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Abstract

Many closed�form solutions have been developed for calibrating robot kinematic parameters�

The existing closed�form solutions for kinematic calibration can be class�ed into two categories

according to the information they used� Methods estimating kinematic parameters by using pose

measurements are referred to as the pose methods� While there is only one closed�form solution

referred to as the point method using �D point measurements for calibrating robot kinematic

parameters� Relatively less work has been devoted to the error analysis on the calibration

methods� Error analysis results are very useful to serve as a guideline for selecting calibration

techniques� for determining the calibration condition and even for designing a robot head or a

robot arm when considering the calibration task� In this paper� we derived the expressions of

variances of the kinematic parameters estimated by using the point method or the pose method�

respectively� The derived error variances for the point method are functions of the calibration

range� number of measurements� amount of measurement noise and amount of joint value noise�

Furthermore� if the joint under calibration is revolute� then the error variances are also functions

of the distance between the calibration point and the revolute joint axis and length of the link

corresponding to the joint under calibration� The derived error variances for a pose method

are functions of the calibration range� number of measurements� amount of measurement noise�

amount of the joint value noise and length of the link corresponding to the joint under calibration�
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I� Introduction

Kinematic models are important for controlling robot manipulators and binocular robot

heads� In general� a robot is manufactured to have high repeatability and because of man�

ufacturing inaccuracy� aging and some non�geometric factors� robot positioning accuracy

is usually worse than its repeatability� Therefore� for applying robots to more applications

requiring high positioning accuracy� many techniques were developed for estimating accu�

rate kinematic parameters of a robot� e�g�� ���� ���� �	�� �
�� ���� ���� �
�� ����� ����� ����� ��	��

����� ����� ��
�� ����� ����� ���� and ��	�� In contrast� relatively less work has been devoted to

the theoretical analysis on the estimation error of kinematic parameters� Theoretical error

analysis on the estimation error is important for revealing factors that dominat calibration

accuracy and for reducing the calibration error� Furthermore� based on the error anal�

ysis results� the most appropriate calibration technique can be determined for obtaining

accurate calibration results�

A� Closed�form Solutions and Nonlinear Optimization Techniques

In general� kinematic equations are nonlinear in parameters� therefore� most of the cal�

ibration methods are based on nonlinear optimization techniques� e�g�� ���� ���� �
�� ����

���� �
�� ����� ����� ��
�� ����� and ��	�� This kind of calibration techniques are very accu�

rate� providing that an accurate initial estimate of the kinematic parameters is available�

Notice that although kinematic equations are nonlinear in parameters� the calibration

problem can be made linear by estimating parameters of one joint axis at a time� which is

exactly the way all the closed�form solutions doing� As a result� initial estimate of kine�

matic parameters for nonlinear optimization can be obtained from closed�form solutions�

Closed�form solutions are attractive because they are more reliable than a nonlinear iter�

ative solution� Furthermore� accuracy of a closed�form solution can be carefully improved

to be comparable with that of a nonlinear method� However� it should be noticed that if

some factors are not properly controlled� then closed�form solutions do not promise accu�

rate results� Again� �nding factors that a�ect accuracy of a closed�form solution should

rely on the theoretically error analysis�

Existing closed�form solutions for joint axis estimation can be classi�ed into two cate�
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gories according to the information they used� Methods from the �rst category use the

pose measurements and will be referred to as the pose methods� e�g�� Lenz and Tsai ����

and Young et al� ����� Zhuang ���� and Shih et al� ��	�� where a pose measurement contains

both position and orientation estimates of a calibration object attached to the joint axis

being calibrated� Notice that although di�erent pose methods were proposed according

to di�erent problem formulations� ����� ��	�� ���� and ����� we found that these methods

for calibrating a revolute joint axis are all equivalent� except for the Zhuang method �����

The main di�erence of the Zhuang method comparing to others is that the translation pa�

rameters of all joints are estimated simultaneously to prevent the error propagation �����

Nevertheless� when calibrating a robot of a single revolute joint� all the pose methods are

equivalent�

The second category contains only one closed�form solution� i�e�� Shih et� al����� �refer

to Chen �	�� Stone ���� and Sklar ���� for the corresponding nonlinear iterative solutions��

which uses position measurements of a calibration point attached to the joint axis being

calibrated� This kind of method will be referred to as the point method� Notice that

when the joint under calibration is moving� the trajectory of the calibration point will

form either a 	�D circle or a 	�D line according to its joint type �revolute or prismatic��

Hence� the point method is essentially to solve 	�D circle and 	�D line �tting problems

for revolute and prismatic joints� respectively� It is well known that a 	�D circle �tting

problem is nonlinear when only 	�D measurements of circle edges are available ��� �����

Whereas� we showed that if 	�D measurements of circle edges and their corresponding

rotation angles are available� then we can derived a closed�form solution to the 	�D circle

�tting problem �refer to ������ Details of the above�mentioned closed�form solutions will

be described in the next section�

Accurate closed�form solutions of kinematic parameters are very important for either

subsequent nonlinear optimization or direct applications� hence� we will focus on the error

analysis of closed�form solutions for kinematic calibration problems� However� since error

analysis results of an overall kinematic model are usually dedicated to a speci�c type of

robots� it is hard to generalize the analysis results to others� On the other hand� because

most robots are composed of several prismatic and revolute joints� error analysis results on
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calibration of a single joint will be generally useful� Therefore� we will further focus on the

error analysis of closed�form solutions when they are applied to the calibration problem

of a single revolute or prismatic joint�

B� Review of Related Work

So far as we know� less work has been devoted to the investigation of error analysis on

kinematic calibration� especially� on analyzing the parameter estimation error of closed�

form solutions for kinematic calibration� Stone ���� analyzed the estimation error of his

calibration method using point measurements� however� in his analysis� in�uence of some

factors were obtained from �tting empirical data to parameterized functions� Lenz and

Tsai showed some analysis results on estimation error of a rotation axis ����� however�

their error analysis results are mainly for hand�eye calibration�

In this paper� we will derive error variances of the estimated kinematic parameters of

a single joint for the pose method and point method� respectively� Notice that during

kinematic calibration� calibration data are measured with respect to di�erent joint val�

ues� For convenience� we will refer to the distribution range of joint values corresponding

to the calibration data as the calibration range which is a subspace of the joint space�

The derived error variances for the point method are functions of the calibration range�

number of measurements� amount of measurement noise and amount of joint value noise�

Furthermore� for the point method� if the joint under calibration is revolute� then the

error variances are also functions of the distance between the calibration point and the

revolute joint axis and length of the link corresponding to the joint under calibration� The

derived error variances for a pose method are functions of the calibration range� number

of measurements� amount of measurement noise and length of the link corresponding to

the joint under calibration�

This paper is organized as follows� In section II� the pose methods and the point method

for kinematic parameters are described� general equations for the pose methods will be

derived to show that all the pose methods are equivalent� In section III� error analysis on

the point method for kinematic calibration of a single joint is described� In section IV�

error analysis on the pose method for kinematic calibration of a single joint is described�

In section V� the derived error variances of the estimated kinematic parameters are veri�ed
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by computer simulations� Conclusions are given in section VI�

II� Closed�form Solutions for Kinematic Calibration

Assume that the robot under calibration contains no closed�loop kinematic chain and

has n joints� The kinematic equation of the n�joint robot is

wTn �
wT�

�T�
�T� � � �

n��Tn� ���

where iTj is the transformation matrix from frame fig to frame fjg� The transforma�

tion matrix between two consecutive joint frames can be described by di�erent kinematic

models� e�g�� the D�H model ���� S�model ���� and the CPC �Complete and Parametrically

Continuous� model ����� According to the robotics conventions� the z�axis of a joint frame

is de�ned by its joint axis� Hence� the general form of a kinematic model between two

consecutive joint frames can be represented as follows�

i��Ti �
i��T Q �qi� Ti� ���

where qi is the joint value of the ith joint�
i��T and Ti are the kinematic�model�dependent

constant transformation matrices �e�g�� for a CPC kinematic model� i��T is an identity

matrix and Ti is the shape matrix ������ and

Q �qi� �

���
��

RotZ �qi� � if joint i is revolute�

T ransZ �qi� � if joint i is prismatic�
�	�

Notice that by substituting equation ��� into equation ���� we have

wTn �
wT�Q�q��V�Q�q��V� � � � Q�qn�Vn� ���

where

Vi � Ti
iT � �
�

Equation ��� is exactly in the form of the CPC kinematic model ����� Therefore� no matter

what kind of kinematic model is used� during the kinematic calibration� it can always

be transformed into the CPC kinematic model ���� �this is owing to the completeness

property of the CPC model�� Henceforth� we will use the CPC kinematic model in deriving
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the closed�form solutions and in the error analysis� The shape matrix� Vi� for the CPC

kinematic model is

Vi � Ri Rotz��i� Trans��lix liy liz�
t�� ���

and

Ri �

�
���������

��
b�
ix

�	biz

�bixbiy
�	biz

bix �
�bixbiy
�	biz

��
b�iy

�	biz
biy �

�bix �biy biz �

� � � �

�
								

� ���

Notice that the parameters� f�i� lix� liy� lizg and f�i� lizg� are redundant for a prismatic and

a revolute joint �refer to ������ respectively�

Kinematic calibration of an n�joint serial robot is the process of estimating unknown

kinematic parameters contained in equation ���� Kinematic calibration problems are non�

linear because unknown parameters of the n joints are all multiplied together� However�

if we sequentially estimate kinematic parameters of one joint at a time� then closed�form

solutions can be derived�

Both the point method and the pose method discussed in this paper can be applied

to calibrate a serial robot sequentially from the end�e�ector to the base and vice versa�

When calibrating a robot from its end�e�ector toward its base� the ith shape matrix� Vi�

is calibrated based on the net motion of joint i� Whereas� when calibrating a robot from

its base toward its end�e�ector� the ith shape matrix� Vi� is calibrated based on the net

motion of joint �i���� instead� The pose method and the point method will be discussed

in the following subsections for both prismatic and revolute joints� respectively� Also� the

objective functions for deriving the closed�form solutions are described in the following

subsections� which will also be used in the theoretical analysis�

A� Fundamental Calibration Equation of the Pose Methods

The goal of this subsection is to derive the fundamental calibration equation of the pose

methods� Assume that the kinematic calibration is proceeded in the forward order from

the base toward the end�e�ector� Without loss of generality� we assume that the kinematic

parameters of joints ���i� �� are all calibrated� To calibrate the shape matrix of joint i�

all the un�calibrated joints except for joint �i���� i�e�� joints �i����n� should be kept still�
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Fig� �� A schematic diagram of the pose method�

Furthermore� we assume that the pose of the end�e�ector can be measured with respect

to a �xed reference frame referred to as the WCS �World Coordinate System�� Figure �

shows the schematic diagram of the pose method for kinematic calibration� Obviously� the

pose measurement of the end�e�ector� denoted as nTw� is a function of an n�dimensional

vector of joint values denoted as q� When joints ���i � �� are moved to two di�erent

positions in the joint space� e�g�� q�j� and q�k�� we have

F �q�j�� Vi Q�qi	��j�� V�i	��
i	�Tn

� F �q�k�� Vi Q�qi	��k�� V�i	��
i	�Tn� ���

where

F �q���� � nTw�q����
wTi���qi����Q�qi����� �
�

and both sides of equation ��� are all equal to identity matrix�

Since joints �i����n were held still� V�i	��
i	�Tn on both sides of the above equation can

be eliminated� and equation ��� can be rewritten as follows�

Vi Q��qjk� � �T
f
jk Vi� ����

where �qjk � qi	��j�� qi	��k� and

�T f
jk � F���q�j�� F �q�k��� ����






Notice that in the above equation� all the unknowns are contained in the shape matrix�

Vi� whereas the other matrices can be computed from the calibrated kinematic model of

joints ���i� �� and the pose measurements�

Similarly� when the kinematic calibration is proceeded in the reverse order from the

end�e�ector toward the base� the fundamental equation for the kinematic calibration can

be derived as follows �refer to ��	���

Q�qi�j�� qi�k�� Vi � Vi �T
r
jk� ����

where

�T r
jk �

iTn�q�j��
nTw�q�j��

h
iTn�q�k��

nTw�q�k��
i��

� ��	�

Notice that equation ���� can be transformed to be exactly in the same form of equation

���� by computing its inverse matrix� Furthermore� calibrating the kinematic parameters

in the order from the base toward end�e�ectors is very suitable for robots having multiple

end�e�ectors� On the contrary� if we calibrate a multiple end�e�ector robot from the end�

e�ectors to the base then at the link having two branching kinematic chains� we will have

to estimate an additional transformation matrix for unifying the coordinate systems from

di�erent end�e�ectors �as in ��
��� Therefore� we will choose to analyze the estimation

error of equation ����� which can be used to calibrate a robot in the forward order�

B� Pose Method� Calibration of a Prismatic Joint

For a prismatic joint� the unknown parameters to be estimated are the orientation of

the prismatic joint axis� whereas the translation parameters are all redundant �refer to

���� and ��	��� Assume that we have M pose measurements� Based on equation ����� an

objective function of the unit vector of the translation joint axis can be de�ned as follows

�refer to ��	���

� �ui� �
MX
j��

MX
k��

���ui�qjk � t�Tjk

���� � ����

where ui denotes the unit vector of joint axis satisfying the constraint� kuik
� � �� and

t�Tjk is the translation vector of the transformation matrix �Tjk�

The closed�form solution of ui minimizing the objective function ���� can be derived as
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follows �refer to ��	���

ui �

PM
j��

PM
k��

�
t�Tjk�qjk



���PM

j��

PM
k��

�
t�Tjk�qjk


��� ��
�

C� Pose Method� Calibration of a Revolute Joint

For a revolute joint� the unknown parameters to be estimated are two orientation pa�

rameters and two translation parameters� From the rotation matrices of equation ����� we

can de�ne an objective function of the unit orientation vector as follows �refer to ��	���

� �ui� � uti E ui� ����

where

ui � Ri

�
����
�

�

�

�
			
 � ����

Ri is the rotation matrix of the shape matrix� Vi� and

E �
MX
j��

MX
k��

h
R�Tjk � I

it h
R�Tjk � I

i
� ����

where R�Tjk is the rotation matrix of the transformation matrix� �Tjk� Notice that

minimizing the objective function ���� is equivalent to computing the common rotation

axis of a set of rotation matrices� Actually� all the existing pose method for the kinematic

calibration of a revolute joint are doing in this way� The optimal solution to the objective

function ���� is the eigenvector of the matrix� E� corresponding to the smallest eigenvalue�

From the estimated orientation vector of the joint axis� ui� into equation ���� we can

construct the orientation matrix� Ri �refer to ���� or ��	���

By substituting the estimated orientation matrix� Ri� into equation ����� we have a

equation of the unknown translation vector� ti� where

�I �RotZ ��qjk�� li � Rt
i t�Tjk � ��
�

The objective function of the translation parameters can be de�ne as follows�

� �ti� �
MX
j��

MX
k��

�����
�
�� cos ��qjk� sin ��qjk�

� sin ��qjk� �� cos ��qjk�

�
l�i �

�
� � �

� � �

�
Rt
i t�Tjk

�����
�

� ����



��

where

l�i �

�
�� lix

liy

�
	
 � ����

and the relation between the kinematic parameters� li� and the translation vector� ti� of

the shape matrix� Vi� is ti � Ri li� The closed�form solution of the unknown translation

parameter� ti� can be computed by using linear least�square method based on equation

�����

D� Fundamental Equation of the Point Method

of Measurement Device

Reference Frame

Calibration Target

3D Point Measurement

End-effector

f	g fWg

�TW

fig y

pi

fi
 �g

�Tn 
qi�
fng

Fig� �� A schematic diagram of the point method�

In this subsection� we will derive the fundamental equation for the point method� Sup�

pose that the kinematic calibration is proceeded from the base toward the end�e�ector�

Without loss of generality� we assume that the kinematic parameters of joints ���i � ��

are all calibrated� and that of joint i is being calibrated� Figure � shows the schematic

diagram of the point method for robot kinematic calibration in the forward direction

�from the base toward the end�e�ector�� To provide position measurements for calibrating

joint i� a calibration target is attached to any link between joint i and �including� the

end�e�ector �notice that when calibrating di�erent joints� the calibration target can be

mounted at di�erent places�� For deriving a closed�form solution� when calibrating joint

i� the un�calibrated joints which will a�ect the position of the calibration target should be
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kept still� For example� if the calibration target is mounted on the end�e�ector� then all

the un�calibrated joints� i�e�� joints �i� ���n should be held still�

Let the unknown 	�D coordinates and the measured 	�D coordinates of the calibration

target with respect to the �i � ��st joint frame and the WCS be denoted as y and Wp�

respectively� By transforming the 	�D coordinates of the calibration target to the ith joint

frame� we have

�T��
i

�TW
Wp � Vi Q�qi	�� Vi	� y� ����

where �Ti and
�TW can be obtained from the calibrated kinematic parameters� and Vi� Vi	�

and y are unknown parameters� By combining Vi	� and y into one unknown 	�D position

and substituting it into equation ����� we have

ip � Vi Q�qi	�� x� ��	�

where ip � �T��
i

�TW
Wp and x � Vi	� y� Also� when the robot kinematic calibration is

proceeded in the reverse order� i�e�� calibrating from the end�e�ector toward the base� an

equation similar to equation ��	� can be easily derived� However� due to the drawback of

calibrating a robot having multiple end�e�ectors in the reverse order described in section II�

A� we will focus on the calibration method in the forward calibration order� From equation

��	�� it is obvious that ip is a function of qi	�� Moreover� if joint �i � �� is revolute� then

the trajectory of ip subject to change of qi	� will form a 	�D circle� otherwise� it will form

a 	�D line when joint �i � �� is prismatic�

E� Point Method� Estimation of a Prismatic Joint Axis

If joint �i��� is prismatic� then when it is moving� the trajectory of the calibration target

will form a 	�D straight line� The 	�D line equation for the trajectory of the calibration

target can be derived from the fundamental equation ��	� as follows �refer to ������

ip � p� � qi	� ui� ����

where p� and ui are the position and orientation of the 	�D line� respectively� It can be

shown that� from ui� the shape matrix� Vi� can be computed and then from Vi and p� the

unknown vector� x� can be computed ����� Hence� in order to estimate the shape matrix�
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the objective function is de�ned as follows�

� �p�� ui� �
MX
j��

���ip�j�� p� � qi	��j� ui
���� � ��
�

where ui is a unit vector and M is the number of measurements� The closed�form solution

of p� and ui minimizing the objective function ���� can be derived as follows �refer to ������

ui �

PM
j��

�
q
i	�
�j�ip�j�



���PM

j��

�
q
i	�
�j�ip�j�


��� � ����

and

p� �
i�p� �qi	� ui� ����

where

i�p �
�

M

MX
j��

ip�j�� ����

�qi	� �
�

M

MX
j��

qi	��j�� ��
�

ip�j� � ip�j�� i�p� �	��

and

q
i	�
�j� � qi	��j�� �qi	�� �	��

F� Point Method� Estimation of a Revolute Joint Axis

If joint �i��� is revolute� then when it is rotating� the trajectory of the calibration target

will form a 	�D circle� Equation for describing the 	�D circle can be derived from equa�

tion ��	�� The 	�D circle equation derived from equation ��	� contains seven unknowns

including two position and two orientation parameters of the revolute joint axis and the

unknown 	�D coordinates of the calibration target� i�e�� x� in equation ��	�� Directly esti�

mating the seven parameters is a nonlinear problem �refer to ���� and ������ Nevertheless�

we showed that by decomposing the unknown 	�D coordinates of the calibration target as

follows �refer to ������

x � RotZ��x�

�
�����
�

�

�

�
				
�

�
�����
�

�

tz

�
				
 � �	��
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the original problem can be transformed to the optimization problem of the following

objective function�

e �R� t� �� �
MX
i��

���Rx
ip�j� � t� �r�j�

���� � �		�

where � is the radius of the 	�D circle� Rx is a rotation matrix containing the orientation

of the joint axis� t is the center of the 	�D circle and r�j� � �cos�qi	��j�� sin�qi	��j�� ��
t�

Closed�form solution of equation �		� can be computed by using a method� refer to �����

which is similar to the Umeyama method �����

III� Theoretical Error Analysis on the Point Method

In this section� we will derive the covariance matrices of the estimated kinematic pa�

rameters for the point method� While the error analysis on the pose method is more

complicated and will be discussed in the next section� Notice that when using the point

method for kinematic calibration� each measurement will contribute one 	�D vector equa�

tion �see equation ��	��� Furthermore� when calibrating a joint with the point method� it

is essentially to �t a 	�D line or a 	�D circle according to the joint type� Therefore� the

calibration data should be acquired uniformly from the trajectory of either a 	�D line or of

a 	�D circle to have accurate 	�D line or 	�D circle �tting results� To derive the covariance

matrix of the estimated orientation of an revolute joint� we need the following lemma�

Lemma �� A rotation matrix� �R� constructed by using three small XYZ Euler angles�

�	x� �	y and �	z� can be approximated as follows�

�R � I � Skew ���� � �	��

where

�� �

�
�����
�	x

�	y

�	z

�
				
 � �	
�

and

Skew ���� �

�
�����

� �	z ��	y

��	z � �	x

�	y ��	x �

�
				
 � �	��



��

Lemma �� If xi� i � �� �� ����M are uniformly distributed within the region�
h
�X
�
� 	X

�

i
�

then
MX
i��

f�xi� �
M

X

Z X
�

�X
�

f�x� dx�

where f�x� is a smooth function of x�

A� Error Analysis on the Point Method for a Prismatic Joint

The derived covariance matrix of the orientation error for a prismatic joint is based on

the following assumptions�

�� The 	�D measurement noise is white Gaussian with zero mean and diagonal covariance

matrix� 
�I�

�� The error in joint value �i�e�� the encoder error� of the prismatic joint is negligible

comparing to the 	�D measurement noise�

De�ne the estimation error of the kinematic parameters of a prismatic joint as follows�

�ui � �ui � ui� �	��

where �ui and ui are respectively the estimated and true kinematic parameters for a pris�

matic joint i� From equation ����� we have

ui �

PM
j��

�
q
i	�
�j�

�
ip�j� � �p�j�




���PM

j��

�
q
i	�
�j�

�
ip�j� � �p�j�



��� � �	��

where �p�j� � �p�j�� ��p�

For convenience� de�ne the composite vector and the composite noise vector as follows�

P �
MX
j��

h
q
i	�
�j� ip�j�

i
�	
�

and

�P �
MX
j��

h
q
i	�
�j� �p�j�

i
����

Substituting equations �	�� and �	
� into ����� we have

�ui �
P � �P

kP � �Pk
� ����



��

It can be shown that if the amount of composite noise vector� �P � is relatively small

comparing to the composite vector� P � the denominator of equation ���� can be represented

as follows�
�

kP � �Pk
�

�

kPk

�
��

�P t P

kPk�

�
�O��� ����

Substituting equation ���� into ����� we have

�ui � ui � �� � �uti ��� ui �O���� ��	�

where �� � �P
kPk
� is the e�ective noise vector� and ui �

P
kPk

is the true kinematic parameters

since P is noise free�

Unit Sphere

ui

�ui
�ui

��

Fig� �� Orientation parameter estimation error of a prismatic joint�

From equations �	�� and ��	�� we have

�ui � �� � �uti ��� ui �O���� ����

Notice that in equation ����� �ui is approximately equal to the component of �� per�

pendicular to ui as shown in Figure 	� Therefore� the size of �ui is proportional to and

bounded by the size of ��� and minimizing the amount of �� is equivalent to minimizing

the amount of parameter estimation error� Hence� we would derive the covariance matrix

of the random vector �� to �nd factors a�ecting the calibration accuracy�

Suppose that in the calibration process� the joint values corresponding to the M mea�

surements were uniformly distributed within the region� fQ�� Q� ��Qg� i�e��

qi	��j� � Q� � �j � ��
�Q

M � �
� ��
�



��

The covariance matrix of �� can be derived as follows �refer to AppendixVII�A��

Cov ���� � 
��� I� ����

where


��� �

��P

kPk�
�
��

M


�

�Q�
� ����

According to equation ����� it is obvious that the orientation estimation error of a prismatic

joint can be reduced by making �Q and M larger or by making the measurement noise

smaller� Also� from equation ����� for minimizing the estimation error� increasing size of

the calibration range� �Q� is more e�cient than increasing the number of measurements�

M �

B� Error Analysis on the Point Method for a Revolute Joint

In this subsection� we will derive the covariance matrix of the estimated parameters for

a revolute joint� Notice that in this case� the encoder error in no longer negligible� because

as the distance between the calibration target and the revolute joint axis becoming further�

the encoder error will in�uence the calibration results more seriously�

Assume that the optimal parameters minimizing objective function �		� are as follows�

�Rx � �I � Skew ����� Rx� ����

�� � �� ��� ��
�

�t � t� �t� �
��

where ��� �� and �t are the parameter estimation error�

De�ne the error vector corresponding to the jth measurement� ip�j�� as follows�

�j � �Rx
i�p�j� � �t� �� �r�j� � � �
��

By computing the Tyler series expansion of equation �
�� and neglecting high order terms�

we have the equation relating the parameter estimation error and the measurement noise

as follows�

�j � Aj � �Rx �p�j� �Bj �q�j� �O���� �
��



�


where

Aj �
��j

�� 
�
	�

Bj �
��j

��q�j�
�
��

�p�j� is the 	�D measurement error� �q�j� is the encoder error and the error vector of the

estimated parameters� and � is de�ned as follows

� �
h
��t �tt ��

i
� �

�

By substituting equation �
�� into the objective function �		�� the estimation error of the

unknown parameters minimizing the objective function can be derived as follows�

� � �

�
� MX
j��

At
j Aj

�


�� �

� MX
j��

At
j Rx �p�j� �

MX
j��

At
j Bj �q�j�

�

 � �
��

Assume that the noisy point measurements in equation �		� is

i�p�j� � ip�j� � �p�j�� �
��

where ip�j� is the true value and �p�j� is a white Gaussian noise vector with zero mean

and diagonal covariance matrix� 
�pI� and that the encoder error� �q�j�� and the 	�D mea�

surement error� �p�j�� are independent� where the encoder error is a zero mean Gaussian

noise having variance� 
�q � From equation �
��� the covariance matrix of the unknown

parameters of � can be derived as follows�

V ar �� � � 
�p A
�� � 
�q A

�� B A��� �
��

where

A �

�
� MX
j��

At
j Aj

�

 � �

�

and

B �

�
� MX
j��

At
j Bj B

t
j Aj

�

 � ����

Notice that Aj and Bj are matrix function of measurements�
ip�j�� the joint values�

qi	��j�� for j � �� �� ����M � and the parameters� �� Rx and t� Notice that the true 	�D

measurement� ip�j�� can be derived from equation �		� as follows�

ip�j� � R��
x �� r�j�� t� � ����



�


The 	�D measurements� ip�j�� in matrices Aj and Bj can be eliminated by substituting

the above equation into Aj and Bj� Therefore� matrices Aj and Bj are now functions of

the joint value� qi	��j�� and the parameters� �� Rx and t�

Since the origin of the joint value can be arbitrarily assigned in the CPC kinematic

model ����� hence� without lost of generality� we can assume that the joint values� qi	��j��

for j � �� �� ����M � are uniformly distributed within the region�
h
��Q
�

� 	�Q
�

i
� Also� since

Aj and Bj are smooth matrix functions of joint values� based on Lemma �� we have

A �
M

�Q

Z �Q
�

��Q
�

At�q� A�q� dq� ����

and

B �
M

�Q

Z �Q
�

��Q
�

At�q�B�q�Bt�q� A�q� dq� ��	�

By using Mathematica� both of the approximation matrices of A and B in equations ����

and ��	� can be easily computed in analytic form� The inverse of the matrix� A� can also

be computed using Mathematica in analytic form� and then we have the covariance matrix

of the estimated parameters by substituting the approximated matrices� A�� and B� into

equation �
���

Since the diagonal terms of the covariance matrix themselves are su�cient for describing

the estimation error� hence we only list the variance terms of the seven parameters as

follows �covariance terms are listed in Appendix�VII�B�


���x �

�p �x��Q�

�� M
� ����


���y �

�p �y��Q�

�� M
� ��
�


���z �

�p �z��Q�

�� M
�

�q !���Q�

M
� ����


��tx �

�p �z��Q�

�
�� � t�y



�� M

�

�p �y��Q� t

�
z

�� M
�

�q t

�
y !���Q�

M
�

�q �

� !���Q�

M
� ����


��ty �

�p �z��Q�

�
�� � � sinc

�
�Q
�



tx �� t�x



�� M

�

�p �x��Q� t

�
z

�� M

�

�q t

�
x !���Q�

M
�

�q �

� !���Q�

M
�

�q tx � !���Q�

M
� ����



��


��tz �

�p �y��Q�

�
�Q	sin��Q�

� �Q
�� � � sinc

�
�Q
�



tx �� t�x



�� M

�

�p �x��Q� ty

�

�� M
� ��
�


��� �

�p �z��Q�

M
�

�q �

� !���Q�

M
� ����

where

sinc
�
�Q

�

�
�
sin

�
�Q
�



�Q
�

� ����

�x ��Q� �
� �Q

�Q� sin ��Q�
� ����

�y ��Q� �
� �Q�

�� � �Q� � � cos ��Q� � �Q sin ��Q�
� ��	�

�z ��Q� �
�Q�

�� � �Q� � � cos ��Q�
� ����

!� ��Q� �
�� �Q� � � �Q� � � �Q� cos��Q� � � �Q sin��Q���Q sin���Q�

���� � �Q� � � cos��Q���
�

��
�

!� ��Q� �
�Q� ��Q� sin��Q�

� ��� � �Q� � � cos��Q���
� ����

!� ��Q� �
�� �Q� ��Q� � � �Q� cos��Q� � �Q� sin��Q�

���� � �Q� � � cos��Q���
� ����

!� ��Q� � �
�� �Q� cos

�
�Q
�



� � �Q� cos

�
� �Q
�



� �� �Q sin

�
�Q
�



� ��� � �Q� � � cos��Q���

�
�� �Q� sin

�
�Q
�



� � �Q sin

�
� �Q
�



� ��� � �Q� � � cos��Q���

� ����

and

!� ��Q� �
� �Q sin�

�
�Q
�



��Q� sin��Q��

��� � �Q� � � cos��Q���
� ��
�

The values of the three functions� �x��Q�� �y��Q� and �z��Q�� are plotted in Figure ��

Whereas the values of the functions� !���Q�� !���Q�� !���Q�� !���Q�� and !���Q��

are plotted in Figure 
� Notice that when �Q is small� �y��Q� is much larger than the

other two� which means that the orientation error about the y�axis will be worse than

the other two axes� This is because that when the calibration range� �Q� is small� the

trajectory of the calibration target will be close to a 	�D straight line segment parallel to

the y�axis� which can be an arc of any 	�D circle having rotation axis perpendicular to the

y�axis �see Figure ���
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IV� Theoretical Error Analysis on the Pose Method

In this section� we will derive the covariance matrices of the estimated kinematic param�

eters for the pose method� Notice that when using the pose method� pose measurements

have to be matched pairwise to be used in the calibration equation ����� In section II�

matching pairwise of the pose measurements is preformed without considering the redun�

dancy problem� which makes M� pairs from M measurements� Nevertheless� there is still

one problem to be solved� i�e�� how we select a set of con�gurations for the robot such

that the corresponding pose measurements will yield a more accurate calibration result�

Here we consider two kinds of data collection processes for the kinematic calibration� The

�rst kind of data collection processes is to sample M
�
pose measurements at one con�gu�

ration and M
�
pose measurements at another con�guration� where M is the total number

of calibration data� For example� suppose �� and �� are all belong to the working space

of a revolute joint under calibration� then the �rst kind of data collection processes may

acquire M
�
pose measurements at joint position �� and acquire another

M
�
pose measure�

ments at joint position ��� which will make
�
M
�


�
e�ective pairs� This kind of processes
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is intended to to maximize the net motion between the pairwise pose measurements such

that the estimation accuracy can be improved �refer to ��	��� therefore� these two cali�

bration con�gurations in the joint space� i�e�� �� and ��� should be made apart as far as

possible� While the second kind of data collection processes is to acquire uniformly dis�

tributed calibration data� i�e�� the pose measurements are acquired according to a set of

joint values uniformly distributed within a certain region� For convenience� we will refer

to the �rst kind of collection processes as the two�con�guration approach� and the second

kind of collection processes as the uniform�con�guration approach� respectively�

For deriving the covariance matrices of the estimated kinematic parameters� we need

the following lemmas�

Lemma �� If R is a rotation matrix� then

Skew�Rt ��� � Rt Skew����R� ����

where �� is a small orientation error vector�

Lemma 	� Let �R� and �R� be two rotation matrices constructed by using small XYZ



��

Trajectory of

the Calibration Target

y

z

x

True Rotation Axis

Estimated Rotation Axis

�Q

Fig� �� Trajectory of the calibration target corresponding to small calibration range is close to a straight

line�

Euler angles� ��� and ���� respectively� Then� their product can be represented as follows�

�R� �R� � I � Skew ���� � ���� � ����

Lemma 
� Let �R be an estimate of a rotation matrix� R� and

�R � �RL R � R �RR�

where �RL and �RR are error rotation matrices constructed by using small XYZ Euler

angles� ��L and ��R� respectively� Then� the orientation error� ��L and ��R� can be

related by the following equation�

��R � Rt��L ����

For convenience� we will refer to ��L and ��R as the left orientation error and right

orientation error� respectively�



��

Lemma �� If �R� � R� �R� and �R� � R� �R�� then the right orientation error� ����� of

the matrix �Rt
�
�R�� can be computed as follows�

���� �
�
��� � Rt

�R� ���



� ��	�

Lemma �� The rotation matrix of �Tjk de�ned following equation ����� i�e�� R�Tjk � is

equivalent to Ri RotZ��qjk�R
t
i�


Proof��

Recall that this rotation matrix is derived from equations ��������� Notice that the both

sides of equation ��� are equal to identity� hence�

F �q�j�� �
h
Vi Q�qi	��j�� V�i	��

i	�Tn
i��

� ����

and

F �q�k�� �
h
Vi Q�qi	��k�� V�i	��

i	�Tn
i��

� ��
�

By substituting the above two equations into equation ����� we have

�Tjk � Vi Q��qjk� V
��
i � ����

Lemma 
� If the right orientation error of the rotation matrices of F �q�j�� and F �q�k��

are ��j and ��k� respectively� then the right orientation error� ��jk� of an estimate of

R�Tjk de�ned in Lemma � is as follows�

��jk � ��j �Ri RotZ���qjk�R
t
i ��k� ����

where ���
j � Rt

i ��j and ��
�
k � Rt

i ��k


Proof��

From Lemma �� we have the right orientation error�

��jk � ��k �Rt
�Tjk

��j� ����

By using Lemma �� we have

��jk � ��k �Ri RotZ���qjk�R
t
i ��j ��
�

Lemma �� An estimate of R�Tjk can be formulated as follows�

�R�Tjk � Ri RotZ��qjk�
h
I � Skew�Rt

i ��jk�
i
Rt
i� �
��
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Fig� �� Small estimation error of a unit vector�

Notice that the the above lemma can be easily derive based on Lemmas 	� � and ��

Lemma ��� Small estimation error of a unit vector will fall in the tangent plane of the

unit sphere perpendicular to the true unit vector �see Figure �� Hence� when using the pose

method� the orientation estimation error of a revolute joint can be described as follows�

�ui � Ri ��ux �uy ��
t
� �
��

where �ux and �uy are the error vector on the tangent plane perpendicular to ui�

Lemma ��� The relation between the true value� estimation error and an estimate of the

translation vector of the matrix� �
�� �R �t

� �

�
	

��

�

is as follows�

� �Rt �t � �Rt t� Skew����Rt t�Rt �t� �
��

where �� is the right orientation error of �R� and R and t are the true values of �R and �t�

respectively�

Lemma ��� Consider the following transformation matrix�

�T� �

�
�� �R�

�t�

� �

�
	

�� ��� �R�

�t�

� �

�
	
 �

The true and translation vector of the matrix� �T�� is

t�� � �Rt
� �t� � t�� �
	�



��

and the error translation vector of �T� is

�t�� � Skew�����R
t
� �t� � t���Rt

� ��t� � �t��� �
��

where ��� is the right orientation error of �R� and R and t are the true values of R and t�

respectively�

Lemma ��� For any � � �� z � � and x � ��� the following equality will hold�

RotZ��� Skew�x�

�
����
�

�

z

�
			
 � Skew �RotZ��� x�

�
����
�

�

z

�
			
 � �

�

Lemma �	� Let

qj �

���
��

q�� � � j � M
�
�

q� ��Q�
M
�

 j �M�

Suppose that K��qjk� is a matrix function of �qjk � qj � qk� and that K��� � �� The

following equations will hold�

MX
j��

MX
k��

K�qj � qk� �
�
M

�

��
�K��Q� �K���Q�� � �
��

MX
j��

��
MX
k��

K�qj � qk�

� �
MX
k��

Kt�qj � qk�

��

�
�
M

�

�� h
K��Q�Kt��Q� �K���Q�Kt���Q�

i
�
��

A� Error Analysis on the Pose Method for a Prismatic Joint

The process for deriving the orientation estimation error of a prismatic joint using the

pose method is similar to that described in section III�A� We will �rst derive the composite

vector� P � and the e�ective error vector� �P � as what we did in section III�A� Similarly�

we assume that the encoder error is negligible comparing to the position measurement

error� However� when using pose measurements� the orientation error contained in the

pose measurements will also in�uence the calibration accuracy� In this case� the e�ective

noise vector �derived from equation ���� and Lemma ��� will be

�P �
MX
j��

MX
k��

h
�q�jk Skew�ui� ��j � � �qjk R

t
j �tj

i
� �
��



��

Assume that the orientation error� ��j� and the translation error� �tj� are independent�

The covariance matrix of the e�ective error vector will be

Cov ��P � �
MX
j��

��
�
���

�
MX
k��

�q�jk Skew�ui�

� �
MX
k��

�q�jk Skew�ui�

�t
� � 
��t

�
MX
k��

�qjk

��
I

��
� �

�

�

Also� in this case� the composite vector of the position measurements� t�Tjk � will be

P �
MX
j��

MX
k��

�qjk t�Tjk � �����

Notice that in the above equation� �qjk and t�Tjk are all true values� Hence� for each j

and k� t�Tjk is in the direction� ui� and its length is �qjk�

B� Covariance Matrix of the Calibration Error of a Prismatic Joint Using Two�Con�guration

Approach

In this subsection� we will derive the covariance matrix of the e�ective noise vector�

��� Suppose that there are totally M measurements� When using the two�con�guration

approach for calibrating a prismatic joint� half of the measurements will correspond to

a joint value� q�� and the others will correspond to another joint value� �q� � �Q�� The

covariance matrix of the error vector� �P � can be computed from equation �

� and Lemma

�� as follows�

Cov��P � � �
M�

�

��� �Q

� Skew��ui� �M� 
��t �Q
� I� �����

Also� based on Lemma �� and from equation ������ we have that the length of P will be

kPk �
M�

�
�Q�� �����

Hence� the covariance matrix of the e�ective noise vector� ��� is

Cov���� �
Cov��P �

kPk�
� �

� 
���
M

Skew��ui� �

��t

M �Q�
I� ���	�

C� Covariance Matrix of the Calibration Error of a Prismatic Joint Using Uniform�

Con�guration Approach

In this subsection� we will derive the covariance matrix of the e�ective noise vector� ���

Suppose that there are totally M measurements� When using the uniform�con�guration



�


approach for calibrating a revolute joint� the joint values corresponding to the M mea�

surements are uniformly distributed within a region� e�g�� �q�� q� ��Q�� Based on Lemma

�� the covariance matrix of the error vector� �P � can be computed from equation �

�� by

using Mathematica� as follows�

Cov��P � � �
M�

	�

��� �Q

� Skew��ui� �
M�

	

��t �Q

� I� �����

Similarly� the length of the composite vector� P � is

kPk �
�Q� M�

�
� ���
�

Therefore� the covariance matrix of the e�ective noise vector� ��� is

Cov���� �
Cov��P �

kPk�
� �

� 
���

M

Skew��ui� �
�� 
��t
M �Q�

I� �����

D� Error Analysis on the Pose Method for a Revolute Joint

In this subsection� we will derive some general equations about the orientation and

position estimation error to be used in the next two subsections� By using Lemmas �����

the objective function ���� can be simpli�ed as follows�

� �ui� �
MX
j��

MX
k��

���nRotZ��qjk� hI � Skew�Rt
i ��jk�

i
� I

o
�eZ � �u�

���� � �����

where eZ � �� � ��
t and �u � ��ux �uy ��

t� Notice that eZ is invariant with respect to the

transformation� RotZ���� Also� high order terms of the estimation error in equation �����

is usually very small comparing to other terms� hence� they can be neglected� Therefore�

the above equation can be further simpli�ed as follows�

� �ui� �
MX
j��

MX
k��

����RotZ��qjk�� I� �u�RotZ��qjk� Skew���
�
jk� eZ

���� � �����

where ���
jk � Rt

i ��jk� The optimal solution� �u� minimizing equation ����� will satisfying

the following normal equation���
�

MX
j��

MX
k��

�RotZ��qjk�� I�t �RotZ��qjk�� I�

��
� �u

� �
MX
j��

MX
k��

�RotZ��qjk�� I�tRotZ��qjk� Skew���
�
jk� eZ ���
�



�


By simplifying the above equation� we have

MX
j��

MX
k��

���� cos��qjk�

�
�����
� � �

� � �

� � �

�
				
 �u

�
MX
j��

MX
k��

�RotZ��qjk�� I� Skew����
j� eZ

�
MX
j��

MX
k��

h
RottZ��qjk�� I

i
Skew����

k� eZ � �����

where ���
j � Rt

i ��j and ���
k � Rt

i ��k� Notice that by de�nition� �qjk � ��qkj� hence�

these two terms on the right hand side of equation ����� are actually the same �it can be

easily proved by swap the indices j and k�� As a result� equation ����� can be further

simpli�ed as follows�

MX
j��

MX
k��

���� cos��qjk�

�
�����
� � �

� � �

� � �

�
				
 �u

� �
MX
j��

MX
k��

�RotZ��qjk�� I� Skew����
k� eZ �����

Suppose that the orientation error of the pose measurements are white Gaussian noise

with zero mean� variance� 
�� and independently identical distributions� We have that the

orientation estimation error of the revolute joint axis will be


��u �

�
PM

j��

��PM
k�� cos��qjk�� �


�
�
�PM

k�� sin��qjk�

��

hPM
j��

PM
k�� ��� cos��qjk��

i�
�
�����
� � �

� � �

� � �

�
				
 �����

Notice that the orientation error� �u� of the ith joint axis will induce a right orienta�

tion error� ��Ri � of the orientation matrix� Ri� of the shape matrix as follows �refer to

AppendixVII�C for the proof��

��Ri �

�
�����

�ux

�uy
�uy bix��ux biy

�	biz

�
				
 � ���	�



��

We will now derive the translation estimation error for a revolute joint when using the

pose method� When considering the measurement noise and encoder noise� equation ��
�

can be written as follows�

�I �RotZ ���qjk�� �li � �Rt
i
�t�Tjk � �����

By substituting the following equations�

�li � li � �li� ���
�

��qjk � ��qjk � �qjk� �����

�Ri � Ri �I � ��Ri � � �����

�t�Tjk � t�Tjk � �t�Tjk � �����

into equation ����� and neglect the high order term� we have

Ajk�li � Bjk�q � Cjk ��Ri �Rt
i �t�Tjk � ���
�

where �q � �� � �qjk�
t is the encoder error� and

Ajk � �I � RotZ ��qjk�� � �����

Bjk � �Skew �RotZ ��qjk� li� � �����

Cjk � �Skew ��I � RotZ ��qjk�� li� � �����

From Lemma �� and equation ���
�� we have

Ajk�li � Bjk�q � Cjk ���Ri � ��j� �Dij ��tj � �tk� � ���	�

where Dij � �Rt
iR

t
j� In general� in the above equation� the amount of the orientation esti�

mation error of the joint axis� ��Ri � is usually much smaller than that of the measurement

noise� i�e�� ��j� Therefore� ��Ri is omitted in the following derivation� and the objective

function ���� can be reformulated as follows�

� ��li� �
MX
j��

MX
k��

kAjk�li �Bjk�q � Cjk ��j �Dij ��tj � �tk� � k
�
� �����

The solution of �li minimizing equation ���� can be derived as follows�

�li �

�
� MX
j��

MX
k��

At
jk Ajk

�


�� �
� MX
j��

MX
k��

At
jk Bjk�q � At

jk Cjk ��j � At
jk Dij ��tj � �tk�

�

 � ���
�
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Notice that in the above equation� �q � �� � �qj � �qk�
t� hence

MX
j��

MX
k��

At
jkBjk�q � �

MX
j��

MX
k��

�I �RotZ ��qjk��
t
Skew �RotZ ��qjk� li�

�
����

�

�

�qj � �qk

�
			
 � �����

By using Lemma �	 and noting that �qjk � ��qkj � equation ����� can be simpli�ed to

be as follows�

MX
j��

MX
k��

At
jk Bjk �q �

MX
j��

MX
k��

�RotZ��qjk�� RotZ���qjk�� Skew�li�

�
����
�

�

�qj

�
			
 � �����

Furthermore� the last term in the right hand side of equation ���
� can be simpli�ed as

follows� �
� MX
j��

MX
k��

At
jk Dij ��tj � �tk�

�

 � �

�
� MX
j��

MX
k��

At
jk Dij �tj

�

 � �����

By substituting equations ����� and ����� into equation ���
�� we have

�
� MX
j��

MX
k��

At
jk Ajk

�

 �li �

MX
j��

MX
k��

�
����Ejk

�
����
�

�

�qj

�
			
� At

jk Cjk ��j � � A
t
jk Dij �tj

�
			
 � ���
�

where Ejk � �RotZ��qjk�� RotZ���qjk�� Skew�li�� Assume that the encoder error� �qj�

the orientation measurement error� ��j� and the position measurement error� �tj� are

independent� From equation ���
�� we have that the covariance matrix of �li will satisfy

the following equation�

A Cov��li�A �
h

��q B � 
��� C � 
��t D

i
� ��	��

where

A �
MX
j��

MX
k��

At
jk Ajk� ��	��

B �
MX
j��

��
MX
k��

Ejk

� �
MX
k��

Et
jk

��
� ��	��

C �
MX
j��

��
MX
k��

At
jk Cjk

� �
MX
k��

Ct
jk Ajk

��
��		�

D � �
MX
j��

��
MX
k��

At
jk Dij

� �
MX
k��

Dt
ij Ajk

��
��	��
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E� Covariance Matrices of the Calibration Error of a Revolute Joint Using Two�Con�guration

Approach

In this subsection� we will derive the covariance matrices of the estimation error of a

revolute joint when using pose method� Suppose that there are totally M measurements�

When using the two�con�guration approach for calibrating a revolute joint� half of the

measurements will correspond to a joint value� q�� and the others will correspond to another

joint value� �q� ��Q�� The covariance matrix of the orientation estimation error can be

computed from equation ����� and Lemma �� as follows�


��u �
� 
�

M ��� cos��Q��

�
�����
� � �

� � �

� � �

�
				
 ��	
�

To derive the covariance matrix of the translation estimation error� we �rst compute

those matrices in equation ��	�� by using Lemma ��� and the results are

A �
�
M

�

��

�
�����
� sin���Q

�
� � �

� � sin���Q
�
� �

� � �

�
				
 � ��	��

B �
�
M

�

��
�
�����

� l�ix sin
���Q� � lix liy sin

���Q� �

� lix liy sin
���Q� � l�ix sin

���Q� �

� � �

�
				
 � ��	��

C �
�
M

�

��
�
�����

	� l�iy sin
���Q

�
� �	� lix liy sin

���Q� �

�	� lix liy sin
���Q� 	� l�iy sin

���Q
�
� �

� � �

�
				
 � ��	��

D � �
�
M

�

��
�
�����
� sin���Q

�
� � �

� � sin���Q
�
� �

� � �

�
				
 � ��	
�

From the above equations� the covariance matrix of the translation estimation error can
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be computed as follows�

Cov��li� �

��q

M tan���Q
�
�

�
�����

l�ix lix liy �

lix liy l�iy �

� � �

�
				


�

���
M

�
�����

l�iy �lix liy �

�lix liy l�ix �

� � �

�
				


�

��t

M sin���Q
�
�

�
�����
� � �

� � �

� � �

�
				
 �����

F� Covariance Matrices of the Calibration Error of a Revolute Joint Using Uniform�

Con�guration Approach

In this subsection� we will derive the covariance matrices of the estimation error of a

revolute joint when using pose method� Suppose that there are totally M measurements�

When using the uniform�con�guration approach for calibrating a revolute joint� the joint

values corresponding to the M measurements are uniformly distributed within a region�

e�g�� �q�� q���Q�� Based on Lemma �� the covariance matrix of the orientation estimation

error can be computed from equation ������ by using Mathematica� as follows�


��u �

� �z��Q�

M

�
�����
� � �

� � �

� � �

�
				
 � �����

Also� based on Lemma �� the covariance matrix of the translation estimation error can

be computed from equation ��	�� as follows�

Cov��li� �

��q !���Q�

M

�
�����

l�ix lix liy �

lix liy l�iy �

� � �

�
				


�

��� !���Q�

M

�
�����

l�iy �lix liy �

�lix liy l�ix �

� � �

�
				




��

�

��t �z��Q�

M

�
�����
� � �

� � �

� � �

�
				
 � �����

V� Simulation Results
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Fig� �� The orientation parameter estimation error of a prismatic joint using the pose methods versus

the value of the calibration range�

In this section� we will show some simulation results compared with the predicted estima�

tion error derived in the previous two sections� In the computer simulations� independent

Gaussian noise was added to the joint value and the position and orientation measure�

ments of the calibration object� Then� RMSE �Root Mean Square Error� of the estimated

parameters were computed from ��� random trials� For convenience� the RMSE of the

parameter estimation error obtained in computer simulation will be referred to as the

simulated estimation error� and the estimation error predicted by using the theoretical

analysis results will be referred to as the predicted estimation error� For clarity of data
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Fig� �� The orientation parameter estimation error of a prismatic joint using the point method versus

the value of the calibration range�

representing� instead of showing every x�� y� and z� components of the translation and

orientation estimation errors� we will show the total 	�D RMSE translation error and the

total oritntation error in the next� For example� if the x�� y� and z� components of the

simulated �predicted� translation estimation error are e�tx � e�ty and e�tz �
�tx � 
�ty and


�tz �� then the total 	�D simulated �predicted� translation error will be �e
�
�tx
� e��ty � e��tz �

�
�

�
��tx�

�
�ty
�
��tz�

�
� �� Similarly� if the x�� y� and z� components of the simulated �predicted�

orientation estimation error are e��x � e��y and e��z �
��x � 
��y and 
��z�� then the total 	�D

simulated �predicted� orientation error will be �e���x � e���y � e���z�
�
� �
���x � 
���y � 
���z�

�
� ��

In the �rst experiment� the derived orientation error upper bound for calibrating a

prismatic joint was tested� The number of measurements was assumed to be �� and

standard deviation of the orientation measurement error was set to ������ The simulated

and predicted estimation errors were computed with respect to �� di�erent calibration



��

ranges and two position measurement noise levels� i�e�� �Q � ��� ��� ���� ��� mm and


�t � 
�p � ��� mm and 
�t � 
�p � � mm� respectively� The simulated errors for the

pose method and the point method were shown in Figure � and Figure 
� respectively�

Notice that all the computed 	�D RMSE were bounded by the derived upper bounds� As

expected� the orientation estimation error for a prismatic joint is inversely proportional to

the calibration range� no matter which kind of method is used�

In the second experiment� the relation between the parameter estimation error of a

revolute joint and the calibration range was evaluated� In this simulation� number of

measurements� the joint value noise� 
�q� and the orientation measurement noise were set

to ��� ����� and ����� respectively� The simulated and predicted estimation errors were

computed with respect to �� di�erent calibration ranges and two position measurement

noise levels� i�e�� �Q � ��� ��� ���� ��� degrees and 
�t � 
�p � ��� mm and 
�t � 
�p

� � mm� respectively� The simulation results for the pose method and the point method

were shown in Figures ����� and Figures ������ respectively� Notice that the predicted

estimation errors are very close to the computed ones� which means that the theoretical

analysis results are very accurate�

In the last experiment� the relation between the parameter estimation errors of the point

method and the length of the trajectory radius� �� was evaluated� In this simulation� the

number of measurements� the standard deviation of joint values noise and the standard

deviation of the position measurement noise were set to ��� ����� and ��� mm� respectively�

The simulated and predicted estimation errors were computed with respect to �� radius

lengthes and two calibration ranges� i�e�� � � 
�� ���� ���� 
��mm and �Q � ��� ��� degrees�

The calibration results were shown in Figures �
���� From the computer simulation

results� we concluded that the theoretical analysis results are correct and� thus� can be used

as a guideline for selecting calibration methods and for controlling calibration conditions

to reduce the calibration error�

VI� Conclusions

Robot kinematic calibration is important for many applications requiring high position�

ing accuracy� hence� many techniques have been developed to calibrate the kinematic

parameters to reduce the positioning error� Most of the existing techniques are based on
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Fig� �	� The orientation parameter estimation error of a revolute using the pose methods versus the

calibration range�

nonlinear optimization techniques which require accurate initial estimate of kinematic pa�

rameters� Several methods have been developed for providing closed�form solutions to the

kinematic parameters which can be used as an initial estimate for nonlinear optimization

techniques or for direct applications� Existing closed�form solutions to kinematic param�

eter calibration problems can be classi�ed into two categories� namely the pose methods

and the point methods� according to the information they used� Pose methods estimate

the kinematic parameters by using pose measurements of the end�e�ector� Whereas� point

methods estimate the kinematic parameters by using only 	�D point measurements of a

calibration target attached to the end�e�ector�

In this paper� we have successfully derived expressions for covariance matrices of kine�

matic parameters estimated by using the pose method and the point method� respectively�

The derived error variances for a point method are functions of the calibration range�
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Fig� ��� The translation parameter estimation error of a revolute joint using the pose methods versus

the calibration range�

number of measurements� amount of measurement noise and amount of joint value noise�

Furthermore� if the joint under calibration is revolute� then the error variances are also

functions of the distance between the calibration point and the revolute joint axis and

length of the link corresponding to the joint under calibration� The derived error vari�

ances for a pose method are functions of the calibration range� number of measurements�

amount of measurement noise� amount of the joint value noise and length of the link

corresponding to the joint under calibration� To verify the theoretical analysis results�

extensive computer simulations were conducted which showed that the derived variance

equations for the estimated kinematic parameters are very accurate�

Based on our error analysis results� factors a�ecting calibration accuracy are revealed�

We found that when the calibration range is small� both pose methods and point methods

will become very sensitive to noise� especially when calibrating a revolute joint� Notice
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the calibration range�

that although accuracy of the point method will degrade more rapidly than a pose method

when the calibration range is becoming smaller� accuracy of point method can be improved

by increasing either the number of measurements or the distance between the calibration

target and the rotation joint axis� In general� amount of measurement noise can hardly

be reduced� hence� the calibration error should be reduced by controlling other factors�

According to our analysis results� increasing the calibration range is the most e�cient way�

for both point method and pose method� to reduce the calibration error� Nevertheless�

when the calibration range can not be increased� than increasing the distance between the

calibration target and the rotation axis is much more e�cient than increasing the number

of measurements for point method� On the other hand� when we want to reduce the

estimation error for a pose method� the only way is to increase the number of calibration

points�
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From the error analysis results� we found that both the point method and the pose

method have their pros and cons� Our analysis results can be used to serve as a guideline

for selecting calibration techniques� for determining the calibration condition and even for

designing a robot head or a robot arm when considering the calibration task� For example�

when designing a robot head� the required rotating range of a joint may be small� however�

when considering the subsequent calibration task� the rotating range should be enlarged

to ensure accurate calibration results�
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VII� Appendices

A� Orientation Estimation Error of the Point Method for a Prismatic Joint

Assuming that M is an even number� and then from equation �	��� we have

q
i	�
�j� �

�
j �

M � �

�

�
�Q

M � �
� ���	�

for i � �� �� ����M � and

�P �
MX
j��

q
i	�
�j� �p�j�� ��p

MX
j��

q
i	�
�j�� �����

Notice that the second term of equation ����� on the right hand side is zero because

��p
MX
j��

q
i	�
�j� � �p

MX
j��

�qi	��j�� �qi	�� � �� ���
�
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Fig� ��� The orientation parameter estimation error of a revolute joint using the point method versus
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From equations ����� and ���
�� we have

Cov ��P � �
�
�Q

M � �

��

� I

MX
j��

�
j �

M � �

�

��
� �����

which yields

Cov ��P � � 
��P I� �����

where 
��P � 
� �Q� M�M	��
���M���

� Notice that ip�j� is the true vector whose length is exactly

q
i	�
�j�� and all the vectors� ip�j�� j � �� �� ����M � have exactly the same direction as that

of the true kinematic parameter� ui� i�e��
ip�j� � q

i	�
�j� ui� Hence� from equations �	
�

and ���	�� we have

kPk �
MX
j��

q
i	�
�j� �

�Q� M�M � ��

���M � ��
� �����

The covariance matrix of �� can be derived from equations ����� and ����� as follows�

Cov ���� � 
��� I� ���
�
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where


��� �

��P

kPk�
�

���M � ��
�

M�M � ���Q�
� ��
��

When the number of measurements� M � is large� the above equation can be approximated

as follows�


��� �
��
�

M�Q�
� ��
��

Notice that the above equation is derived for even number of measurements� However�

when the number of measurements is odd� the derived covariance matrix in the above

equation can be used as a reasonable approximation�
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B� Covariance Values of the Estimated Parameters of a Revolute Joint when Using the

Point Method
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C� The Right Orientation Estimation Error of �Ri

By de�nition� the rotation axis of joint i with respect to joint frame fi� �g is

bi � Ri eZ � �����

where eZ � �� � ��
t and
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Notice that the rotation matrix� Ri� can be reconstructed by using the unit vector� bi�

Suppose the estimated rotation axis of the ith joint with respect to the �i � ��st joint

frame is

�bi � Ri
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The estimated rotation matrix� �Ri� can be constructed by using the estimated rotation

axis� �bi� and the right orientation error� ��Ri � of �Ri will� by de�nition� satisfy the following

equation�

�Ri � Ri �I � Skew ���Ri�� � ���
�



��

Based on the above equation� the right orientation error� ��Ri � of �Ri can be computed by

using Mathematica to be as follows�

��Ri �
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�uy
�uy x��ux y

�	z
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D� Proof of equation ���
�
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By substituting �Rk R
t
k �tk� for �tk in the last term on the right hand side of the above

equation� we have

�I �RotZ ��qjk��
t
Rt
i R

t
j �tk � �I �RotZ ��qjk��

t
Rt
i R

t
j Rk R

t
k �tk� �����

From equation ����� we have

Rt
j Rk � Ri RotZ��qjk�R

t
i� ���
�

By substituting equation ���
� into ������ we have

�I �RotZ ���qjk�� RotZ��qjk�R
t
i R

t
k �tk � � �I � RotZ ��qjk�� R

t
i R

t
k �tk� �����

By swapping the indices� j and k� we have �remember that �qjk � ��qkj�

� �I � RotZ ���qjk�� R
t
i R

t
j �tj� �����

Therefore� these two terms on the right hand side of equation ����� are equal�
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