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ABSTRACT

A new edge detection technique based on detecting normal changes is pro�

posed� Most of the existing range�image�based edge detection algorithms base

their detection criterion on depth or curvature changes� However� depth or

curvature changes do not have keen sensitivity on detecting roof � or crease

� edges� Using normal changes as a detecting criterion� on the contrary� can

easily detect the existence of a roof edge even the change across a boundary is

slight� Experimental results using both synthetic and real images demonstrate

that the proposed method is indeed superb in detecting roof � or crease � edges�

Keywords� range edge detection� wavelet

Running head� Multiscale Edge Detection via Normal chnages
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�� Introduction

Extracting edges from an image is an important early vision process� It has been of

interest to research in the area of computer vision from the outset��� �� 	� 
� �� �� � �� �� ���

��� ��� �	�� The algorithms developed for edge detection can be classi�ed into two kinds

depending on the type of acquired images� For an intensity image� the devised algorithms

usually aim to detect step edges� This is due to the natural limitation of this type of images�

For a range image� since the depth information is available� it is possible to correctly detect

both step edges and roof edges � or crease edges �� In computer vision� since closed contours

are more useful for higher level image analysis and using range images is easier to achieve

this goal� we shall focus on range�image�based edge detection in this paper�

There are a number of good papers in range�image�based edge detection�
� �� �� �

�� �� ��� ��� ��� �	�� Chung et al����� proposed to use the �rst and second derivatives of

Gaussian kernels to detect jump edges and roof edges� Ghosal and Mehrotra�
� �	� proposed

a moment�based approach for detecting generalized step edges and pulse�staircase edges� In

��� ���� the local polynomial approximation technique is adopted to estimate mean curvature

and Gaussian curvature� Then� the existence and strength of edges can be decided by

checking the sign changes of K�H map� Recently� Monga and Deriche��� proposed a 	D

Deriche �lter to directly compute curvatures without performing local surface �tting� The

edge points are the local extrema along the maximum curvatures direction� In ����� Wani

and Batchelor used some rules to judge the type of an edge� Their approach can distinguish

fold edge� semistep edge� and boundary edge�

In the above mentioned range�image�based edge detection algorithms �
� �� �� � �� �� ���

��� ��� �	�� only those points that have signi�cant depth or curvature changes with respect

to their neighbors �e�g�� step edges � are identi�ed as edge points� However� for those points

which have little depth or curvature variations with respect to their neighbors � e�g�� roof
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edges � are hardly detected� In this paper� we propose a new edge detection technique based

on the detection of normal changes� The normal value is an important characteristic in

di�erential geometry����� We �nd that by detecting signi�cant normal changes� both step

edges and roof edges can be easily identi�ed� The whole detection procedure is divided into

two stages� In the �rst stage� the normal of every point in a range image is decided� Since

all data points in a range image are discrete� the partial derivatives which are required

for deriving the normal value cannot be directly computed� For comparison purpose� we

propose to use quadratic surface �tting���� ���� orthogonal wavelet�based approach��� ����

and non�orthogonal wavelet�based approach���� respectively� to approximate the original

object surfaces and then calculate the normal value of every discrete point on the surfaces�

After the normal vaules of all surface points are determined� the non�orthogonal wavelet

transforms � dyadic wavelet transform � proposed by Mallat et al���� �	� is applied to detect

those points which have signi�cant normal changes as edge points� From the experimental

results� we �nd that the non�orthogonal wavelet�based approach can best approximate the

original surfaces from a discrete data set� Further� we also �nd that edge detection based

on normal change is a more promising alternative than other methods that based their

detection criterion on depth or curvature changes� The proposed edge detector can detect

both step edges and roof edges without introducing any edge models or heuristics�

The rest of this paper is organized as follows� In the �rst part of the next section� we

overview some geometric properties of a 	D surface in di�erential geometry point of view�

Then� we shall explain why normal change is good for detecting edges� In Section 	� three

possible methods are proposed to calculate normal values from a set of discrete surface

points� Section 
 describes how to detect edges based on normal changes� Experimental

results using both synthetic range images and real range images are reported in Section ��

Section � includes some discussion issues and a concluding remark�

	



�� Range edge detection via normal change

In this section� we shall explain why normal change can be used as a cue for range edge

detection� Some properties of a 	D surface in di�erential geometry viewpoint which are

useful for edge detection will be addressed in Section ���� Then� a detailed explanation on

why normal change is a better choice for edge detection will be described in Section ����

���� Some properties in di�erential geometry useful for edge detection

In this section� some basic properties of a 	D surface will be addressed from the di�erential

geometry viewpoint� These properties are useful for solving the edge detection problem on

range images�

Let S be a di�erentiable surface and �p�u� v� be a point on S with coordinate �u� v�� If

�pu and �pv are the partial derivatives of �p�u� v� with respect to u and v� respectively� then

we can say �pu� �pv form the basis of a tangent plane� T �p�� of �p�u� v� �Figure ��� The normal

of T �p� can be de�ned as

�N�u� v� �
�pu � �pv
k�pu � �pvk � ���

Here� the norm of any �N�u� v� is always equal to � and all �N�u� v��s lie on a unit sphere in

R�� The mapping� �N � S � R�� is called the Gauss mapping� G�R����
��

Let �N�u� v� be di�erentiable� the mapping� d �N�u� v�� is from G�R�� to a tangent plane�

G�R��� at �N�u� v�� Since the tangent plane of �N�u� v� is equal to that of �p�u� v�� d �N�u� v�

is also on the T �p� plane� as shown in Figure �� Thus� both d�p and d �N can be represented

by the linear combination of du and dv as follows �����

d�p � �pudu� �pvdv� ���






and

d �N � �Nudu� �Nvdv� �	�

Here� p�u� v� is the gray level � intensity image � or depth � range image � at position �u� v��

Therefore� d�p physically means the intensity or depth change with respect to �p�u� v��s

neighbors� As to �Nu and �Nv� they are mathematically de�ned as �Nu �
� �N
�u

and �Nv �
� �N
�v
�

Namely� they physically mean the normal change along u and v directions� respectively�

����Why normal change is better for edge detection

Equations��� and �	� represent� respectively� the depth � or intensity� change and the

normal change with respect to the neighbors of p�u� v�� The drawback of using Equation���

is that the depth � or intensity� change can only be detected when its value is signi�cant�

For example� Figure ��a� shows an object sitting on the x�y plane� its corresponding range

image � in intensity change format� is shown in Figure ��c�� If the same object is viewed

from another point as shown in Figure ��b�� then its base plane becomes u�v plane� From

this view� the object�s corresponding range � or intensity � change is shown in Figure ��d��

The edge type shown in Figure ��c� is the so�called step edge and the one shown in Figure

��d� is known as a roof edge� Usually� people applies the �rst derivative in one direction

to locate edge positions� From Figure �� it is obvious that the derivatives applied to the

x direction � Figure ��a�� and the u direction � Figure ��b�� both obtain zero values� The

derivatives applied to the y direction � Figure ��a�� and the v direction � Figure ��b�� will

have the responses shown in Figure 	�c� and Figure 	�d�� respectively� From these outcome�

it is apparent that the step edge can be easily detected� However� the roof edge which is

actually existent is not detected� This phenomenon re�ects the fact that simply using d�p�

i�e�� the intensity or depth change of p�u� v� with respect to its neighbors is not su�cient

to detect all physically existent edges�
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Since d�p in Equation ��� cannot be applied to detect di�erent types of edges� we propose

to use d �N �Equation �	�� instead� In what follows� we shall explain why d �N is chosen

to locate general edges� In Figure 
�a���d�� four di�erent types of crease�roof� edges�

including convex and concave edges� are shown� Figure 
�e���h��respectively� show their

corresponding normal changes across edges� These di�erence vectors are all normalized

and �t into Gaussian spheres� From the normal changes we �nd that their values are much

more signi�cant than those of the depth � or intensity� changes� Considering a more general

case shown in Figure 
�i�� an edge occurs between a plane and a curve surface� It is clear

that the normal change between p� and p� � two points located at di�erent surfaces � is

much larger than the normal change between p� and p� �two points belonging to the same

surface � � Figure 
�j� and �k��� Therefore� we conclude that the use of the normal change �

d �N � instead of the depth � or intensity � change � d�p� should be a good solution for �nding

a more powerful edge detector�

�� Calculating normals from discrete surface points

In the previous section� we have discussed that the change of normals at every point on a

surface � Equation �	�� can be used to detect the position of edges� The continuous domain

normal value derivation process is summarized as follows� Let �p�u� v� � �u� v� f�u� v�� be a

point located on a surface� The partial derivatives of �p�u� v� in u and v directions are �

�pu �
��p�u� v�

�u
� �� � fu�u� v��� �
�

and

�pv �
��p�u� v�

�v
� �� � fv�u� v��� ���

�



Plugging these two values into Equation ���� the value of �N�u� v� can be rewritten as

�N�u� v� � �
�fuq

� � f �u � f �v

�fvq
� � f �u � f �v

�q
� � f �u � f �v

� ���

� �n��u� v� n��u� v� n��u� v��� ��

where fu � �f�u�v�
�u

and fv � �f�u�v�
�v

� n��u� v� � �fup
��f�u�f

�
v

� n��u� v� � �fvp
��f�u�f

�
v

and

n��u� v� � �p
��f�u�f

�
v

� The ranges of n�� n� and n� are all bounded by ������� In real

implementation� since all data points acquired in a range image are discrete by nature� the

above calculation does not apply� Therefore� we have to seek some appropriate methods to

deal with this problem� In the implemenation stage� we split the edge detection procedure

into two steps� In the �rst step� the normal at every point on a surface should be decided�

This step involves the calculations of partial derivatives on a set of discrete data points�

Then� in the second step� a detector is required to accurately detect the points where

signi�cant variation of normals are encountered� In order to calculate the normals on a set

of discrete surface points� some existing methods ��� ��� ��� ��� �� ��� ��� can be applied�

For compariaon purpose� we choose quadratic surface �tting���� ���� orthogonal wavelet�

based approach����� and non�orthogonal wavelet�based approach��� to calculate the normal

value of every point on a surface� In what follows� we shall brie�y describe how to use these

methods to compute normals based on a set of discrete surface points�

A
 Quadratic surface �tting

This method was proposed by Besl and Jain���� ���� In their method� the �rst and

second partial derivatives at a given location �u� v� are estimated by overlapping N � N

windows centered at pixel �u� v� and �tting local quadratic surfaces� The points in the

N � N window are associated with a position �u� v� � U � U � where N is odd and

U � ��N � ����� � � � ���� �� �� � � � � �N � ����� The quadratic surface �t is obtained by





using a set of discrete orthogonal polynomials

�	�u� � �� ���u� � �� ���u� � �u� �M�M � ���	�� ���

where M � �N � ����� The following bi�u� functions are normalized forms corresponding

to the �i polynomials and are de�ned as

b	�u� �
�

N
� b��u� �

	

M�M � ����M � ��
u� and b��u� �

�

P �M�

�
u� � M�M � ��

	

�
� ���

where P �M� � ��
�M� � 
��M� � ���M� � ���M� � ����M � The normalized bi�u� and

�i�u� must satisfy the orthogonality relationship

X
u�U

�i�u�bj�u� � �ij� ����

where �ij � � if i � j and �ij � � otherwise� A surface function estimate g�u� v� is obtained

by

g�u� v� �
X

i�j��

aij�i�u��j�v�� ����

that minimizes the total square error term

	� �
X

�u�v��U�

�f�u� v�� g�u� v���� ����

where f�u� v� is the original surface function� The solution for the unknown coe�cients

can be obtained by

aij �
X

�u�v��U�

f�u� v�bi�u�bj�v�� ��	�

Having the surface function estimate g�u� v�� the �rst partial derivatives which are required

to derive the normal at position �u� v� can thus be determined by

�g

�u
� a�	 and

�g

�v
� a	�� ��
�

�



B
 Orthogonal wavelet�based approach����

This subsection will describe how to use an orthogonal wavelet basis to approximate a

surface and then based on the approximated surface to calculate the normal of every surface

point� The critical issues of using this approach include� �a� how to use an orthogonal

wavelet basis to describe a surface� �b� how to deal with the di�erentiation problem which

is a must in deriving normal values� Part of the subsequent derivations can be found in our

previous paper�����

The process of wavelet transform represents a continuous function� f�x�� with a limited

number of successive approximations� each of which is a smoothed version of f�x������ In

this paper� we will employ the Daubechies scaling function��� ��� to represent continuous

functions� Denote the Daubechies scaling function by ��x� and its dilation and translation

functions �j�����jx � n� by �j�n�x� for j� n � Z� Let Vj be the function space spanned by

f�j�n�x�gn�Z� In fact� f�j�n�x�gn�Z is an orthonormal basis of Vj� The function spaces Vj�

j � Z have the following properties�

��� Vj � Vj�� for all j � Z and

���
S�
j
�� Vj � L��R��

Let Sjf�x� be the projection of a continuous function� f�x� on Vj� i�e�

Sjf �
X
n

cj�n�j�n�x�� n � Z�

where cj�n �
R
f�x��j�n�x�dx� By property ���� fSjf�x�gj�Z is an approximation scheme of

f�x� in which Sj��f�x� is a better approximation than Sjf�x� for all j � Z�

The di�erence between two successive approximations� Sjf�x� and Sj��f�x�� can be

expanded by another set of orthonormal basis 
j�n which is generated by dilation and

translation from another prototype function 
�x�� called the Daubechies wavelet function�

Let Wjf�x� � Sj��f�x�� Sjf�x�� We have

Wjf�x� �
X
n

dj�n
j�n�x�� n � Z�

�



where 
j�n�x� � �j��
��jx�n� and dj�n �
R
f�x�
j�ndx� Therefore� any continuous function

f�x� � L��R� can be approximated by

f�x� � Sjf�x� �
�X
k
j

X
n�Z

dk�n
k�n�x�� ����

Since the derivation of normals requires the computation of the �rst partial derivatives on

surface points� the relationship between the original wavelet basis and its di�erentiated

form should be built� In what follows� we shall describe how to make this link� Let the

original signal � or surface � f�x� be represented as����

f�x� �
X
n

cn�n�x�� ����

where cn �
R
f�x���x � n�dx� Since

R
��x � n�dx � � and �n�x� is compactly supported�

we can think of ��x� n� as a function which is similar to a delta function� Therefore� we

have

f�n� �
Z
f�x���x� n�dx� ���

Substituting Equation ��� into Equation ���� and di�erentiating it� we have

f
�

�x� �
X
n

f�n��
�

n�x�� ����

If we expand �
�

n�x� based on the scaling function and wavelet function� then the following

equation is obtained�

�
�

n�x� �
X
k

�n�k�k�x� �
X
j�	�k

�jn�k
j�k�x�� ����

where

�n�k �
Z
�

�

�x� n���x� k�dx� ����

and

�jn�k �
Z
�

�

�x� n�
j�x� k�dx� ����

��



The above formulation is the so�called wavelet�Galerkin method����� �n�k and �jn�k are

called connection coe�cients����� These coe�cients can be explicitly calculated for speci�c

families of wavelets� If we substitute Equation ���� into Equation ����� we have

f
�

�x� �
X
n�k

f�n��n�k�k�x� �
X

j�	�n�k

f�n��jn�k
j�k�x�� ����

By multiplying both sides of Equation ���� with �k�x� and integrating� we �nd that

f
�

�x� �
Z
f

�

�x���x� k�dx �
X
n

f�n��n�k �
X
n

�n�	f�k � n��

If the scaling function ��x� has N vanishing moments� the above equation can be further

simpli�ed as����

f
�

�x� �
�N��X

n
��N��

�n�	f�k � n�� ��	�

The above discussions are all in one variable case� In what follows� we shall extend the

study to a two variable case� Let a function f�x� y� � L��R� be represented as

f�x� y� �
X
m

X
n

cm�n��x�m� y � n�� ��
�

where cm�n are the weighting coe�cients� and ��x � m� y � n�
�

s are the wavelet basis of

a certain subspace at the �ne resolution �� According to the tensor product method���

�� ��� ���� we can set ��x� y� � ��x���y�� Therefore� the ��D connection coe�cients of

Equation��
� can be converted into ��D form� More details about the derivation can be

found in ����� Finally� the partial derivatives in the x and y directions at point �i� j� can

be respectively simpli�ed as follows

�f�x� y�

�x
j�x�y�
�i�j� � fx�i� j� �

�N��X
m
��N��

�m�	f�i�m� j�� ����

and

�f�x� y�

�y
j�x�y�
�i�j� � fy�i� j� �

�N��X
n
��N��

�n�	f�i� j � n�� ����

��



where �k�	 are the connection coe�cients with N�k vanishing moments� With Equations

���� and ����� we can calculate the normal value of every point on a surface which is

approximated by linear combination of orthogonal wavelet bases�

C
 Non�orthogonal wavelet�based approach

In this approach� the most important issue is to choose a set of continuous and di�erentiable

�smoothing� functions� A smoothing function ��x���� is a function whose integral is equal

to � and converges to � at in�nity� Let f�x� be a discrete function which is composed of a

set of discrete data as follows �

f�x� �

�
sample value if x � � � � ���� �� �� � � ��
� otherwise�

���

Based on the above mentioned f�x� and ��x�� a new continuous and di�erentiable function

h�x� can be de�ned by convolving f�x� and ��x�� that is�

h�x� � �f 	 ���x�� x � R� ����

Since h�x� is an approximation of f�x� and is continuous and di�erentiable� the �rst partial

derivatives can be obtained by direct di�erentiation on h�x�� i�e��

dh�x�

dx
�

d

dx
�f 	 ���x� � �

df

dx
	 ���x� � �f 	 d�

dx
��x�� ����

If the smoothing function ��x� is �compact� enough� then h�x� can approximate closely to

f�x� at x � f� � � ���� �� �� �g� By the same token� the derivative of h�x� can approximate

that of f�x� at every x � Z� i�e��

df�x�

dx
� dh�x�

dx
� �f 	 d�

dx
��x�

����� x � Z
� �	��

�� Detecting edges based on abrupt normal changes

In ��� ��� �	�� Mallat and his students have developed some pioneering works for

multiscale edge detection based on gray level changes� Here� we shall review part of their

��



works which will be useful in our work� De�ne two wavelet functions� 
��x� y� and 
��x� y�

��� ��� where


��x� y� �
���x� y�

�x
� �	��

and


��x� y� �
���x� y�

�y
� �	��

��x� y� is a smoothing function whose integration over the full domain is equal to � and

converges to � at in�nity� These two functions have to satisfy the following conditions�

Z �

��

Z �

��


��x� y�dxdy � � �		�

and Z �

��

Z �

��

��x� y�dxdy � �� �	
�

Let f�x� y� � L��R�� The so�called dyadic wavelet transform ��� ��� of f�x� y� at scale �j

along x and y directions can be represented� respectively� by

W �
�jf�x� y� � f 	 
�

�j �x� y�� �	��

and

W �
�jf�x� y� � f 	 
�

�j �x� y�� �	��

where 
�
�j �x� y� �

�
��j


�� x
�j
� y
�j
� and 
�

�j �x� y� �
�
��j

�� x

�j
� y
�j
�� In what follows� we shall use

the above mentioned dyadic wavelet transform to detect abrupt normal changes as edge

points�

From Equation�	�� it is obvious that the vector of the normal change� d �N�u� v�� can be

represented by the linear combination of the two bases on the du�dv plane� i�e�� Nudu�Nvdv�

And� their associated weights are the gradients of �N along du and dv directions� respectively�

Since the dyadic wavelet transform proposed by Mallat ��� �	� is able to calculate the

magnitudes of these gradients� we can apply their method directly to calculate d �N�u� v��

�	



According to the formulation reported in ��� �	�� the dyadic wavelet transform of �N�u� v�

at scale �j is

Wj
�N�u� v� � W �

�j
�N�u� v�du�W �

�j
�N�u� v�dv� �	�

where

W �
�j
�N�u� v� � �W �

�jn��u� v�� W
�
�jn��u� v�� W

�
�jn��u� v� �� �	��

and

W �
�j
�N�u� v� � �W �

�jn��u� v�� W
�
�jn��u� v�� W

�
�jn��u� v� �� �	��

Since the Wj
�N�u� v� vector also lies on the du�dv plane� the magnitude and argument

of Wj
�N�u� v� can be directly computed� Referring to ���� the norms of W �

�j
�N�u� v� and

W �
�j
�N�u� v� should be de�ned� respectively� as follows�

kW �
�j
�N�u� v�k �

q
�W �

�jn��u� v��
� � �W �

�jn��u� v��
� � �W �

�jn��u� v��
�� �
��

and

kW �
�j
�N�u� v�k �

q
�W �

�jn��u� v��
� � �W �

�jn��u� v��
� � �W �

�jn��u� v��
�� �
��

The magnitude of Wj
�N�u� v� at scale �j can thus be computed as follows�

M�j
�N�u� v� �

q
�kW �

�j
�N�u� v�k�� � �kW �

�j
�N�u� v�k��� �
��

Besides� the angle of Wj
�N�u� v� with respect to du direction is

A�j
�N�u� v� � argument�kW �

�j
�N�u� v�k� ikW �

�j
�N�u� v�k�� �
	�

From the above calculation� every point in a range image will obtain two values� One is the

magnitude of its normal change with respect to its certain neighbors� and the other is the

direction tendency of this point� Like other multiscale edge detection��� ��� �
�� the edge

points can be determined by locating those local extrema whose normal change exceed a

preset threshold�

�




	� Experimental results

In the experiments� a number of synthetic and real range images were adopted as

test images to corroborate the proposed method� The four synthetic images were� agpart�

column� half sphere and taperoll� All of these images were of size �
���
�� Besides� we also

used ten real images with di�erent sizes� In the �rst stage of the experiment� the normal of

every point in a range image has to be decided� In order to make comparison� we used three

di�erent methods� i�e�� quadradic surface �tting� orthogonal and non�orthogonal wavelet�

based approaches� to calculate the normal values� This part we used one of the synthetic

images � �agpart�� as the test image� Experimental results of this part were reported in

Figure �� Figure ��a� showed the three normal components �n�� n�� n�� detected by applying

the quadratic surface �tting method� Figure ��b� and �c� showed� respectively� the normal

components obtained by applying the orthogonal � Daubechies� wavelets with N � 	� and

the non�orthogonal wavelet�based approaches� Based on the derived normals� we then used

the dyadic wavelet transforms propsoed by Mallat et al���� to calculate the normal change

of every point in an image and selected those local extrema as edge points� Figure �a���c�

showed� respectively� the multiscale edges ���� ��� and ��� detected from three di�erently

approximated surfaces� Among them� Figure �a� showed the multiscale edges detected

from the normals generated by the quadratic surface �tting method� Figure �b� and �c�

were the multiscale edges detected when the approximation method were the orthogonal

and non�orthogonal wavelet�based approach� respectively� It is apparent that when the

quadratic surface �tting or the orthogonal wavelet�based approach was adopted to estimate

the normal values� the detected edges contained some spurious results or the original edges

delocalized from their original position� On the other hand� the edges detected from the

normals estimated by the non�orthogonal wavelet�based approach were the best results�

Figure ��a���c� reported the results of the other three synthetic images based on the non�

orthogonal wavelet�based approximation� One thing to be noticed is that the �rst stage

of the proposed approach� i�e�� the normal determination step� is crucial because a �poor�

estimation on normal values may result in irrecoverable e�ect on the edge detection stage� A

poor estimation method may smooth out the original image and thus delocalize edges from

��



their correct locations� By comparing the empirical results� the non�orthogonal wavelet�

based approximation was chosen because it produced the bset results out of the three

mentioned methods�

Figures � � �� is a sequence of experiments based on real range images� All of these

results were obtained by applying the non�orthogonal wavelet�based approach to estimate

the normal values� From the results� we can �nd that most of crease � roof � edges were

detected correctly�


� Conclusion and discussions

In this paper� we have proposed a new edge detection technique based on detecting

normal changes� We have found that by detecting normal changes� both step edges and

roof edges can be easily identi�ed� Therefore� the new technique has been proven a more

promising method than other methods that based their detection criterion on depth or

curvature changes� The whole detection procedure is divided into two stages� In the

�rst stage� the normal of every point is decided� Since these data points are discrete� we

have proposed to use three di�erent approximation techniques to approximate the original

surfaces� Based on the approximated continuous surfaces� the normals of all points on the

surfaces can be computed� Then� we have applied the dyadic wavelet transforms to calculate

the normal change value of every point on the surfaces� Finally� the edge points can be

determined by locating those local extrema whose normal change values exceed a preset

threshold� Experimental results using both synthetic and real images have demonstrated

that the proposed method is indeed superb in detecting both step and roof � or crease �

edges in a range image�
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Fig� ��� Detected edge points at di�erent scales from real images � �opticalStand�

	�



(b) Edge points at scale 2 (a) Original range image

(d) Edge points at scale 2(c) Edge points at scale 2

1

32

Fig� ��� Detected edge points at di�erent scales from real images � �taperoll��

	�



(a) Original range image (b) Edge points at scale 2

(d) Edge points at scale 2(c) Edge points at scale 2

1

32

Fig� ��� Detected edge points at di�erent scales from real images � �taperoll��

	�



(b)Edge points at scale 2(a) Original range image

(c) Edge points at scale 2

1

3(d) Edge points at scale 22
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