree spanning all multicast members remains.

A.5 Heuristic ADH: [17]

Like K-SPH, it starts with the forest of multicast member nodes. It

repeatedly connects the three closest multicast member components

through the most central node. It terminates when a single tree remains,

spanning all multicast members.

A.6 Heuristic Dual Ascent: [18]

The Dual Ascent heuristic finds a solution to the SPN in the following five steps:

I. Convert the undirected graph G into a directed graph G’ by substituting

every undirected edge by two directed edges of equal weight in opposite

directions.

II. Build a directed subgraph A from G containing a solution. This step starts

with subgraph A containing all node nodes of G, but none of its edges.

Edges are added to subgraph A one at a time until at least one multicast

node is connected to every other multicast member.

Note:

In directed graphs, node i is connected to node j if a directed path

exists from i to j.

III. Convert A to an undirected graph U.

IV. Find U's minimum spanning tree T.

V. Prune all non-multicast member leaves from T. The result is the multicast

tree.

B. Degree-Constrained Steiner Tree Heuristics: (The detail of the algorithm is

not fully explained in the text; in particularly, the handling of degree constraint

violation.)

��

B.1 Modified Steiner Tree Heuristics:

B.1.1 ADH: ADH connects only the closest subtree to the most central

node. This is because of the difficulty of connecting greater than two

components as explained in above.

B.1.2 Dual Ascent: Modified Dual Ascent differs from it unconstrained

equivalent because it does not find the degree-constrained minimum

spanning tree to its subgraph. Instead, it uses SPH to generate a Steiner tree

from the subgraph.

B.2 Constrained Heuristics: [19]

B.2.1 A29: It is also a variant of SPH. It first adds enough edges of infinite

weight to make G a complete graph and then applies heuristic SPH. Since

G is complete, A29 will always find a degree-constrained Steiner tree,

though the solution may contain infeasible edges.

B.2.2 SPH-R: It is our own variation of SPH. SPH-R like SPH-Z

repeatedly applies SPH to the graph G for different starting points.

However, SPH-R terminates the first time it generates a solution.

2.4.3 Conclusion:

A. Many of the Steiner heuristics tested yielded degree-constrained multicast

trees within 5% of the best heuristic solution found in almost all the

networks tested. And few of our networks were unsolvable, in those cases,

backtracking solved many of the remaining cases.

B. Simple Steiner heuristics such as SPH and SPH-R emerged as the clear

winners with an attractive balance between the conflicting objectives of

solution quality and algorithm complexity.

C. The next least expensive heuristics K-SPH and ADH often gave better

solutions at moderate, extra expense. Heuristic Naive, our expected worst

Steiner heuristic, often did produce the worst solution; however, it also

produced many solutions of surprisingly high quality.

D. Degree-constrained heuristics easily solved all the dense networks we tested

without backtracking.

2.5 How Bad is the Naive Multicast Routing? [13]

2.5.1 Problem definition:

There are two types of multicast groups:

� Static: once set-up, remain unmodified until they are discarded or torn

down.

��

� Dynamic: destination nodes which are already part of the group may wish

to leave or destination nodes which are not part of the group may want to

join.

Now we discuss the dynamic case.

Input:

1. A simple undirected graph G = (V, E), where V is set of vertices in G and

E is the set of edges in G.

2. A source s.

3. A link-cost function C(e) : E  R  .

4. A set of destinations D and DV.
5. A MST Tt for the specific time t.

6. A set of destinations D D D Dt t t t 



  � � �() and Di V  i, where Di

means the set of destinations at the specific time i , Di
 means the set of

vertices want to join the destination set at the specific time i and Di
 means

the set of vertices want to leave the destination set at the specific time i .

Goals:
Find MST Tt� in G which spans Dt� so that the total cost of Tt� is minimized.

Note: Nodes in the sub-tree Tt� , but not in Dt� are called Steiner Nodes.

2.5.2 The algorithm

� Node Addition

The particular algorithm chosen was to find the shortest path from the source to

the node which had been chosen to be added and to add all the nodes along that

path into the multicast connection as Steiner nodes.

� Node Removal

Not discussed in the paper.

2.5.3 Conclusion:

A. Increasing the graph size results in an increase in the inefficiency, but the

changing proportion of destinations makes only a minor difference to the

inefficiency.

B. Increasing the graph size results in little change in the inefficiency if the

degree of nodes vV is constant, and the inefficiency is relatively

independent of the number of nodes in the network for a given proportion of

destinations involved in a multicast connection.

C. The values of the inefficiency obtained with hierarchical model are less than

those obtained with the constant degree model, probably due to a more

limited set of inter-cluster paths from node to node, so the naive algorithm is

��

more likely to choose the same ones as an optimal MST algorithm.

D. There is a approximately linear relationship between the degree and the

inefficiency. As the degree increases, the number of available paths between

any two nodes increases and hence the probability of the shortest path tree

coming close to the heuristic KMB tree decreases and the inefficiency

increases.

E. The paths chosen by the naive algorithm are indeed shorter than those

chosen by KMB and the length of the paths increases as the degree of

connectivity of the graph increases. And the maximum path length tends to

increase in KMB trees as the proportion of destinations increases.

2.6 Dynamic Multicast Routing Algorithms [12][15]

2.6.1 Problem definition:

Input:

1. An undirected graph (network) G = (V, E), where V = set of vertices in G

and E = set of edges in G.

2. A link-cost function C(e) : E  R  .

3. A source s.
4. A MST Tt for the specific time t.

5. A set of destinations D D D Dt t t t 



  � � �() and Di V  i, where Di

means the set of destinations at the specific time i , Di
 means the set of

vertices want to join the destination set at the specific time i and Di
 means

the set of vertices want to leave the destination set at the specific time i .

Output:
Find MST Tt� in G which spans Dt� so that the total cost of Tt� is

minimal.

2.6.2 Dynamic multipoint algorithms

1. The greedy algorithm: [20]

� This finds the nearest node already in the multicast tree to the node to be

added and connects the two via the shortest path between the two nodes.

� To delete a node from the multicast group, it is first marked as 'deleted' and

if that node is not an internal node in the connection, the branch of which it

is a part is pruned.

2. The source rooted Shortest Path (SP) algorithm:

I. Choose a node at random and call that the source node of the multicast

group.

��

II. Another different node was also chosen and the shortest path was

found between them, forming the initial multicast connection.

III. To add a node to the group, the shortest path from the source node to

the node chosen to be added was found and all the nodes along that

path were added into the multicast connection as Steiner nodes.

IV. Then took the union of these paths to produce a multicast tree that was

resilient to change and had a mean inefficiency within 1.5 times that of

the KMB .

3. Geographic Spread Dynamic Multicast (GSDM) Routing Algorithm: [15]

 Part 1. Definition

Geographic spread (GS) is defined as follows:

Given a graph G = (V, E), where V is the set of vertices and E is the set of

edges, and a subset UV, the geographic spread (GS) of the set U, in the

static case when tree T spans U, is defined as the inverse sum of the

minimum distance from a vertex v to a vertex in T, over all vertices vV.

i.e GS(U, V, E)   ��	 � � �
�

	
��

 �

v u
v u 













�

(Note: If there is more than one path with the least cost, choose the path

which maximizes the GS from the set of minimum cost paths and append it

to the tree T).

 Part 2. Algorithms

A. Node Addition

Step 1. Select the node to be added that is not already in the multicast

group, the set D, and call this node A.

Step 2. Find the nearest node in the multicast tree Ts, to node A, and call

this node B. Node B does not necessarily have to be in the multicast

group, the set D.

Step 3. Find the nearest two nodes to node A, which are neighbors on either

side of node B in the multicast connection or tree Ts and call these

nodes C and D respectively. By neighbors, one means that there

exists a path from the node in the multicast group, the set D, in the

multicast tree Ts, to node B that does not pass through any other

node that is in the multicast group, the set D. If however, node B is a

leaf of the multicast tree Ts, (i.e. its degree=1), then find node B

neighbor which lies in the multicast tree, Ts and call this node C. If

there is just one member in the multicast group, the set D, (i.e. the

source node), just join node A to node B by the shortest path as node

��

B does not have any neighbors and it will not be necessary to do

steps 4 and 5.

Step 4. If node B is in the multicast group, the set D, one considers which

of three paths is the cheapest from the set of paths:

C-B-D & B-A (greedy algorithm)

C-B-A-D

C-A-B-D

If node B is not in the multicast group, the set D, one then also

considers the path C-A-D. If node B from Step 3. is a leaf node, one

only has two paths to consider, i.e., path C-B-A and path C-A-B.

Step 5. If there is more than one path with the least cost, choose the path

which maximizes the geographic spread from the set of minimum

cost paths and append it to the tree Ts.

Step 6. Add node A to the multicast group, the set D. When all the

modifications are done, one's finished.

B. Node Removal

Step 1. Select a node to be removed from the multicast group, the set D.

The selected node should not be the source node.

Step 2. If the selected node is a leaf node, then remove the node from the

multicast group, the set D, and prune the branch of which it is a part

from the multicast tree or connection. If the selected node is not a

leaf node, then mark it as eleted from the multicast group, but

do not remove it from the multicast connection, until it is a leaf

node in the multicast connection.

Step 3. Repeat step 2 and 3 until all modifications are done.

2.6.3 Conclusion:

A. The mean inefficiency of the GSDM routing algorithm rises slightly with

increasing number of nodes in the graph.

B. The Greedy's mean inefficiency does not seem to follow a definite pattern as

the number of nodes in the graph is increased from 20 to 100 nodes.

C. The SP algorithm's mean inefficiency rises sharply with increasing number

of nodes in the graph.

D. For a 50 node random graph, the GSDM algorithm is not as efficient when

nodes are in the multicast group than when there are more nodes in the

multicast group. However, as the number of nodes in the multicast group is

increased from 10% to 100% of total nodes in the graph, the algorithm

�

efficiency gets better.

E. GSDM routing algorithm performs very well in comparison to the KMB

algorithm with an inefficiency just slightly worse than the near optimal

heuristic's when tested on random graphs.

3. The Problem Formulation

The following are the terminology used in the definition of the BLR problem:

1. Network Topology: is represented by a graph G = (V, E), where V is the set of

vertices and E is the set of edges.
2. Loss rate function  ��  : associated with an edge e, e E, where  = load.

3. Stream � is specified by     � 	
 	

� � � ������� � � � , where � is the source,

 is the expected loading of the stream, and k pairs of  	
� �� where 	 � : i-th

destination and
 � : loss bound associated with 	 � .

4. Multicast tree  � � : is a Steiner tree in G with � as the source, and	 	
� ������� as

destination points.

5. A set of streams � :  � � �� ������ .

6. A routing of � is denoted by  � � =  � � � � �� �������� � �� .

Given a routing  � � for � , we define the following terms :

� The Loading of an edge e:   � �

� � � � �� �


  


� �

, e  E.

� Consider a stream � � . Let  	
�      	
 	

� �� ������� � where � is

destination, and � is its associated loss bound, we use  � � 	� to define a path

from s to d in � �� � .

1. Path loss rate of  � � 	� is defined as  � � 	� =  � ��

� � � �

 � �
� � �
 .

2.  � � 	� is valid for the streams if and only if  � � 	�  � .

� � �� � is valid if and only if  � � 	 �� is valid   � � 	 �� � �� � .

� Consider � ��  , and its corresponding routing    � � � ��  ,  � �� is valid

for � if and only if  � � � is valid � ��  � .

Now, we are ready to define the BLR problem.

The BLR problem is defined below.
Given:

1. G=(V,E),

��

2.  Le  , e  E, where  : traffic load on � ,

3. � � : the set of accepted streams,

4.  � � � : a valid routing for � � .

Suppose � � = � � �� �������� is the set of the new arrival streams.

Note:
If � � �  clean network. If � �    dirty network.

If � � �  clean network. If � �    dirty network.

Problem I: Does there exist polynomial time algorithm to find a valid routing

 � � � such that the routing    � � � �� � for � �� � is valid, given that  � � � is

valid for � � ?

Problem II: Find the valid routing  � � � such that the routing    � � � �� � for

� �� � is valid.

Example 1

Consider a network specified by a simple, undirected graph G=(V,E) where
V={ v� , v� , v� , v� , v	 , v

�
 }, as shown in Figure 2.

v1

v2

v4

v5

v3

v6

Figure 2. The network model in Example 1.

We assume the loss rate functions of the links are all the same and is depicted in

Figure 3.

��

Loss rate

l

Load

6l

3w 5w

Figure 3. The loss rate function associated with edge in G.

Suppose there are two existing streams:  S S Sa  � �
, , where

 S v w v l v l
� � � �

� � , , (,), (,) and  S v w v l v l
� � � �

� � � , , (,), (,) with valid routing

 T S T S T S() = (), ()
� �

as depicted in Figure 4.

v1

v2

v4

v5

v3

v6

T(S1)

T(S2)

Figure 4. The valid routings of S1 and S2 .

Consider the new arrival streams  S S Sn  � �
, , where  S v w v l v l

� � � �
� � , , (,), (,)

and  S v w v l
� � �

� � , , (,) .

��

v1

v2

v4

v5

v3

v6

T(S1)

T(S2)

T(S3)

Figure 5. The valid routings of S1, S2 and S3.

For Stream  S v w v l v l
� � � �

� � , , (,), (,) , we consider the routing T(S
�
) as shown

Fig 5.

Notice that the loss rate of
path(v v v v

� � � �
  )=L(w)+L(w+2w)+L(w+w)=3l�4l; and

the loss rate of Path(v v v
� � �
 )=L(w)+L(w+2w)=2l�3l.

Thus T(S
�
) is a valid routing!!

For Stream  S v w v l
� � �

� � , , (,) however, we can't find any valid routing for T(S
�
) !!

In the previous example, it takes three hops for Path(v v v v
� � � �
  ) in T(S

�
) to

connect the source to the destination. In many telephony applications, however, it is

often a practical implementation to consider the point-to-point connection with no

more than two hops while constructing a multicast tree. Thus we also consider the
constraint BLR problem in this paper. A two-hop multicast tree  � � is a Steiner

tree in G with � as the source, � �
��

�					� as the destination points, and  � � �
�

�  2

 i. The 2-hop BLR problem (or 2hBLR) is the BLR problem except all valid

multicast trees are two-hop multicast trees.

�

4. Complexity Analysis of the BLR Problem

The BLR problems can be classified into a few of sub-problems with four

system parameters; the number of the existing streams admitted in the system or

�
�

, the size of the arrival streams, the multicast degree of the streams, and the hop

constraint in the problem. In this paper, we consider two different cases for each of

the four parameters; the admitted streams can either be none (the case of the clean

network) or some (the case of the dirty network). The new arrival stream can either be

one (the single arrival) or many (the batch arrival). The streams can be point-to-point

communication (M=1) or multicasting (M>=2), and finally, the valid multicast tree

for each admitted stream is with 2-hop constraint or not. This classification results in

sixteen different sub-problems as shown in Figure 6.

 single batch single batch single batch single batch

clean dirty clean dirty clean dirty clean dirty clean dirty clean dirty clean dirty clean dirty

2-hops n-hops 2-hops n-hops

multicast point-to-point

Figure 6. Four parameters classify 16 different sub-problems of the BLR problem.

In this section, we analyze the complexity of the BLR problems. Table 2

summarizes the results of the complexity analysis. For those problems that we have

proven NP-complete, the proofs are included in the appendixes. (See Appendix A-E.)

For those problems with solutions of linear time complexity are left to the reader as

exercises. Finally, For those problems indicated by question marks are still open.

��

�
�
 � � �  �

�
����� ����� ���������������

�
�
 � � �  �

������� ���������������

�
�
 � � �  �

������ ��� �!�� ����� !���!�������

������	
� �
��
�

 �

�

�
�
 � � �  �

�"�!�# ��� �!�� ����� !���!�������

������	
� �
��
�

 �
�

���
����
	
 �

�
�
 � � �  �

������ ��� �!�� � �����

����	
�	���	�

 �
�

���
����
	
 �

�
�
 � � �  �

�"�!�# ��� �!�� � �����

� ���
����
	

����� ��� �	�
��
������ �� �	� ���
��������

�
�
 � � �  �

�������
��
� ���
����
�

�
�
 � � �  �

���
��� ���
����
�

�
�
 � � �  �

������ ��
���
� ����� ���
���
����

������	�
����

 �
�

�
�
 � � �  �

����
� ��
���
� ����� ���
���
����

 � �

��� ��		��������	

�� � �� �����	��

�

�� � �� �����	��

�������	
�
 � ��
��
��� �������	
�
 ��
��
���

�
�
 � � �  �

������ ��	
��
� � �����

�����
�������

 �
�

�������	
�
 �

�

�� � �
�
 � � � ���	
��

�
�
 � � �  �

����	� ��	
��
� � �����

�������	
�
 � �������	
�

����� ��� �	�
��
������ �� �	� ���
��������

���� �������	 �

���� �������	 �

���� �������	 �

���� �������	

���� �������	 �

��

REFERENCES
1. J. Moy, "Multicast Routing Extensions for OSPF", Communication of ACM,

37(8):61-66, 1994.

2. S.E. Deerimg and D.R. Cheriton, "Multicast Routing in Datagram Internetworks

and Extended LANs", IEEE transaction on Computers, 8(2):85-110, 1990.

3. E. W. Dijkstra, "A Note on Two Problems in Connexion with Graphs",

Numberische Mathemtik, 1:269-271, 1959.

4. P. Winter, "Steiner Problem in Networks: A Survey", Networks, 17:129-167,

1987.

5. T. S. Yum and M. S. Chen, "Multicast Source Routing in Packet-Switched

Networks", IEEE Transactions on Communication, 42(2/3/4):1212-1215, 1994.

6. B. K. Kadaba and J. M. Jaffe, "Routing to Multiple Destinations in Computer

Networks" IEEE Transactions on Communications. Com-31(3):343-352, 1983.

7. S. C. Liew, "Multicast Routing in 3-Stage Clos ATM Switching Networks", IEEE

Transaction on Communication, 42(2/3/4):1380-1390, 1994.

8. A. Ciro, J. Noronha and A. T. Fouad,"Optimum Routing of Multicast streams",

in Proc. of INFOCOM, pp. 856-864, 1994.

9. L. Kou, G. Markowsky, and L. Berman, "A Fast Algorithm for Steiner Trees",

Acta Informatica, vol. 15, pp. 141-145, 1981.

10. V.P. Kompella, J.C. Pasquale, and G.C. Polyzos, "Multicast Routing for

Multimedia Communication", IEEE/ACM transaction on Networking, vol. 1, no.

3, pp. 286-292, June 1993.

11. Q. Zhu, M. Parsa, and J.J. Garcia-Luna-Aceves, "A Source-Based Algorithm for

Delay-Constrained Minimum-Cost Multicasting", in Proc. of IEEE INFOCOM

95, 3d.2.1, pp. 377-385, 1995.

12. J. Kadirire, "Minimizing Packet Copies in Multicast Routing by Exploiting

Geographic Spread", ACM SIGCOMM Communication Review, vol. 24, no.3,

pp. 47-62, July 1994.

13. M. Doar and I. Leslie, "How Bad is Naive Multicast Routing?", in Proc. of IEEE

INFOCOM, San Francisco, CA, pp. 82-89, Apr. 1993.

14. F. Bauer and A. Varma, "Degree-Constrained Multicasting in Point-to-Point

Networks", in Proc. of IEEE INFOCOM 95, 3d.1.1, pp. 369-376, 1995.

15. J. Kadirire and G. Knight, "Comparison of Dynamic Multicast Routing

Algorithms for Wide-Area Packet Switched (Asynchronous Transfer Mode)

Networks", in Proc. of IEEE INFOCOM 95, 2c.3.1, pp. 212-219, 1995.

16. H. Takahashi and A. Matsuyama. "An Approximate Solution for the Steiner

Problem in Graphs", Math. Japonica, vol. 24, no. 6, pp. 573-577, 1980.

17. J. Kruskal. "On the Shortest Spanning Subtree of a Graph and the Traveling

��

Salesman Problem", Proc. Amer. Math. Soc., vol. 7, pp. 48-50, 1956.

18. R. Wong. "A Dual Ascent Approach for Steiner Tree Problems on a Directed

Graph", Mathematical Programming, vol. 28, pp. 271-287, 1984.

19. S. Voss. "Steiner's Problem in Graphs: Heuristic Methods", Algorithmica, vol.

7, no. 2-3, pp. 333-335, 1992.

20. B.M. Waxman, "Routing of Multipoint Connections" IEEE Journal On Selected

Areas In Communications, vol. 6, no. 9, pp. 1617-1622, December 1988.

��

Appendix A
Dirty network, 2-hop restriction, batch, point-to-point
We want to reduce 3 SAT problem to BLR 2-hop restriction problem.

3 SAT Problem(known as NP-complete):

Instance: Collection C={C1, C2,....., Cm} of clauses on a finite set U of literals such

that | Ci | = 3 for 1 i m. (All clauses have exactly three literals per clause.)

Question: Is there a truth assignment for U that satisfies all the clauses in C?

proof:
We define a polynomial-time reduction from 3 SAT problem to BLR 2-hop

restriction problem. This reduction transforms a conjuctive normal form Boolean

formula f to an instance G of BLR 2-hop restriction problem. So f is satisfiable if and

only if G can be routed.

Given an instance of 3 SAT Collection C={C1, C2,....., Cn} of clauses on a finite set

U of literals such that | Ci | = 3 for 1 i n. We construct an instance of BLR 2-hop

as follows: a graph G = (V, E), a source node s (sV), and a set of destination nodes

D={C1,C2,...,Cn}(DV).

For any clause node C, if it contains x or � , it connects to node x. If it contains y or
y , it connects to node y, and so on. Source node s connects to all literal nodes. Please

see the following:

S

C1 C2 C3 Cn

x y z

Clauses

Literals...

Figure A.1

For every literal x:

L(x) : a set of clauses with x on it.

��

L(x) : a set of clauses with x on it.

For example,

S

x y z  x y z 
... Clauses

x y z
Literals

Figure A.2

Let's just consider literal x node to all relative nodes (Clauses).
�
�
, ... , �

�
  L(x)

�
�
, ... , �

�
  L(x)

Path a x bi j  is a routed stream ij , where 1 i  n , 1 j  n.

Assume there is a loss rate function associated with each edge except edge(s,x) in G

L() = n � ,if = n .

L() = (n+3) � ,if = n +1.

L() = � no matter  is what value for edge (s, x).

Loss rate bound for all streams is (2n+5) � .
Observe that, every path a x bi j  has load = n.

��

a1 a2 an b1 b2 bn

x

s
load

loss rate

lload
n n+1

nl

(n+3)l

loss rate

L(x) L x()

Figure A.3

3 SAT BLRP

Reduce

P P

Figure A.4

If we can get a truth assignment for 3 SAT, we can choose either L(x) or L(�) from

truth assignment. Then we can route BLRP.


For any admitted stream, the loss rate is 2nl (The sum of �

�
-x (nl) and x-�� (nl)).

For example, if we want to establish a set of routes from s to �� or �� , either L(x) or

L(x) group can be chosen for the new route. After choosing L(x) or L(x), the

admitted stream becomes (2n+3)l, and the new route (s-x- �� or s-x-��) becomes (

n+4)l. If we choose both L(x) and (x), the admitted stream will be (2n+6)l. But the

loss rate bound is (2n+5)l, therefore, we must get a truth assignment (either L(x) or

L(x)) to avoid the violation of the loss bound.

��

Appendix B
Dirty network, 2-hop restriction, single task, multicast
BLRP is NP-complete problem
We want to reduce 3 SAT problem to BLR 2-hop restriction problem.

3 SAT Problem(known as NP-complete):

Instance: Collection C={C1, C2,....., Cm} of clauses on a finite set U of literals such

that | Ci | = 3 for 1 i m. (All clauses have exactly three literals per clause.)

Question: Is there a truth assignment for U that satisfies all the clauses in C?

proof:
We define a polynomial-time reduction from 3 SAT problem to BLR 2-hop

restriction problem. This reduction transforms a conjuctive normal form Boolean

formula f to an instance G of BLR 2-hop restriction problem. So f is satisfiable if and

only if G can be routed.

Given an instance of 3 SAT Collection C={C1, C2,....., Cn} of clauses on a finite set

U of literals such that | Ci | = 3 for 1 i n. We construct an instance of BLR 2-hop

as follows: a graph G = (V, E), a source node s (sV), and a set of destination nodes

D={C1,C2,...,Cn}(DV).

For any clause node C, if it contains x or x , it connects to node x. If it contains y or

y , it connects to node y, and so on. Source node s connects to all literal nodes. Please

see the following:

S

C1 C2 C3 ... Cn

x y z

Clauses

Literals
...

Figure B.1

For every literal x:

L(x) : a set of clauses with x on it.

L(x) : a set of clauses with � on it.

��

For example,

S

x y z  x y z 
... Clauses

x y z
Literals

Figure B.2

Let's just consider literal x node to all relative nodes (Clauses).
�
�
, ... , ��  L(x)

�
�
, ... , ��  L(x)

Path � � �� �  is a routed stream ij , where 1 i  n , 1 j  n.

Assume there is a loss rate function associated with each edge except edge(s, x) in G

L() = n � ,if = n .

L() = (n+3) � ,if = n +1.

L() = � no matter  is what value for edge (s, x).

Loss rate bound for all streams is (2n+5) � .
Observe that, every path a x bi j  has load = n.

��

a1 a2 an b1 b2 bn

x

s
load

loss rate

lload
n n+1

nl

(n+3)l

loss rate

L(x) L x()

Figure B.3

3 SAT BLRP

Reduce

P P’

Figure B.4


If we can get a truth assignment for 3 SAT, we can choose either L(x) or L(x) from

truth assignment. Then we can route BLRP.


For any admitted stream, the loss rate is 2nl. If we want to establish a new route from

s to �� or �� , either L(x) or L(x) group can be chosen for the new route. After

choosing L(x) or L(x), the admitted stream becomes (2n+3)l, and the new route

becomes (n+4)l. If we choose both L(x) and L(x), the admitted stream will be (

2n+6)l. But the loss rate bound is (2n+5)l, therefore, we must get a truth

assignment (either L(x) or L(x)) to avoid the violation of the loss bound.

��

Appendix C
Proof for Clean network, n-hop, batch, point-to-point
We want to reduce Maximum Length-bounded Disjoint Paths Problem to this

problem.

Maximum Length-bounded Disjoint Paths Problem(known as NP-complete):

Instance: Graph G=(V,E), specified vertices s and t, positive integers J, K V.
Question: Does G contain J or more mutually edge disjoint paths from s to t, none

involving more than K edges (K5)?

proof:
We define a polynomial-time reduction from problem to our problem. This reduction

transforms graph G to an instance � of clean network, n-hop, batch, point-to-point

problem. So that G is satisfiable if and only if � can be routed.

Given an instance of G. We construct an instance of clean network, n-hop, batch,

point-to-point problem as follows:
A graph � with source s and destination t, we construct � � ��

������� to connect with s,

and � � ��
������� to connect with t. We want to route j streams from � � to � � .

 Assume there is a loss rate function associated with each edge in G.

L() = � if = 1,

L() = 15 � if = 2.

Loss rate bound for all streams is 7 � .

1 2
1

loss rate 15

load

Figure C.1

*Garey,Johnson, "Computer and Intractability" 1979.

�	

Maximum
length-bounded
disjoint path

Clean network,
n hop, batch
point-to-point
 BLRP

P P’

Reduce

Figure C.2


If we can solve Maximum Length-bounded Disjoint Paths Problem , then we can

route clean network, n hop, batch, point-to-point BLRP.


1. Since the bound is 7 � , the path length for every stream in the "black box" can't

be more than 5 hops. It can map to term "no more than K edges".

2. Any two streams can't use the same link in the "black box". Since if they use the

same link, loss rate will be more than 15 � . It can map to term "edge-disjoint".
We must route those j streams from � � to � � in this situation, then we can find a

solution to Maximum Length-bounded Disjoint Paths Problem.

�

Appendix D
Proof for Clean network, n-hop, batch, multicast
We want to reduce Maximum Length-bounded Disjoint Paths Problem to this

problem.

Maximum Length-bounded Disjoint Paths Problem:
Instance: Graph G=(V,E), specified vertices s and t, positive integers J, K V.
Question: Does G contain J or more mutually edge disjoint paths from s to t, none

involving more than K edges (K5)?

proof:
We define a polynomial-time reduction from problem to our problem. This reduction

transforms graph G to an instance � of clean network, n-hop, batch, point-to-point

problem. So that G is satisfiable if and only if � can be routed.

Given an instance of G. We construct an instance of clean network, n-hop, batch,

point-to-point problem as follows:

A graph � , j streams with the same source s and the same destination t.

Assume there is a loss rate function associated with each edge in G.

L() = � if  = 1,

L() = 15 � if  = 2.

Loss rate bound for all streams is 5 � .

1 2
1

loss rate 15

load

Figure D.1

Maximum
length-bounded
disjoint path

Clean network,
n hop, batch
multicast
 BLRP

P P

Reduce

Figure D.2

��


If we can solve Maximum Length-bounded Disjoint Paths Problem , then we can

route clean network, n hop, batch, multicast BLRP.


1. Since the bound is 5 � , the path length for every stream in the "black box" can't

be more than 5 hops. It can map to term "no more than K edges".

2. Any two streams can't use the same link in the "black box". Since if they use the

same link, loss rate will be more than 15 � . It can map to term "edge-disjoint".

We must route those j streams in this situation, then we can find a solution to

Maximum Length-bounded Disjoint Paths Problem.

��

Appendix E
Dirty network, n hop, single task, multicast BLRP is NP-
Complete problem
We want to reduce 3 SAT problem to BLRP.

3 SAT Problem(known as NP-complete):

Instance: Collection C={C1, C2,....., Cm} of clauses on a finite set U of literals such

that | Ci | = 3 for 1 i m.

Question: Is there a truth assignment for U that satisfies all the clauses in C?

proof:
We define a polynomial-time reduction from 3 SAT problem to BLRP. This reduction

transforms a conjuctive normal form Boolean formula f to an instance G of BLRP. So

that f is satisfiable if and only if G can be routed.

Given an instance of 3 SAT Collection C={C1, C2,....., Cn} of clauses on a finite set

U of literals such that | Ci | = 3 for 1 i n. We construct an instance of BLRP as

follows:

a graph G = (V, E), a source node s(sV), and a set of destination nodes
D={C1,C2,...,Cn}(DV). V={C1,C2,...,Cn, s}{ � � ��

�

�

�

�

�� � for all � . i all literals in

clauses} (where f means false, t means true and m is mid .)
Source node connects to all � �

� nodes.

For example, Cm=(� �	 �� � ), this node connects to � � ��

�

�

�

�

�
� � . This can be done in

polynomial time.

Assume there is a loss rate function associated with each edge in G . L()= l if  is 1,

L()= 3l if  is 2 and Loss rate bound is 5.5l. Moreover, every path has load =1.
Assume every path � � ��

�

�

�

�

�  i has load 1.

��

x y z 

x y z 

C1

C2

x y z  Cm

S

.........

x xlx

f lx

m lx

t

z z

lz

f lz

m

lz

t

y
y

ly

f ly

m

ly

t

Figure E.1

3 SAT BLRP

Reduce

P P

Figure E.2

If we can get a truth assignment for 3 SAT, we can choose either x or x from truth

assignment. Then we can route BLRP.


For any admitted stream, the loss rate is 2l. For example, if we want to establish a

new route from s to Cm, either x or x can be chosen for the new route. After

choosing x or x , the admitted stream becomes 4l, and the new route becomes 5l. If

we choose both, the admitted stream will be 6l. Therefore, we can get a truth

assignment.

Figure E.3

Loss rate

3l

l

L 2L Load

��

