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Abstract

Many closed-form solutions have been developed for calibrating robot kinematic parameters.
The existing closed-form solutions for kinematic calibration can be classfied into two categories
according to the information they used. Methods estimating kinematic parameters by using pose
measurements are referred to as the pose methods. While there is only one closed-form solution
referred to as the point method using 3D point measurements for calibrating robot kinematic
parameters. Relatively less work has been devoted to the error analysis on the calibration
methods. Error analysis results are very useful to serve as a guideline for selecting calibration
techniques, for determining the calibration condition and even for designing a robot head or a
robot arm when considering the calibration task. In this paper, we derived the expressions of
variances of the kinematic parameters estimated by using the point method or the pose method,
respectively. The derived error variances for the point method are functions of the calibration
range, number of measurements, amount of measurement noise and amount of joint value noise.
Furthermore, if the joint under calibration is revolute, then the error variances are also functions
of the distance between the calibration point and the revolute joint axis and length of the link
corresponding to the joint under calibration. The derived error variances for a pose method
are functions of the calibration range, number of measurements, amount of measurement noise,

amount of the joint value noise and length of the link corresponding to the joint under calibration.
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I. INTRODUCTION

Kinematic models are important for controlling robot manipulators and binocular robot
heads. In general, a robot is manufactured to have high repeatability and because of man-
ufacturing inaccuracy, aging and some non-geometric factors, robot positioning accuracy
is usually worse than its repeatability. Therefore, for applying robots to more applications
requiring high positioning accuracy, many techniques were developed for estimating accu-
rate kinematic parameters of a robot, e.g., [1], [2], [3], [5], [6], [7], [9], [10], [11], [14], [13],
[17], [16], [19], [20], [22], [21] and [23]. In contrast, relatively less work has been devoted to
the theoretical analysis on the estimation error of kinematic parameters. Theoretical error
analysis on the estimation error is important for revealing factors that dominat calibration
accuracy and for reducing the calibration error. Furthermore, based on the error anal-
ysis results, the most appropriate calibration technique can be determined for obtaining

accurate calibration results.

A. Closed-form Solutions and Nonlinear Optimization Techniques

In general, kinematic equations are nonlinear in parameters, therefore, most of the cal-
ibration methods are based on nonlinear optimization techniques, e.g., [1], [2], [5], [6],
[7], [9], [10], [11], [19], [22], and [23]. This kind of calibration techniques are very accu-
rate, providing that an accurate initial estimate of the kinematic parameters is available.
Notice that although kinematic equations are nonlinear in parameters, the calibration
problem can be made linear by estimating parameters of one joint axis at a time, which is
exactly the way all the closed-form solutions doing. As a result, initial estimate of kine-
matic parameters for nonlinear optimization can be obtained from closed-form solutions.
Closed-form solutions are attractive because they are more reliable than a nonlinear iter-
ative solution. Furthermore, accuracy of a closed-form solution can be carefully improved
to be comparable with that of a nonlinear method. However, it should be noticed that if
some factors are not properly controlled, then closed-form solutions do not promise accu-
rate results. Again, finding factors that affect accuracy of a closed-form solution should
rely on the theoretically error analysis.

Existing closed-form solutions for joint axis estimation can be classified into two cate-



gories according to the information they used. Methods from the first category use the
pose measurements and will be referred to as the pose methods, e.g., Lenz and Tsai [10]
and Young et al. [20], Zhuang [21] and Shih et al. [13], where a pose measurement contains
both position and orientation estimates of a calibration object attached to the joint axis
being calibrated. Notice that although different pose methods were proposed according
to different problem formulations, [10], [13], [20] and [21], we found that these methods
for calibrating a revolute joint axis are all equivalent, except for the Zhuang method [21].
The main difference of the Zhuang method comparing to others is that the translation pa-
rameters of all joints are estimated simultaneously to prevent the error propagation [21].
Nevertheless, when calibrating a robot of a single revolute joint, all the pose methods are
equivalent.

The second category contains only one closed-form solution, i.e., Shih et. al.[14] (refer
to Chen [3], Stone [17] and Sklar [16] for the corresponding nonlinear iterative solutions),
which uses position measurements of a calibration point attached to the joint axis being
calibrated. This kind of method will be referred to as the point method. Notice that
when the joint under calibration is moving, the trajectory of the calibration point will
form either a 3-D circle or a 3-D line according to its joint type (revolute or prismatic).
Hence, the point method is essentially to solve 3-D circle and 3-D line fitting problems
for revolute and prismatic joints, respectively. It is well known that a 3-D circle fitting
problem is nonlinear when only 3-D measurements of circle edges are available [8] [12].
Whereas, we showed that if 3-D measurements of circle edges and their corresponding
rotation angles are available, then we can derived a closed-form solution to the 3-D circle
fitting problem (refer to [14]). Details of the above-mentioned closed-form solutions will
be described in the next section.

Accurate closed-form solutions of kinematic parameters are very important for either
subsequent nonlinear optimization or direct applications; hence, we will focus on the error
analysis of closed-form solutions for kinematic calibration problems. However, since error
analysis results of an overall kinematic model are usually dedicated to a specific type of
robots, it is hard to generalize the analysis results to others. On the other hand, because

most robots are composed of several prismatic and revolute joints, error analysis results on



calibration of a single joint will be generally useful. Therefore, we will further focus on the
error analysis of closed-form solutions when they are applied to the calibration problem

of a single revolute or prismatic joint.

B. Review of Related Work

So far as we know, less work has been devoted to the investigation of error analysis on
kinematic calibration; especially, on analyzing the parameter estimation error of closed-
form solutions for kinematic calibration. Stone [17] analyzed the estimation error of his
calibration method using point measurements; however, in his analysis, influence of some
factors were obtained from fitting empirical data to parameterized functions. Lenz and
Tsai showed some analysis results on estimation error of a rotation axis [10]; however,
their error analysis results are mainly for hand-eye calibration.

In this paper, we will derive error variances of the estimated kinematic parameters of
a single joint for the pose method and point method, respectively. Notice that during
kinematic calibration, calibration data are measured with respect to different joint val-
ues. For convenience, we will refer to the distribution range of joint values corresponding
to the calibration data as the calibration range which is a subspace of the joint space.
The derived error variances for the point method are functions of the calibration range,
number of measurements, amount of measurement noise and amount of joint value noise.
Furthermore, for the point method, if the joint under calibration is revolute, then the
error variances are also functions of the distance between the calibration point and the
revolute joint axis and length of the link corresponding to the joint under calibration. The
derived error variances for a pose method are functions of the calibration range, number
of measurements, amount of measurement noise and length of the link corresponding to
the joint under calibration.

This paper is organized as follows. In section II, the pose methods and the point method
for kinematic parameters are described; general equations for the pose methods will be
derived to show that all the pose methods are equivalent. In section III, error analysis on
the point method for kinematic calibration of a single joint is described. In section IV,
error analysis on the pose method for kinematic calibration of a single joint is described.

In section V, the derived error variances of the estimated kinematic parameters are verified



by computer simulations. Conclusions are given in section VI.

II. CLOSED-FORM SOLUTIONS FOR KINEMATIC CALIBRATION

Assume that the robot under calibration contains no closed-loop kinematic chain and

has n joints. The kinematic equation of the n-joint robot is
YT, =T, T Ty . T, (1)

where T} is the transformation matrix from frame {i} to frame {j}. The transforma-
tion matrix between two consecutive joint frames can be described by different kinematic
models, e.g., the D-H model [4], S-model [17] and the CPC (Complete and Parametrically
Continuous) model [22]. According to the robotics conventions, the z-axis of a joint frame
is defined by its joint axis. Hence, the general form of a kinematic model between two

consecutive joint frames can be represented as follows:
L ="TQ () T (2)

where ¢; is the joint value of the ith joint, “"!T and T} are the kinematic-model-dependent
constant transformation matrices (e.g., for a CPC kinematic model, * 'T" is an identity

matrix and 7; is the shape matrix [22]), and

Rotz (q;), if joint 7 is revolute,
Q (q) = (3)

Transz (¢;), if joint i is prismatic.

Notice that by substituting equation (2) into equation (1), we have

an = wTO Q(QI) ‘/1 Q(Q2) ‘/2 ce Q(Qn) Vna (4)

where

Vi =T,'T. (5)

Equation (4) is exactly in the form of the CPC kinematic model [22]. Therefore, no matter
what kind of kinematic model is used, during the kinematic calibration, it can always
be transformed into the CPC kinematic model [22] (this is owing to the completeness

property of the CPC model). Henceforth, we will use the CPC kinematic model in deriving



the closed-form solutions and in the error analysis. The shape matrix, V;, for the CPC

kinematic model is

Vi = R; Rot,(8;) Trans([lix iy li-]"), (6)
and ) )
L L
R, = _111’2(:7 1- % biy 0 (7)
—biy —biyy b, O
0 0 0 1

Notice that the parameters, {3;, liz, liy, li»} and {3;, ;. }, are redundant for a prismatic and
a revolute joint (refer to [22]), respectively.

Kinematic calibration of an n-joint serial robot is the process of estimating unknown
kinematic parameters contained in equation (1). Kinematic calibration problems are non-
linear because unknown parameters of the n joints are all multiplied together. However,
if we sequentially estimate kinematic parameters of one joint at a time, then closed-form
solutions can be derived.

Both the point method and the pose method discussed in this paper can be applied
to calibrate a serial robot sequentially from the end-effector to the base and vice versa.
When calibrating a robot from its end-effector toward its base, the ith shape matrix, V;,
is calibrated based on the net motion of joint i. Whereas, when calibrating a robot from
its base toward its end-effector, the ith shape matrix, V;, is calibrated based on the net
motion of joint (i + 1), instead. The pose method and the point method will be discussed
in the following subsections for both prismatic and revolute joints, respectively. Also, the
objective functions for deriving the closed-form solutions are described in the following

subsections, which will also be used in the theoretical analysis.

A. Fundamental Calibration Equation of the Pose Methods

The goal of this subsection is to derive the fundamental calibration equation of the pose
methods. Assume that the kinematic calibration is proceeded in the forward order from
the base toward the end-effector. Without loss of generality, we assume that the kinematic
parameters of joints 1-(i — 1) are all calibrated. To calibrate the shape matrix of joint i,

all the un-calibrated joints except for joint (i+1), i.e., joints (i + 2)-n, should be kept still.
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Fig. 1. A schematic diagram of the pose method.

Furthermore, we assume that the pose of the end-effector can be measured with respect
to a fixed reference frame referred to as the WCS (World Coordinate System). Figure 1
shows the schematic diagram of the pose method for kinematic calibration. Obviously, the
pose measurement of the end-effector, denoted as "7, is a function of an n-dimensional
vector of joint values denoted as q. When joints 1—(i + 1) are moved to two different

positions in the joint space, e.g., q(j) and q(k), we have
F(a(7)) Vi Q(ai+1(7)) Viirn) "' T
= F(a(k)) Vi Q(qit1(k)) Viisr) "' T, (8)

where
F(a())) ="Tw(a(")) “Ti-1(a () Qlai(+), (9)

and both sides of equation (8) are all equal to identity matrix.
Since joints (i + 2)—n were held still, V;11) **'T}, on both sides of the above equation can

be eliminated, and equation (8) can be rewritten as follows:
Vi Q(Aqjr) = AT, Vi, (10)
where Agjr = ¢i+1(J) — ¢i+1(k) and

AT), = F~'(a(5)) F(a(k)). (11)



Notice that in the above equation, all the unknowns are contained in the shape matrix,
V;, whereas the other matrices can be computed from the calibrated kinematic model of
joints 1-(¢ — 1) and the pose measurements.

Similarly, when the kinematic calibration is proceeded in the reverse order from the
end-effector toward the base, the fundamental equation for the kinematic calibration can

be derived as follows (refer to [13]):
Qai(j) — ai(k)) Vi = Vi AT}, (12)

where
ATy, = "To(a(j)) "Tw(a()) [iTn(q(k))"Tw(q(k))]_l- (13)

Notice that equation (12) can be transformed to be exactly in the same form of equation
(10) by computing its inverse matrix. Furthermore, calibrating the kinematic parameters
in the order from the base toward end-effectors is very suitable for robots having multiple
end-effectors. On the contrary, if we calibrate a multiple end-effector robot from the end-
effectors to the base then at the link having two branching kinematic chains, we will have
to estimate an additional transformation matrix for unifying the coordinate systems from
different end-effectors (as in [15]). Therefore, we will choose to analyze the estimation

error of equation (10), which can be used to calibrate a robot in the forward order.

B. Pose Method: Calibration of a Prismatic Joint

For a prismatic joint, the unknown parameters to be estimated are the orientation of
the prismatic joint axis, whereas the translation parameters are all redundant (refer to
[22] and [13]). Assume that we have M pose measurements. Based on equation (10), an
objective function of the unit vector of the translation joint axis can be defined as follows
(refer to [13]):

M M
(w)= 33|

j=1k=1

! (14)

u; Agjr, — taty,

where u; denotes the unit vector of joint axis satisfying the constraint, |[u;]|* = 1, and
taTy, 18 the translation vector of the transformation matrix AT}y.

The closed-form solution of u; minimizing the objective function (14) can be derived as
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follows (refer to [13]):
SIS (A
‘EJAQ Al (tATjkquk) H

C. Pose Method: Calibration of a Revolute Joint

(15)

For a revolute joint, the unknown parameters to be estimated are two orientation pa-
rameters and two translation parameters. From the rotation matrices of equation (10), we

can define an objective function of the unit orientation vector as follows (refer to [13]):

€ (u;) = ul F uy, (16)
where
0
1

R; is the rotation matrix of the shape matrix, V;, and
M M
E=Y"Y [Rar, 1| [Rar, — 1], (18)
j=1k=1
where RATjk is the rotation matrix of the transformation matrix, AT};. Notice that
minimizing the objective function (16) is equivalent to computing the common rotation
axis of a set of rotation matrices. Actually, all the existing pose method for the kinematic
calibration of a revolute joint are doing in this way. The optimal solution to the objective
function (16) is the eigenvector of the matrix, F, corresponding to the smallest eigenvalue.
From the estimated orientation vector of the joint axis, w;, into equation (7), we can
construct the orientation matrix, R; (refer to [22] or [13]).
By substituting the estimated orientation matrix, R;, into equation (10), we have a

equation of the unknown translation vector, ¢;, where
[I — ROtZ (quk)] lz = Rf tAT]-k- (19)

The objective function of the translation parameters can be define as follows:

[1—(505 (Agjk) sin (Agji) ] - [1 0 O] o
—sin (Agjr)  1—cos(Agi)l © L0 1 '

2

, (20)

e(tﬂzZZ

j=1k=1
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where
.
L=1"1, (21)
Liy
and the relation between the kinematic parameters, [;, and the translation vector, ¢;, of
the shape matrix, V;, is t; = R; [;. The closed-form solution of the unknown translation

parameter, ¢;, can be computed by using linear least-square method based on equation

(20).

D. Fundamental Equation of the Point Method

_Calibration Target

3D Point Measurement
/

I Reference Frame
\ '\ of Measurement Device
i

Fig. 2. A schematic diagram of the point method.

In this subsection, we will derive the fundamental equation for the point method. Sup-
pose that the kinematic calibration is proceeded from the base toward the end-effector.
Without loss of generality, we assume that the kinematic parameters of joints 1-(i — 1)
are all calibrated, and that of joint ¢ is being calibrated. Figure 2 shows the schematic
diagram of the point method for robot kinematic calibration in the forward direction
(from the base toward the end-effector). To provide position measurements for calibrating
joint i, a calibration target is attached to any link between joint ¢ and (including) the
end-effector (notice that when calibrating different joints, the calibration target can be
mounted at different places). For deriving a closed-form solution, when calibrating joint

1, the un-calibrated joints which will affect the position of the calibration target should be
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kept still. For example, if the calibration target is mounted on the end-effector, then all
the un-calibrated joints, i.e., joints (i + 1)-n should be held still.

Let the unknown 3-D coordinates and the measured 3-D coordinates of the calibration
target with respect to the (i + 1)st joint frame and the WCS be denoted as y and "p,
respectively. By transforming the 3-D coordinates of the calibration target to the ith joint

frame, we have
T Ty W =V, Qaisn) Vi v, .

where °T; and °T} can be obtained from the calibrated kinematic parameters, and V;, Vi,
and y are unknown parameters. By combining V;.; and y into one unknown 3-D position

and substituting it into equation (22), we have
=V Q(giv1) T, (23)

where 'p = °T;7' Ty Wp and © = Vi1 y. Also, when the robot kinematic calibration is
proceeded in the reverse order, i.e., calibrating from the end-effector toward the base, an
equation similar to equation (23) can be easily derived. However, due to the drawback of
calibrating a robot having multiple end-effectors in the reverse order described in section II-
A, we will focus on the calibration method in the forward calibration order. From equation
(23), it is obvious that ‘p is a function of ¢, ;. Moreover, if joint (i + 1) is revolute, then
the trajectory of ’p subject to change of ¢;,; will form a 3-D circle; otherwise, it will form

a 3-D line when joint (i + 1) is prismatic.

E. Point Method: Estimation of a Prismatic Joint Axis

If joint (i+1) is prismatic, then when it is moving, the trajectory of the calibration target
will form a 3-D straight line. The 3-D line equation for the trajectory of the calibration

target can be derived from the fundamental equation (23) as follows (refer to [14]):
D= Do+ Gip1 ui, (24)

where pg and u; are the position and orientation of the 3-D line, respectively. It can be
shown that, from u;, the shape matrix, V;, can be computed and then from V; and pg the

unknown vector, x, can be computed [14]. Hence, in order to estimate the shape matrix,
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the objective function is defined as follows:

2

) (25)

i

p(j) — Po — Qi+1(j) Usj

€ (po, u;) = 231

j:
where u; is a unit vector and M is the number of measurements. The closed-form solution

of po and u; minimizing the objective function (24) can be derived as follows (refer to [14]):

S (4., 6)'p())

N (@ e[ (26)
and
=P Gt (27)
o ; 1 M
P= M;lp@), (28)
| m
Qi1 = 31 JZIQZ'H(J'), (29)
‘(i) ="p(j) =P, )
and
4, () = ¢ir1(J) — Gir1- (31)

F. Point Method: Estimation of a Revolute Joint Axis

If joint (i41) is revolute, then when it is rotating, the trajectory of the calibration target
will form a 3-D circle. Equation for describing the 3-D circle can be derived from equa-
tion (23). The 3-D circle equation derived from equation (23) contains seven unknowns
including two position and two orientation parameters of the revolute joint axis and the
unknown 3-D coordinates of the calibration target, i.e., x, in equation (23). Directly esti-
mating the seven parameters is a nonlinear problem (refer to [17] and [16]). Nevertheless,
we showed that by decomposing the unknown 3-D coordinates of the calibration target as

follows (refer to [14]):

x=Rotz(az) | O |+ ]| 0 |, (32)
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the original problem can be transformed to the optimization problem of the following

objective function:
M . 2
e(R.t,p) =3 || Ba'p(G) +1 — pr(3)] (33)
i=1

where p is the radius of the 3-D circle, R, is a rotation matrix containing the orientation
of the joint axis, ¢ is the center of the 3-D circle and r(j) = [cos(gir1(j)) sin(gir1(j)) 0]".
Closed-form solution of equation (33) can be computed by using a method, refer to [14],

which is similar to the Umeyama method [18].

III. THEORETICAL ERROR ANALYSIS ON THE POINT METHOD

In this section, we will derive the covariance matrices of the estimated kinematic pa-
rameters for the point method. While the error analysis on the pose method is more
complicated and will be discussed in the next section. Notice that when using the point
method for kinematic calibration, each measurement will contribute one 3-D vector equa-
tion (see equation (23)). Furthermore, when calibrating a joint with the point method, it
is essentially to fit a 3-D line or a 3-D circle according to the joint type. Therefore, the
calibration data should be acquired uniformly from the trajectory of either a 3-D line or of
a 3-D circle to have accurate 3-D line or 3-D circle fitting results. To derive the covariance
matrix of the estimated orientation of an revolute joint, we need the following lemma.

Lemma 1: A rotation matrix, d R, constructed by using three small XYZ Euler angles,

Oz, 6¢, and d¢,, can be approximated as follows:

OR =1 + Skew [09], (34)
where
00z
00 = d¢, |, (35)
0.
and

0 6¢z _5¢y
Skew[§®) = | —6¢, 0 ¢, |- (36)

dpy, —0¢, 0
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=X +X
2 2 |

Lemma 2: 1f x;, « = 1,2, ..., M are uniformly distributed within the region, [ ,

then y .
S i)~y [ ) de

where f(x) is a smooth function of z.

A. Error Analysis on the Point Method for a Prismatic Joint

The derived covariance matrix of the orientation error for a prismatic joint is based on
the following assumptions:
1. The 3-D measurement noise is white Gaussian with zero mean and diagonal covariance
matrix, o21.
2. The error in joint value (i.e., the encoder error) of the prismatic joint is negligible
comparing to the 3-D measurement noise.

Define the estimation error of the kinematic parameters of a prismatic joint as follows:
ou; = U; — ug, (37)

where u; and wu; are respectively the estimated and true kinematic parameters for a pris-

matic joint 7. From equation (26), we have

W — Ej]\il (gi—l—l(j) (iﬁ_’(j) + 51_’@)))
S (a0 () + 000))

where 0p(j) = dp(j) — dp.

For convenience, define the composite vector and the composite noise vector as follows:

(38)

| Y

P =3 4,,,() 'p())] (39)

Jj=1
and

3P =3 [0,,,(0) )] (40

Substituting equations (38) and (39) into (40), we have

P+oP

U= op| (41)
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It can be shown that if the amount of composite noise vector, §P, is relatively small

comparing to the composite vector, P, the denominator of equation (41) can be represented

as follows:
1 1 s P P]
= 11— ——|+0(2) (42)
1P +oPl Pl l 1P
Substituting equation (42) into (41), we have
;= ui + 08 — (u; 63) u; + O(2), (43)

where 63 = ||6TP\|’ is the effective noise vector, and u; = H—Ilzu is the true kinematic parameters

since P is noise free.

1
/

Unit Sphere- - -~~~/

/
/

Fig. 3. Orientation parameter estimation error of a prismatic joint.

From equations (37) and (43), we have
Su; = 08 — (ul 68) u; + O(2). (44)

Notice that in equation (44), du; is approximately equal to the component of §3 per-
pendicular to u; as shown in Figure 3. Therefore, the size of du; is proportional to and
bounded by the size of §3, and minimizing the amount of §3 is equivalent to minimizing
the amount of parameter estimation error. Hence, we would derive the covariance matrix
of the random vector 3 to find factors affecting the calibration accuracy.

Suppose that in the calibration process, the joint values corresponding to the M mea-

surements were uniformly distributed within the region, {Q, Q1 + AQ}, i.e.,

AQ
M—-1

Gir1(j) = Q1+ —1) (45)



17

The covariance matrix of §3 can be derived as follows (refer to AppendixVII-A).
Cov[06] = 0351, (46)

where

2 2
9 O5p 12 o
Osp = = — . 47

According to equation (47), it is obvious that the orientation estimation error of a prismatic
joint can be reduced by making AQ and M larger or by making the measurement noise
smaller. Also, from equation (47), for minimizing the estimation error, increasing size of

the calibration range, AQ), is more efficient than increasing the number of measurements,

M.

B. Error Analysis on the Point Method for a Revolute Joint

In this subsection, we will derive the covariance matrix of the estimated parameters for
a revolute joint. Notice that in this case, the encoder error in no longer negligible, because
as the distance between the calibration target and the revolute joint axis becoming further,
the encoder error will influence the calibration results more seriously.

Assume that the optimal parameters minimizing objective function (33) are as follows:

~

R, = [I+ Skew (0®)] R,, (48)
p = p+dp, (49)
t = t+6t, (50)

where d®, dp and dt are the parameter estimation error.

Define the error vector corresponding to the jth measurement, ‘p(j), as follows:

& = R, 'p(j) +— pi(j) =0 (51)
By computing the Tyler series expansion of equation (51) and neglecting high order terms,
we have the equation relating the parameter estimation error and the measurement noise
as follows:

€j = A; 00 + R, 0p(j) + B, 6q(j) + O(2), (52)
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where
_ O
4 = 356 (53)
O€;
B, = J 54
! doq(j) 54

dp(j) is the 3-D measurement error, d¢(j) is the encoder error and the error vector of the

estimated parameters, and dO is defined as follows
00 = [5®" 6t' 5p)] . (55)

By substituting equation (52) into the objective function (33), the estimation error of the

unknown parameters minimizing the objective function can be derived as follows:
5@——{MA'5A-] 1 [fjAtRé(')nL%AtBé(')] (56)
— [FI ! ]J L_ZI i Ry 0p(y > ; Bj QJJ.
Assume that the noisy point measurements in equation (33) is

b(3) ="p(j) + op(j), (57)

where ‘p(j) is the true value and dp(j) is a white Gaussian noise vector with zero mean
and diagonal covariance matrix, o2/, and that the encoder error, d¢(j), and the 3-D mea-

surement error, 0p(j), are independent, where the encoder error is a zero mean Gaussian

2

;- From equation (56), the covariance matrix of the unknown

noise having variance, o

parameters of O can be derived as follows:

Var[00] =0, A +0; A7 B A, (58)
where
M
7j=1
and
M
7j=1

Notice that A; and B; are matrix function of measurements, ‘p(j), the joint values,
¢is1(j), for j = 1,2,..., M, and the parameters, p, R, and ¢. Notice that the true 3-D

measurement, ‘p(j), can be derived from equation (33) as follows:

'(j) =R, (pr(j) —1). (61)
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The 3-D measurements, ‘p(j), in matrices A; and B; can be eliminated by substituting
the above equation into A; and B;. Therefore, matrices A; and B; are now functions of
the joint value, ¢;11(j), and the parameters, p, R, and t.

Since the origin of the joint value can be arbitrarily assigned in the CPC kinematic
model [22], hence, without lost of generality, we can assume that the joint values, ¢;11(j),
for j = 1,2,..., M, are uniformly distributed within the region, [L;Q, L;Q] Also, since

A; and Bj; are smooth matrix functions of joint values, based on Lemma 2, we have

A A—Aé /; A'(q) Alq) dg, (62)
and ro
B 5 [an A0 B B'w) Alg) dy (63)

By using Mathematica, both of the approximation matrices of A and B in equations (62)
and (63) can be easily computed in analytic form. The inverse of the matrix, A, can also
be computed using Mathematica in analytic form, and then we have the covariance matrix
of the estimated parameters by substituting the approximated matrices, A~! and B, into
equation (58).

Since the diagonal terms of the covariance matrix themselves are sufficient for describing
the estimation error, hence we only list the variance terms of the seven parameters as

follows (covariance terms are listed in Appendix-VII-B:

> 22(AQ)
2 _ Ip s
> 2, (AQ)
2 _ 9™y
U(W’y o p2 M ’ (65)
020, (AQ) 02T, (AQ)
Ug(bz = 02 M + = M ’ (66)
o 02 ®.(AQ) (p* +12) . o2 @,(AQ) 12 N o2 12 W1 (AQ) N oq > Us(AQ) (67)
Oty pZ M p2 M M M ’
L5040 (0 — 2sinc (42) t, p+12) ASCOL
5ty — 02 M p? M
+0'§ ti \Ifl(AQ) i 0'3 p2 \Ijg(AQ) . 0'3 t:v P \114(AQ) (68)

M M M ’
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,  02®,(AQ) (AL 2 osine (A2) £, p+12) 02 D,(AQ) ty?

o — T + 02 M ) (69)

2 2 2
o @]Z\;AQ) L 9P \]1\145(&@), (70)

where AQ sin (%)

e ( : ) -2 (71)

2

B 2AQ
®, (AQ) = AQ —sin (AQ)’ ()

B 2 AQ?
d, (AQ) = —4 4+ AQ? + 4 cos (AQ) + AQ sin (AQ)’ "

AQ?
5. (AQ) = ™

—2 4+ AQ? + 2 cos (AQ)’
—6AQ? +2 AQ* + 6 AQ? cos(AQ) + 2 AQ sin(AQ) — AQ sin(2AQ)

Vi (AQ) = 2(—2 4+ AQ? 4 2 cos(AQ))? ’
(75)
CAQ' - AQP sin(AQ)
2 (AQ) = 2 (=24 AQ?* + 2 cos(AQ))?’ (76)
L —AAQY+AQT+ 4 AQ? cos(AQ) + AQ? sin(AQ)
V3 (AQ) = 2(—2+ AQ? + 2 cos(AQ))? ’ (77)
—2 AQ? cos (%) + 2 AQ? cos (%) + 24 AQ sin (%)
Vi (AQ) = - 2(—2 + AQ% + 2 cos(AQ))?
~4AQ? sin (82) - 8 AQ sin (259)
Ty (i aizosaqr 0
and 2 (A
AQ sin” (5*) (AQ — sin(A
T, (AQ) — 2 AQ sin ( 5 )( @ — sin( Q)) (19)

(=24 AQ? + 2 cos(AQ))?
The values of the three functions, ®,(AQ), ®,(AQ) and ®,(AQ), are plotted in Figure 4.

Whereas the values of the functions, ¥U;(AQ), ¥2(AQ), U3(AQ), ¥4(AQ), and ¥5(AQ),
are plotted in Figure 5. Notice that when AQ is small, ®,(AQ) is much larger than the
other two, which means that the orientation error about the y-axis will be worse than
the other two axes. This is because that when the calibration range, AQ), is small, the
trajectory of the calibration target will be close to a 3-D straight line segment parallel to
the y-axis, which can be an arc of any 3-D circle having rotation axis perpendicular to the

y-axis (see Figure 6).
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Fig. 4. Function values of ®,(AQ), ®,(AQ) and @, (AQ).

IV. THEORETICAL ERROR ANALYSIS ON THE POSE METHOD

In this section, we will derive the covariance matrices of the estimated kinematic param-
eters for the pose method. Notice that when using the pose method, pose measurements
have to be matched pairwise to be used in the calibration equation (10). In section II,
matching pairwise of the pose measurements is preformed without considering the redun-
dancy problem, which makes M? pairs from M measurements. Nevertheless, there is still
one problem to be solved, i.e., how we select a set of configurations for the robot such
that the corresponding pose measurements will yield a more accurate calibration result.
Here we consider two kinds of data collection processes for the kinematic calibration. The
first kind of data collection processes is to sample % pose measurements at one configu-
ration and % pose measurements at another configuration, where M is the total number
of calibration data. For example, suppose 6y and 6; are all belong to the working space
of a revolute joint under calibration, then the first kind of data collection processes may
acquire % pose measurements at joint position #, and acquire another % pose measure-

M

2
ments at joint position #;, which will make (7) effective pairs. This kind of processes
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Fig. 5. Function values of ¥1(AQ), ¥2(AQ), ¥3(AQ), T4(AQ), and T5(AQ).

is intended to to maximize the net motion between the pairwise pose measurements such
that the estimation accuracy can be improved (refer to [13]), therefore, these two cali-
bration configurations in the joint space, i.e., 8y and 6, should be made apart as far as
possible. While the second kind of data collection processes is to acquire uniformly dis-
tributed calibration data, i.e., the pose measurements are acquired according to a set of
joint values uniformly distributed within a certain region. For convenience, we will refer
to the first kind of collection processes as the two-configuration approach, and the second
kind of collection processes as the uniform-configuration approach, respectively.

For deriving the covariance matrices of the estimated kinematic parameters, we need
the following lemmas.

Lemma 3: If R is a rotation matrix, then
Skew(R'§®) = R' Skew(6®) R, (80)

where d® is a small orientation error vector.

Lemma /: Let 0R; and Ry be two rotation matrices constructed by using small XYZ
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Fig. 6. Trajectory of the calibration target corresponding to small calibration range is close to a straight

line.
Euler angles, 0®; and d®,, respectively. Then, their product can be represented as follows:

(SRl 5R2 =1 + Skew [(5(1)1 + (Sq)g] . (81)

Lemma 5: Let R be an estimate of a rotation matrix, R, and

~

R=0R; R= RJRp,

where dR; and dRpg are error rotation matrices constructed by using small XYZ Euler
angles, 0®; and 0Pp, respectively. Then, the orientation error, 0®; and d®g, can be

related by the following equation:
60r = R'6P, (82)
For convenience, we will refer to 09, and 0®r as the left orientation error and right

orientation error, respectively.



24

Lemma 6: If Rl = Ry 0R; and Rg = Ry d Ry, then the right orientation error, ®;5, of

the matrix R'i RQ, can be computed as follows:

0®1y = (005 — R Ry 60, ), (83)
Lemma 7: The rotation matrix of AT}, defined following equation (11), i.e., Rar;,, is
equivalent to R; Rotz(Ag;i) R
<Proof>:
Recall that this rotation matrix is derived from equations (8)—(11). Notice that the both

sides of equation (8) are equal to identity, hence,

1

F(a(j)) = [Vi Q(qi+1(4)) Vi iHTn]_ : (84)

and
1

F(a(k)) = [Vi Q(qis1(k)) Viiery '] (85)

By substituting the above two equations into equation (11), we have

ATy = Vi Q(Agie) Vi . (86)
Lemma 8: If the right orientation error of the rotation matrices of F'(q(j)) and F(q(k))
are 0®; and 0Py, respectively, then the right orientation error, 0®;;, of an estimate of

RATjk defined in Lemma 7 is as follows:
(S(I)]k = (S(I)] - Rl RotZ(—quk) Rf (S(I)k (87)

where 6@ = R} 0®; and 6@, = R} 0Py,
<Proof>:

From Lemma 6, we have the right orientation error:
0P, = 0Dy, — RtATjk&I)j. (88)
By using Lemma 7, we have

(S(I)]k = 5@k — Rl ROtz(—Aq]k) Rf (S(I)] (89)

Lemma 9: An estimate of Rar,, can be formulated as follows:

Rar, = R Rotz(Aqyy) [T+ Skew(R} 6®)| L. (90)
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Fig. 7. Small estimation error of a unit vector.

Notice that the the above lemma can be easily derive based on Lemmas 3, 6 and 7.
Lemma 10: Small estimation error of a unit vector will fall in the tangent plane of the
unit sphere perpendicular to the true unit vector (see Figure 7. Hence, when using the pose

method, the orientation estimation error of a revolute joint can be described as follows:
0; = R; [dug duy 1], (91)

where du, and du, are the error vector on the tangent plane perpendicular to u;.
Lemma 11: The relation between the true value, estimation error and an estimate of the

translation vector of the matrix,
-1

(aw] m>
>

is as follows,
—R'i = —R't + Skew(6®) Rt — R 6t, (92)
where 0@ is the right orientation error of ]-AB, and R and ¢ are the true values of R and t,

respectively.

Lemma 12: Consider the following transformation matrix.

~ ~ -1 ~ ~
R1 t1 R2 to
0 1 0 1

1T2 —

The true and translation vector of the matrix, 75, is

t12 - —Ri (tl - t2) (93)
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and the error translation vector of 'T} is
(Stlg == Skew((S(I)l) Ri (tl — tz) — Ri ((5t1 — (Stg), (94)

where d®, is the right orientation error of Rl and R and ¢ are the true values of R and ¢,
respectively.

Lemma 13: For any 0 € R, z € R and 2 € N3, the following equality will hold:

0 0
Rotz(0) Skew[z] | 0| = Skew [Rotz(0) x] | 0] . (95)
z z
Lemma 14: Let
0, 1<j<3,

q; =

Suppose that K (Ag;x) is a matrix function of Agjx = ¢; — gk, and that K(0) = 0. The

following equations will hold:

>3 Ko -0 = () IK(GQ + K(-2Q), %)
() (o)
= (4 [K(aQ) K'(AQ) + K (-AQ) K'(-AQ) (o7)

A. Error Analysis on the Pose Method for a Prismatic Joint

The process for deriving the orientation estimation error of a prismatic joint using the
pose method is similar to that described in section III-A. We will first derive the composite
vector, P, and the effective error vector, d P, as what we did in section ITI-A. Similarly,
we assume that the encoder error is negligible comparing to the position measurement
error. However, when using pose measurements, the orientation error contained in the
pose measurements will also influence the calibration accuracy. In this case, the effective
noise vector (derived from equation (10) and Lemma 12) will be

M M
=> > [Aqfk Skew(u;) 6®; — 2 Agjp, RS 6t . (98)

j=1k=1
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Assume that the orientation error, 6®;, and the translation error, §¢;, are independent.

The covariance matrix of the effective error vector will be

M M M t M 2
Cov (6P) =Y {054 lz Ag, Skew(ui)] [Z A, Skew(ui)] + 403, lz quk] Is.
j=1 k=1 k=1 k=1
(99)
Also, in this case, the composite vector of the position measurements, tar,,, will be
M M
j=1k=1
Notice that in the above equation, Agj; and tar;, are all true values. Hence, for each j

and k, tat;, is in the direction, u;, and its length is Agjy.

B. Covariance Matriz of the Calibration Error of a Prismatic Joint Using Two-Configuration

Approach

In this subsection, we will derive the covariance matrix of the effective noise vector,
0. Suppose that there are totally M measurements. When using the two-configuration
approach for calibrating a prismatic joint, half of the measurements will correspond to
a joint value, ¢;, and the others will correspond to another joint value, (¢; + AQ). The
covariance matrix of the error vector, 6 P, can be computed from equation (99) and Lemma

14 as follows:

M3
Cov(dP) = — o3 AQ* Skew?(u;) + M o2, AQ? I. (101)

Also, based on Lemma 14 and from equation (100), we have that the length of P will be
M2
1P = =5 AQ% (102)
Hence, the covariance matrix of the effective noise vector, 63, is

Cov(6P 402
CO'U((S,B) = # = — ]\46‘1) Sk€w2(uz) +

2
Ost

MAQ? ™

(103)
C. Covariance Matriz of the Calibration Error of a Prismatic Joint Using Uniform-
Configuration Approach

In this subsection, we will derive the covariance matrix of the effective noise vector, 0.

Suppose that there are totally M measurements. When using the uniform-configuration
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approach for calibrating a revolute joint, the joint values corresponding to the M mea-
surements are uniformly distributed within a region, e.g., [¢1, ¢1 + AQ)]. Based on Lemma
2, the covariance matrix of the error vector, P, can be computed from equation (99), by

using Mathematica, as follows:

M, 4 2 M, 2
Cov(0P) = ~5g Tbe AQ" Skew*(u;) + 5 Ot AQ°I. (104)

Similarly, the length of the composite vector, P, is

AQ?* M?
1Pl = ==, (105)
Therefore, the covariance matrix of the effective noise vector, 60, is
Cov(6P) _ 60js 12 0%,
Cov(6f) = ———5= = Skew 1. 106

D. Error Analysis on the Pose Method for a Revolute Joint

In this subsection, we will derive some general equations about the orientation and
position estimation error to be used in the next two subsections. By using Lemmas 1-10,
the objective function (16) can be simplified as follows:

M M )

_ ; kzl |{ Rotz(Aqs) [T+ Skew(RE6@y)] — I} (ez+0uw)| . (107)
where ez = [0 0 1" and du = [Ju, du, 0]'. Notice that ey is invariant with respect to the
transformation, Rotz (). Also, high order terms of the estimation error in equation (107)
is usually very small comparing to other terms, hence, they can be neglected. Therefore,
the above equation can be further simplified as follows:

M M
=33 |[Rotz(Aqs) — 1] 6u + Rotz(Aqsy) Skew(9,) e ’

j=1k=1

, (108)

where @, = R 6®;;. The optimal solution, du, minimizing equation (108) will satisfying
the following normal equation:

{ﬁ/[: ﬁ/[: [Rotz(Aqj) — I [Rotz(Aqjr) — T]} ou

j=1k=1

M M
— 3" 5N [Roty(Aqsk) — 1) Rotz(Aqyy) Skew(6®y) ez (109)

j=lk=1
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By simplifying the above equation, we have

1 00
M M
> 2(1—cos(Agj) |0 1 0| du
j=1k=1

0 00

M:

M
=2
7=1

where 00/ = R} 6®; and 6@}, = R} 6. Notice that by definition, Agjr = —Agy;, hence,

[Rotz(Aqgjr) — I Skew(6®)) ez

T

1

—

Rotz Agj) — } Skew(0®)) e, (110)

these two terms on the right hand side of equation (110) are actually the same (it can be
easily proved by swap the indices j and k). As a result, equation (110) can be further

simplified as follows:

1 00
M M
ZZ21_COS(A%) 0 1 0] du
1=1k=1
0 0 0
M M
=233 [Rotz(Agjk) — I Skew(5®}) ez (111)

1k

Il
—

J
Suppose that the orientation error of the pose measurements are white Gaussian noise
with zero mean, variance, 02, and independently identical distributions. We have that the

orientation estimation error of the revolute joint axis will be

. T [(Eﬁilcos(ﬁw)—lf* (EﬁISin(Aqﬂ“))z} o (112)
" 010
by (1—COS(quk))]2 000

Notice that the orientation error, du, of the ith joint axis will induce a right orienta-
tion error, 0®p,, of the orientation matrix, R;, of the shape matrix as follows (refer to

AppendixVII-C for the proof):

OUy,

5Oy = Su, . (113)

Oy big —0ug biy
1+bzz
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We will now derive the translation estimation error for a revolute joint when using the
pose method. When considering the measurement noise and encoder noise, equation (19)

can be written as follows:
[ — Roty (Ag)] l; = Rl iar,. (114)

By substituting the following equations,

~

li = 1+l 115

Adir = Adjr + g, 116

(115)
(116)
R = R; [I+6Dg], (117)
tar, = tar, + dtar,, (118)

into equation (114) and neglect the high order term, we have
Ajdl; = Bjpdq + Cj 6Pp, + R; dtar,, (119)

where 0g = [0 0 5qjk]t is the encoder error, and

Bj = —Skew [ROtZ (Aq]k) lz] , (].2].)
Oj = +Skew [[I — ROtZ (quk)] lz] . (122)

From Lemma 12 and equation (119), we have
Ajkdl; = Bjog + Cj, (6®g, — 0®;) + Dy (0t; — 0ty), (123)

where Dy = —R; R}. In general, in the above equation, the amount of the orientation esti-
mation error of the joint axis, 0®g,, is usually much smaller than that of the measurement
noise, i.e., 0®;. Therefore, 6@, is omitted in the following derivation, and the objective
function (20) can be reformulated as follows:
M M
€ (81;) = ]Zl kzl | A;x01; — Bjrdq + Cyi 6®; — Dij (6t; — 6t3.), || (124)

The solution of §/; minimizing equation 124, can be derived as follows:

j=1k=1 j=1k=1

v om

M M
il - [z SS A A,
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Notice that in the above equation, d¢ = [0 0 d¢; — 6qx]’, hence

M M M M . 0
Z > ALY Bjrdg = — Z > I = Rotz (Agj)]” Skew [Rotz (Agjy) 1] 0 . (126)
1=1k=1 j=1k=1 5qj _ 6qk

By using Lemma 13 and noting that Agjr = —Agy;, equation (126) can be simplified to

be as follows:

M M M M 0
Z Z A;k Bjk (5q = Z Z ROtZ Aq]k ROtz(—Aq]'k)] Skew[ll] 0 . (127)
j=1lk=1 j=1k=1

(qu'

Furthermore, the last term in the right hand side of equation (125) can be simplified as

follows:
{Z > Al Dij (ot — 6ty) } =2 {Z > Al Dy 51&]} : (128)

By substituting equations (127) and (128) into equation (125), we have

0
M M
[Z DAL Ag| 0= | B | 0| — Ay O 0®; + 2 A%y Dij 6t;|, (129)
i=1k=1 j=1k=1
(qu'

where Ej; = [Rotz(Agjr) — Rotz(—Aqi)] Skew[l;]. Assume that the encoder error, dg;,
the orientation measurement error, d®;, and the position measurement error, dt;, are
independent. From equation (129), we have that the covariance matrix of d/; will satisfy

the following equation:

ACov(0l;) A= [0}, B+ 0% C+0}, D], (130)
where
M M
A = DD A% Ay, (131)
j=1k=1
M M M
5= 3| (2 (T, (152)
j=1 L \k=1 k=1
M M M
C =3 KZ Al Cjk) (Z Cl Ajk)] (133)
7=1 k=1 k=1
M M M
o i [($an) (300)] -
j=1 L \k=1 k=1
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E. Covariance Matrices of the Calibration Error of a Revolute Joint Using Two-Configuration

Approach

In this subsection, we will derive the covariance matrices of the estimation error of a
revolute joint when using pose method. Suppose that there are totally M measurements.
When using the two-configuration approach for calibrating a revolute joint, half of the
measurements will correspond to a joint value, ¢;, and the others will correspond to another
joint value, (¢; + AQ). The covariance matrix of the orientation estimation error can be

computed from equation (112) and Lemma 14 as follows:

) 1 00
20
2 _ 135
T =M 1—eosaq) | VLY (135)
0 0 O

To derive the covariance matrix of the translation estimation error, we first compute

those matrices in equation (130) by using Lemma 14, and the results are

8sin?(2%) 0 0
M
A= (7) 0 8sin’(22) 0 |, (136)
0 0 0
812, sin”(AQ)  8lix Ly sin’(AQ) 0
M
B=(5) |8kl sin®(0Q) 8B sin’(AQ) 0 |, (137)
0 0 0
y 3212, sin*(82) 321, sin*(AQ) 0
C= (7> —321; Uy sin(AQ) 3202 sin'(52) 0 |, (138)
0 0 0
8sin?(4%) 0 0
M
D=4 (7> 0 8sin?(22) 0 |- (139)
0 0 0

From the above equations, the covariance matrix of the translation estimation error can
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be computed as follows:

2 lgly O]
2
COU[(SZZ] = U—(S;AQ lw lzy l?y 0
M tan*(=*)
0 0 0
, 2, —lyly 0
5P
2 | Sl B0
0 0 0
1 00
+U—§t 010 (140)
M sin%%)
0 00

F. Covariance Matrices of the Calibration Error of a Revolute Joint Using Uniform-

Configuration Approach

In this subsection, we will derive the covariance matrices of the estimation error of a
revolute joint when using pose method. Suppose that there are totally M measurements.
When using the uniform-configuration approach for calibrating a revolute joint, the joint
values corresponding to the M measurements are uniformly distributed within a region,
e.g., [q1,¢1 + AQ)]. Based on Lemma 2, the covariance matrix of the orientation estimation

error can be computed from equation (112), by using Mathematica, as follows:

2 100
®,(A
o:?u:UT(Q) 010l (141)
000

Also, based on Lemma 2, the covariance matrix of the translation estimation error can

be computed from equation (130) as follows:

) 2 ligly 0
Cov[dl;] = %(AQ) Liz Liy l?y 0
0 0 0
2 .
"‘W _li;yliy l;;zlly g
0 0 0
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1 00
2
Uét(I)Z(AQ)
ot AT R . 142
+ Vi 01 0 (142)
000

V. SIMULATION RESULTS

Computer Simulation: Pose Method for a Prismatic Joint, M = 20, o5 = 0.01°.

1r T T T T T T T T
[ Simulated Error when o5, = 0.1lmm o ]
Predicted Error when o5, = 0.1mm ___. A
Simulated Error when og; = lmm _g..
Predicted Error when o5, = 1mm .x..

0.1 [a— —_

o X

o
o
=

Orientation Error (in radians)

0. 001
10 20 30 40 50 60 70 80 90 100

Calibration Range (in mm)

Fig. 8. The orientation parameter estimation error of a prismatic joint using the pose methods versus

the value of the calibration range.

In this section, we will show some simulation results compared with the predicted estima-
tion error derived in the previous two sections. In the computer simulations, independent
Gaussian noise was added to the joint value and the position and orientation measure-
ments of the calibration object. Then, RMSE (Root Mean Square Error) of the estimated
parameters were computed from 100 random trials. For convenience, the RMSE of the
parameter estimation error obtained in computer simulation will be referred to as the
simulated estimation error, and the estimation error predicted by using the theoretical

analysis results will be referred to as the predicted estimation error. For clarity of data
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Computer Simulation: Point Method for a Prismatic Joint, M = 20.

1r T T T T T T T T
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Fig. 9. The orientation parameter estimation error of a prismatic joint using the point method versus

the value of the calibration range.

representing, instead of showing every x-, y- and z- components of the translation and
orientation estimation errors, we will show the total 3-D RMSE translation error and the
total oritntation error in the next. For example, if the x-, y- and z- components of the
simulated (predicted) translation estimation error are eg,, est, and e, (o5t o5, and
0st. ), then the total 3-D simulated (predicted) translation error will be (€3, +e5, + egtz)%
(0%, +03, +0%,)?). Similarly, if the x-, y- and z- components of the simulated (predicted)
orientation estimation error are es4,, €54, and esy, (0sq,, Tsp, and 054, ), then the total 3-D
simulated (predicted) orientation error will be (ef, + €3, + e§¢z)% (035, + 05, + agd)z)%).

In the first experiment, the derived orientation error upper bound for calibrating a
prismatic joint was tested. The number of measurements was assumed to be 20 and

standard deviation of the orientation measurement error was set to 0.01°. The simulated

and predicted estimation errors were computed with respect to 10 different calibration



36

ranges and two position measurement noise levels, i.e., AQ = 10, 20, ..., 100 mm and
o5t = 05p = 0.1 mm and o5 = 05, = 1 mm, respectively. The simulated errors for the
pose method and the point method were shown in Figure 8 and Figure 9, respectively.
Notice that all the computed 3-D RMSE were bounded by the derived upper bounds. As
expected, the orientation estimation error for a prismatic joint is inversely proportional to
the calibration range, no matter which kind of method is used.

In the second experiment, the relation between the parameter estimation error of a
revolute joint and the calibration range was evaluated. In this simulation, number of
measurements, the joint value noise, o;,, and the orientation measurement noise were set
to 20, 0.01° and 0.2°, respectively. The simulated and predicted estimation errors were
computed with respect to 20 different calibration ranges and two position measurement
noise levels, i.e., AQ = 10, 20, ..., 200 degrees and o5 = 05, = 0.1 mm and o5 = 0y
= 1 mm, respectively. The simulation results for the pose method and the point method
were shown in Figures 10-11 and Figures 12-14, respectively. Notice that the predicted
estimation errors are very close to the computed ones, which means that the theoretical
analysis results are very accurate.

In the last experiment, the relation between the parameter estimation errors of the point
method and the length of the trajectory radius, p, was evaluated. In this simulation, the
number of measurements, the standard deviation of joint values noise and the standard
deviation of the position measurement noise were set to 20, 0.01° and 0.1 mm, respectively.
The simulated and predicted estimation errors were computed with respect to 10 radius
lengthes and two calibration ranges, i.e., p = 50, 100, ..., 500mm and AQ = 40, 180 degrees.
The calibration results were shown in Figures 15-17. From the computer simulation
results, we concluded that the theoretical analysis results are correct and, thus, can be used
as a guideline for selecting calibration methods and for controlling calibration conditions

to reduce the calibration error.

VI. CONCLUSIONS

Robot kinematic calibration is important for many applications requiring high position-
ing accuracy; hence, many techniques have been developed to calibrate the kinematic

parameters to reduce the positioning error. Most of the existing techniques are based on
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Computer Simulation: Pose Method for a Revolute Joint, M = 20, o554 = 0.01°, 654 = 0.2°.
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Fig. 10. The orientation parameter estimation error of a revolute using the pose methods versus the

calibration range.

nonlinear optimization techniques which require accurate initial estimate of kinematic pa-
rameters. Several methods have been developed for providing closed-form solutions to the
kinematic parameters which can be used as an initial estimate for nonlinear optimization
techniques or for direct applications. Existing closed-form solutions to kinematic param-
eter calibration problems can be classified into two categories, namely the pose methods
and the point methods, according to the information they used. Pose methods estimate
the kinematic parameters by using pose measurements of the end-effector. Whereas, point
methods estimate the kinematic parameters by using only 3-D point measurements of a
calibration target attached to the end-effector.

In this paper, we have successfully derived expressions for covariance matrices of kine-
matic parameters estimated by using the pose method and the point method, respectively.

The derived error variances for a point method are functions of the calibration range,
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Computer Simulation: Pose Method for a Revolute Joint, M = 20, o554 = 0.01°, 654 = 0.2°.
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Fig. 11. The translation parameter estimation error of a revolute joint using the pose methods versus

the calibration range.

number of measurements, amount of measurement noise and amount of joint value noise.
Furthermore, if the joint under calibration is revolute, then the error variances are also
functions of the distance between the calibration point and the revolute joint axis and
length of the link corresponding to the joint under calibration. The derived error vari-
ances for a pose method are functions of the calibration range, number of measurements,
amount of measurement noise, amount of the joint value noise and length of the link
corresponding to the joint under calibration. To verify the theoretical analysis results,
extensive computer simulations were conducted which showed that the derived variance
equations for the estimated kinematic parameters are very accurate.

Based on our error analysis results, factors affecting calibration accuracy are revealed.
We found that when the calibration range is small, both pose methods and point methods

will become very sensitive to noise, especially when calibrating a revolute joint. Notice
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Computer Simulation: Point Method for a Revolute Joint, M = 20, o545 = 0.01°, p = 100mm.
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Fig. 12. The orientation parameter estimation error of a revolute joint using the point method versus

the calibration range.

that although accuracy of the point method will degrade more rapidly than a pose method
when the calibration range is becoming smaller, accuracy of point method can be improved
by increasing either the number of measurements or the distance between the calibration
target and the rotation joint axis. In general, amount of measurement noise can hardly
be reduced; hence, the calibration error should be reduced by controlling other factors.
According to our analysis results, increasing the calibration range is the most efficient way,
for both point method and pose method, to reduce the calibration error. Nevertheless,
when the calibration range can not be increased, than increasing the distance between the
calibration target and the rotation axis is much more efficient than increasing the number
of measurements for point method. On the other hand, when we want to reduce the
estimation error for a pose method, the only way is to increase the number of calibration

points.
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Computer Simulation: Point Method for a Revolute Joint, M = 20, o545 = 0.01°, p = 100mm.
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Fig. 13. The translation parameter estimation error of a revolute joint using the point method versus

the calibration range.

From the error analysis results, we found that both the point method and the pose
method have their pros and cons. Our analysis results can be used to serve as a guideline
for selecting calibration techniques, for determining the calibration condition and even for
designing a robot head or a robot arm when considering the calibration task. For example,
when designing a robot head, the required rotating range of a joint may be small; however,
when considering the subsequent calibration task, the rotating range should be enlarged

to ensure accurate calibration results.
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Computer Simulation: Point Method for a Revolute Joint, M = 20, o545 = 0.01°, p = 100mm.
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Fig. 14. The radius parameter estimation error of a revolute joint using the point method versus the

calibration range.

VII. APPENDICES
A. Orientation Estimation Error of the Point Method for a Prismatic Joint

Assuming that M is an even number, and then from equation (31), we have

/. M+1y AQ
4;,,0) = (J + 5 > W _1 (143)
fori=1,2,...,M, and
M M
0P =3"q,,,(7) 0p() — P> q,,,(j)- (144)
J=1 j=1

Notice that the second term of equation (144) on the right hand side is zero because

5172:%“(1) = 152: (¢i+1(4) — @i41) = 0. (145)
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From equations (144) and (145), we have

Cov[0P] = (

M—-1 2

j=1
which yields
Cov[6P] = oip I,

2 AQ? M(M+1)

2 _
where o5p = o B —T)

AQ >202[§:<j_M+1

).

The orientation parameter estimation error of a revolute joint using the point method versus

(146)

(147)

. Notice that “p(j) is the true vector whose length is exactly

Qi+1(j)’ and all the vectors, 'p(j), j = 1,2, ..., M, have exactly the same direction as that

of the true kinematic parameter, u;, i.e., *

and (143), we have
l  AQPM(M +1)

j=1

p(j) = 4,,,(J) u;. Hence, from equations (39)

(148)

The covariance matrix of § can be derived from equations (147) and (148) as follows:

Cov[6f] = 0551,

(149)
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Computer Simulation: Point Method for a Revolute Joint, M = 20, o054 = 0.01°, osp = 0.1mm.
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Fig. 16. The translation parameter estimation error of a revolute joint using the point method versus

the length of the radius.

where
R o2p _ 12(M — 1)0? .
WP M(M +1)AQ?

When the number of measurements, M, is large, the above equation can be approximated

(150)

as follows:
2 1202

Notice that the above equation is derived for even number of measurements. However,

(151)

when the number of measurements is odd, the derived covariance matrix in the above

equation can be used as a reasonable approximation.
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Fig. 17. The radius parameter estimation error of a revolute joint using the point method versus the

length of the radius.

B. Covariance Values of the Estimated Parameters of a Revolute Joint when Using the

Point Method

Os¢y 6ty = —

O§¢y 6t, —

O5¢y 5t, — —

p* M

p* M

p* M

o) D, (AQ) t,
02 D, (AQ) t,

O’; P, (AQ) t, ‘

O5¢y 5t. —

06¢p, 6t, =— —

p* M

o, 0, (AQ) (tm — psinc (%))

o, ©.(AQ) by, of, ty Psiy

p* M

M

(152)

(153)

(154)

(155)

(156)
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ag o, (AQ) (tw — psinc (%)) agq t, Psiy agq p Psiy

_ _ ) 157
O5¢. oty 02 M - M 2 M (157)
0,? P, (AQ) t, (tl, — psinc (%)) agq ty by Psiy qu pty Psiy
Oty ot, = 02 M N M B 2M ' (158)
. _ _0'5 (I)y(AQ) tz (tx - pSiIIC (%)) (159)
Sty Ot 02 M ’
L omnQu(¥) | Arse e (e mie)
5ta Op M M(—2+ AQ? + 2 cos(AQ))?
02 O, (AQ) tyt.
Oty 6t — . pz M (161)

C. The Right Orientation Estimation Error of R

By definition, the rotation axis of joint i with respect to joint frame {i + 1} is

bi = Rl €z, (162)
where ez = [0 0 1]" and
b2 —bg by
1= T+b, be
_ —by b by
Ri= | F5% 1—3% by |- (163)
—b, —by b,

Notice that the rotation matrix, R;, can be reconstructed by using the unit vector, b;.
Suppose the estimated rotation axis of the ith joint with respect to the (i + 1)st joint

frame is

bi=R; | du, |- (164)

The estimated rotation matrix, R;, can be constructed by using the estimated rotation
axis, Bi, and the right orientation error, d®p,, of R; will, by definition, satisfy the following
equation:

R; = R; [I + Skew (6®p,)]. (165)
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Based on the above equation, the right orientation error, 0®g,, of R; can be computed by

using Mathematica to be as follows:

Oty
5p = | bu, |- (166)

Uy T—0Uz Y
142

D. Proof of equation (128)

M

D> A% Dij (6t — 6ty) | =

j=1k=1

[I — ROtZ (quk)]t Rf R; 5tj

|
M=
M=

<
Il
-
T
-

+
M=
M=

<
Il
—_
T
-

[I — Rotz (Aqu))" RLRL oty (167)

By substituting (R, R} dt) for 0t; in the last term on the right hand side of the above

equation, we have
[I — Rotz (Aqji)]" R R 6ty = [I — Rotz (Aqji)]" RE RY Ry R}, 6ty (168)
From equation (10), we have
R! Ry = R; Rotz(Aqy) R;. (169)
By substituting equation (169) into (168), we have
[I — Rotz (—Aqj)] Rotz(Aqjx) Ri R, 6ty = — [I — Roty (Aqjr)] Ri R}, 6ty (170)
By swapping the indices, j and k, we have (remember that Ag;, = —Agy;)
— [I = Rotz (—Aq;i)] R} R’ 6t;. (171)
Therefore, these two terms on the right hand side of equation (167) are equal.
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