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Abstract

In this paper, we study properties for the structure of an undirected graph that is
not 4-vertex-connected. We also study the evolution of this structure when an edge is
added to optimally increase the vertex-connectivity of the underlying graph. Several
properties reported here can be extended to the case of a graph that is not k-vertex-
connected, for an arbitrary k.

Using properties obtained here, we solve the problem of finding a smallest set of
edges whose addition 4-vertex-connects an undirected graph. This is a fundamental
problem in graph theory and has applications in network reliability and in statistical
data security. We give an O(n - logn + m)-time algorithm for finding a set of edges
with the smallest cardinality whose addition 4-vertex-connects an undirected graph,
where n and m are the number of vertices and edges in the input graph, respectively.
This is the first polynomial time algorithm for this problem when the input graph is
not 3-vertex-connected. We also show a formula to compute this smallest number in
O(n - a(n,n) + m) time, where « is the inverse of the Ackermann function. This is
also the first polynomial time algorithm for computing this number when the input
graph is not 3-vertex-connected. Our algorithm can also be used to find a smallest
k-vertex-connectivity augmentation, for any £ < 3.



1 Introduction

In studying the vertex-connectivity of an undirected graph, it is desirable to know the set
of separating sets and the set of subsets of vertices that have higher connectivity than the
original graph. It is also desirable to know the relations between the two sets. A clear,
compact, and systematic description of the above information is the structure of the graph
with respect to its vertex-connectivity. Knowing the structure of a graph can lead to the
solution of important graph-theoretical problems such as the augmentation problem that is
studied here (see the survey chapter in [Hsu93]) and dynamic graph algorithms [LP91].

The structure of an undirected graph that is not biconnected (i.e., 2-vertex-connected)
is well-known [Har69] and is represented as a 2-block graph. The structure of a biconnected
graph that is not triconnected (i.e., 3-vertex-connected) is also well-known and is represented
as a 3-block graph [HT73, Tut66]. The 3-block graph is also extended for a non-biconnected
graph [DBT90, HR91]. Recently, the structure of a graph that is not four-connected (i.e., 4-
vertex-connected) is studied in [Hsu92, KR91, KTDBC91] with the emphasis on triconnected
graphs. Several properties of a (k—1)-vertex-connected graph that is not k-vertex-connected
are also studied in [CBKT93, Mat72, Mat78]. In this paper, we study the structure of an
undirected graph that is not four-connected detailing on the parts we need to solve the small-
est four-connectivity augmentation problem. We also study the evolution of this structure
when an edge is added to optimally increase the vertex-connectivity of the underlying graph.
Several properties given here can be extended to the case of a graph that is not k-vertex-
connected, for an arbitrary k. Though these studies, we solve the smallest augmentation
problem for making an undirected graph four-connected.

Algorithmic Results ‘

The problem of augmenting a graph to reach a given connectivity requirement by adding
edges has important applications in network reliability [FC70, JG86, SWK69] and in statis-
tical database security [Cox75, Gus89, KG93]. One version of the augmentation problem is
to satisty the given requirement by adding as few edges as possible. We refer to this problem
as the smallest augmentation problem.

In solving the smallest vertex-connectivity augmentation problem, a framework of find-
ing a smallest augmentation for the case of increasing the vertex-connectivity by one is first
reported in [ET76] for the case of reaching biconnectivity. This framework has been extended
for reaching triconnectivity [HR91, Jor93b], and for four-connectivity [Hsu92]. However, it is
difficult to see a general framework for the case of increasing the vertex-connectivity by more
than one from the results in [HR91, WN93]. In [HR91], a counter example is given to show
that we cannot optimally raise the vertex-connectivity of a graph to three by first optimally
raising the vertex-connectivity to two and then using the special algorithm to increase the



vertex-connectivity by one. (This approach is used to optimally raise the edge-connectivity
of a graph [Fra92, Gab91l, NGM90].) The above counter example can be extended to rule out
the chance of solving our problem (for raising the vertex-connectivity to four) by combining
the result in [HR91] (for raising the vertex-connectivity to three) and the result in [Hsu92]
(for raising the vertex-connectivity from three to four).

Using properties obtained in this paper, we study the smallest four-connectivity aug-
mentation problem. We are unaware of any polynomial time algorithm for this problem
when the input graph is not triconnected. In this paper, we give an O(n - logn + m)-time
algorithm to solve this problem, where n and m are the number of vertices and edges in
the input graph, respectively. We also show a formula to compute this smallest number in
O(n - a(n,n) +m) time, where « is the inverse of the Ackermann function. This is the first
polynomial time algorithm to compute this number exactly. Our algorithm can also be used
to find a smallest k-vertex-connectivity augmentation, for any k& < 3.

In developing our algorithm for increasing the vertex-connectivity of a (possibly) dis-
connected graph to four, we establish theorems that might be useful in answering questions
arising from solving the more difficult problem of raising the vertex-connectivity by an ar-
bitrary value. Let A, , be an algorithm that optimally raises the vertex-connectivity of an
z-vertex-connected graph to y. We found although that we cannot derive Ay 4 by sequen-
tially first applying Ags and then applying As4, we can use the information available in
computing Ay s and As 4 together with additional information we found to derive Ag 4. We
also show that the same approach can be used to construct Ay s from Ay and A 5.

The algorithmic notation used is pseudo-Pascal and is similar to the notation of Tarjan
[Tar83] and Ramachandran [Ram93]. We enclose comments between ‘{*” and ‘x}’.

The organization of this paper is as follows. In Section 2, we survey related work. In
Section 3, we give definitions used in this paper. We then describe properties of blocks in
Section 4, properties of separating sets in Section 5, and properties of wheels in Section 3.3.
We give methods for maintaining and updating blocks, separating sets, and wheels when an
edge is added during the process of finding a smallest augmentation. In Section 8, we give
our algorithms for computing the smallest four-connectivity augmentation number and for
finding such a smallest four-connectivity augmentation. Finally, we give concluding remarks
in Section 9.

2 Related Work

We give a brief summary of related work in this section. More details can be found in the
survey chapter in [Hsu93].



2.1 Vertex-Connectivity Augmentation

The following results are known for solving the smallest augmentation problem on an undi-
rected graph to satisfy a given vertex-connectivity requirement.

Eswaran and Tarjan [ET76] (and Plesnik [Ple76], independently) gave a lower bound
for the smallest number of edges needed to biconnect an undirected graph and proved that
the lower bound can always be achieved. Rosenthal and Goldner [RGT77] developed a linear-
time sequential algorithm for finding a smallest biconnectivity augmentation; however, the
algorithm in [RGT77] contains an error. Hsu and Ramachandran [HR93] gave a corrected
linear-time sequential algorithm. An O(log® n)-time parallel algorithm on an EREW PRAM
using a linear number of processors for this problem was also given in Hsu and Ramachandran

[HR93].

Ferndndez-Baca and Williams [FBW89] considered the smallest augmentation problem
for reaching biconnectivity on hierarchically defined graphs. This version of the augmentation
problem has applications in VLSI circuit design. They obtained a polynomial time algorithm
for the above problem.

Watanabe and Nakamura [WN93] gave an O(n-(n+m)?)-time sequential algorithm for
finding a smallest augmentation to triconnect a graph with n vertices and m edges. Hsu and
Ramachandran [HR91] gave a linear-time algorithm for this problem. (Independently, Jordan
[Jor93b] gave a different linear-time algorithm for the special case of optimally triconnecting
a biconnected graph.) Hsu [Hsu92] also gave an almost linear-time algorithm for four-
connecting a triconnected graph by adding as few edges as possible.

There is no polynomial time algorithm known for finding a smallest augmentation to
k-vertex-connect an undirected graph, for £ > 4. Although no polynomial time solution is
known for this problem, Jorddn [Jor93b] gave an approximation algorithm for undirected
graphs that uses no more than k — 3 edges to k-vertex-connect a (k — 1)-vertex-connected
graph. There are also results known for augmenting planar graphs and outerplanar graphs

[Kan93b)].

The above results are for augmenting undirected graphs. For directed graph augmenta-
tion, Masuzawa, Hagihara, and Tokura [MHT87] studied this problem when the input graph
is a directed oriented tree. Their algorithm runs in O(X - n) time where A is the vertex-
connectivity of the resulting graph. Jordan [Jor93a] gave a polynomial time approximation
algorithm that uses no more than k extra edges for augmenting a (k — 1)-vertex-connected
directed graph to achieve k-vertex-connectivity. Very recently, Frank and Jordan [FJ93] gave
a polynomial time algorithm to solve the smallest vertex-connectivity augmentation problem
on directed graphs exactly. Their algorithm increases the vertex-connectivity of a directed
graph by any given 6 optimally.



2.2 Edge-Connectivity Augmentations

For the problem of finding a smallest augmentation for a graph to reach a given edge-
connectivity, several polynomial time algorithms and efficient parallel algorithms on outer-
planar graphs, hierarchically defined graphs, undirected graphs, directed graphs and mixed
graphs are known. These results can be found in [Ben94, CS89, ET76, FBW89, Fra92, Gab9l,
Gus87, Hsu93, KU86, Kan93b, NGM90, Sor88, TW94, UKW88, Wat87, WN87, WY93].

2.3 Augmenting a Weighted Graph

Another version of the problem is to augment a graph, with a weight assigned to each edge,
to meet a connectivity requirement using a set of edges with a minimum total cost. The
decision version of several related problems have been proved to be NP-hard. These results

can be found in [ET76, Fra92, FJ81, KT92, WHN90, WN93|.

3 Definitions

We use the following notations on graphs. In this paper, G is an undirected graph with
the set of vertices V' and the set of edges E and is also denoted as GG = (V, E). The graph
G is simple, i.e., one without multiple edges between a pair of vertices in ¢ and without
self-loops. If v and v are two vertices in V, then (u,v) represents an edge between u and
v. Given a connected component H in GG, Vi is the set of vertices in H. Let U be a set of
vertices in G. The graph G' — U is the induced subgraph of G on V \ U. Let £’ be a subset
of edges in K. The graph G — (E' U U) is the resulting graph obtained from G — U after
removing edges in E’. Let E” be a set of edges such that the two endpoints of each edge are
in V. The graph GGU E” is the graph with the set of vertices V' and the set of edges £ U E”.

We then give definitions used in this paper.

3.1 Vertex-Connectivity

A graph is disconnect if there is no path between two distinct vertices. The graph G with
at least k + 1 vertices is k-vertex-connected, k > 2, it and only if G is a complete graph
with k£ 41 vertices or the removal of any set of vertices with cardinality less than k& does not
disconnect GG [Bol79]. The vertez-connectivity of G is k if G is k-vertex-connected, but not
(k 4 1)-vertex-connected.



Figure 1: Illustrating separating sets in a graph. Vertices 1, 2, and 4 are cutpoints, while
vertex 8 is not. The set {2, 3} is a separating pair, while {1, 2} is not. The set {2, 3, 4} is
a separating triplet, while {1, 2, 3} is not.

Another characterization of k-vertex-connected graphs is due to Menger [Eve79, Men27].
Given a path! P, the internal vertices of P are vertices in P that are not its two endpoints.
Two paths P, and P, are internally vertex-disjoint is there is no vertex that is both an in-
ternal vertex of Py and P,. A set of paths W are internally vertex-disjoint if either |W| =1
or every two distinct paths in W are internally vertex-disjoint. Two vertices are k-vertez-
connected, if there are at least k£ internally vertex-disjoint paths between them. A set of
vertices U is k-vertez-connected, if either (1) |U| = 1 and the degree of the vertex in U is
at least k or (2) |[U| > 1 and every two distinct vertices are k-vertex-connected. A graph
G = (V,FE) is k-vertex-connected, k > 2, if (¢ contains more than k vertices and V is

k-vertex-connected. The above two definitions for k-vertex-connectivity are equivalent.

3.2 Separating Set

Given a subset of vertices S in (4, S separates two vertices u and v in G (or separates u
from v) if u g€ S, v &€ S, and u and v are connected in G, but are disconnected in G — S.
Let coOM((G) be the number of connected components in G. A set of vertices § in G is a
separating set if there are two distinct vertices u € S and v € S in (¢ such that (1) there are
|S| internally vertex-disjoint paths between every two distinct vertices in SU {u, v}, and (2)
u and v are separated in GG — S.

It the cardinality of § is k, then § is a separating k-set. For the case of £ = 1, the
vertex in & is a cutpoint. It k = 2, it is a separating pair. If k = 3, it is a separating
triplet. An example is illustrated in Figure 1. If the vertex-connectivity of G is k, then the
cardinality of every separating set in (i is at least k. Note also that the vertex-connectivity
of a complete graph with £+ 1 vertices is k, but this graph contains no separating set. If the

'In this paper, any path is simple, i.e., one without passing a vertex twice, unless stated otherwise.



vertex-connectivity of G is k, G might contain separating sets with cardinality more than
k. Tt is also possible that a separating set might properly contain a separating set. A set of
separating sets with the same cardinality can have non-trivial intersections. This structure
is a wheel and is elaborated in Section 3.3.

The identification of all separating sets with cardinality less than k is crucial in aug-
menting a graph to reach k-vertex-connectivity, since a k-vertex-connected graph contains
no such separating set.

Regular Separating Set

Two separating (-sets S; and Sy are neighbors in GG if (1) the number of (-components
in G — & is equal to the number of (-components in G — S,, and (2) S; separates two
(-vertex-connected vertices u and v if and only if S, separates u and v.

An (-hybrid-set for G is H = {w; | 1 <1 < {}, where each w; is either an edge or
a vertex. A realization for an (-hybrid-set H is {r; | ¢« < {} where r; = w;, 1 < ¢ < {,if
w; 1s a vertex and r; is an endpoint of w; if w; is an edge. An (-hybrid-set is a separating
(-hybrid-set if its every realization is a separating (-set and every two distinct realizations
are neighbors. Given a separating {-hybrid-set H with at least one edge in H, we can find
exactly two realizations &7 and S; with &1 N S, equals to the set of vertices in H. Any
realization of H other than &7 and S, is an irregular separating (-set. The two separating
(-sets §; and S, are regular.

3.3 Wheel

A set of at least three separating (-sets, { > 2, with a possible common intersection is a wheel
[CBKT93]. A wheel can be represented by the set of vertices CU{Wy, Wy, ..., W,_1} which
satisfies the following conditions: (1) ¢ > 2, (2) |Wi| = |W;|, (3) Ve # 5, CUW, U W, is a
separating (-set unless in the case that j = ((¢41) mod g¢), (4) each vertex in C is adjacent
to a vertex in each of the connected components created by removing any separating (-set in
the wheel, and (5) Vj # (¢ + 1) mod ¢, CUW,; U W, is a degree-2 separating (-set. The set
of vertices C is the center of the wheel. Each set of vertices W; 1s a side of the wheel. For
more details, see [CBKT93, Kan93a]. Each separating set of the form CUW, UW;, ¢ # 7, is

a separating set represented by the given wheel.

The separating sets in a wheel can also be characterized as follows. Two separating
sets &1 and Sy are crossing each other it Sy separates two vertices in Sy and vice versa.
We define a separating set C U W; U W, in a wheel is a crossing separating set if ¢ # j and
J# (i+1) mod ¢. Every two distinct crossing separating sets in a wheel are crossing each
other. It is worthwhile noting that there is no edge between a vertex in W; and a vertex in



Wity # (i +1) mod ¢. The separating degree of any crossing separating set in a wheel is
two. We define the unit size of the wheel to be (. For { = 2, a wheel is also called a polygon
[Tut66]. Using a wheel, a total of O(h?) separating sets can be represented in O(h) space.

3.4 Block

Given a proper subset of vertices B in GG = (V| E), the border of B, BORDER(B, (), is
{u | v € B,u is adjacent to a vertex in V' \ B}. The border of V in G is . The neighbor of B
in G, NEIGHBOR(B, (&), is {u | u € V'\ B, u is adjacent to a vertex in B}. The neighbor of V'
in Gis 0. If G is k-vertex-connected and U is subset of vertices of V', then |[BORDER(U, G)| >
min{k, ||} and |[NEIGHBOR(U, )| > min{k, |V| — [U]}.

An (-block in (G i1s a maximal set of vertices B such that there are at least ¢ internally
vertex-disjoint paths between every two distinct vertices in 5. By definition, a vertex with
degree ( in (G is an z-block, for all x > ¢. The set of vertices in a graph is a 0-block. The
set of vertices in a connected component is a 1-block.

A subset of vertices B in G = (V, E) is a special block for reaching k-vertex-connectivity
if (1) B C S, where S is a separating set with |S| < k, (2) [NEIGHBOR(B, )| < k, (3) there
is no ) C B with [NEIGHBOR((), )| < k, and (4) NEIGHBOR(B,G)U B # V.

The following claim and corollary state properties related to the border of a special

block.

Claim 3.1 For any subset of vertices H in a separating set, BORDER(H,G) = H.

Proof:Let H C S, where S is a separating set. if BORDER(H, (i) # H, then these is a vertex
u € H such that v € BORDER(H, ). Thus S\ {u} separates every two vertices that can
be separated by §. Hence there are at most |S| — 1 internally vertex-disjoint paths between
every two vertices separated by §. Thus § is not a separating set. O

Corollary 3.2 [fB is a special block in G for reaching k-vertex-connectivity, BORDER(B, () =
B.

Proof: Since a special block is a subset of a separating set, this corollary follows from
Claim 3.1. O

The structure and whereabouts of k-blocks in ¢ are crucial in augmenting G to reach k-
vertex-connectivity using the smallest number of edges, since adding any edge between a pair
of vertices in a k-block is redundant. Note that the set of all vertices in a k-vertex-connected

graph is a k-block.



3.5 Block Graph

Given a graph GG = (V, E'), we construct its 4-block graph, 4-BLK(() as follows. We first find
the 2-block graph, which is a forest, for G [RGT77]. The set of vertices in the 2-block graph
are the set of cut edges, cutpoints and 2-blocks in (G. There is an edge between a 2-block B,
and a cutpoint ¢, if ¢ € By. There is an edge between a cut edge e and a cutpoint ¢ if ¢ is
an endpoint of e. If |By| > 1, then the induced subgraph of G on By, Gg,, is biconnected.
For each 2-block By, we find its 3-block tree on Gz, [HT73] (see also [HRI1]). In the 3-block
graph, a separating pair is either represented as a vertex or is represented as two vertices
in a polygon. Given a separating hybrid-pair H in the 3-block graph, if H consists of two
edges, then H is represented in a polygon. Each 3-block is also represented as a vertex. The

details of a 3-block tree can be found in [HR91].

Given a nontrivial 3-block, the set of vertices in a Tutte component [Tut66] is tri-
connected. A Tutte component for a 3-block B; can be obtained by adding a wirtual edge
between the two vertices in each separating pair Sy, Sy € B3, to Gz, — the induced subgraph
of G on Bj3. For each non-trivial 3-block, we find the 4-block tree for its Tutte component
[Hsu92]. In the 4-block tree for Bs, each separating triplet in Bs is represented (1) as a
vertex, (2) as three vertices in a wheel, or (3) as the neighbor of a special block. Given a
separating hybrid-triplet H, if H consists of more than one edge, then H is either represented
in a wheel or is represented by its two regular realizations.

The collection and relation of the above 2-block graph, the 3-block forest, and the
4-block forest is 4-BLK(G).

3.6 Augmentation Number

Given (G, the smallest number of edges needed to add to GG such that the resulting graph
is k-vertex-connected is the smallest k-vertexz-connectivity augmentation number AUGE(G).
The set of edges added is a smallest k-vertex-connectivity augmentation. It is well-known
that AUG{(G)) = coM(G) — 1. Simple formulas for computing AUG,(G) and AUGs(() are
given in [HR91, RG77]. For the case of G is triconnected, a simple formula for computing
AUG4(() is given in [Hsu92]. In this paper, we will give a formula to compute AUG4(() for
an arbitrary undirected graph. We will also give an efficient algorithm for finding a smallest
four-connectivity augmentation.



4 Properties of Blocks

In this section, we examine properties of blocks. An (-block B and a separating set & are
adjacent if (1) |S] < {, (2) every vertex u € S, it is either the case that v € B or the case
that v is adjacent to a vertex in B, and (3) there is no separating set &’ with |S'| < {, S # &',
and &’ separates a vertex in § \ S’ and a vertex in B.

Given a subset of vertices B in a graph, |B| > 1, k is an order of B if there are k
internally vertex-disjoint paths between every two vertices in B. The largest order of B is
the largest integer £ such that £ is an order of B. Two subsets of vertices By and B are of
the same order if there is an integer w such that w is an order of both By and B;.

4.1 Degree and Demand of a Block

We first give definitions that are useful in computing the minimum number of edges needed
to add to each (-block, for all { < k, such that the resulting graph contains exactly one
{-block, for each ¢ < k, i.e., the resulting graph is k-vertex-connected.

Definition 4.1 Let B be a subset of vertices in G = (V, E) and let (g be the largest order
of B if |B| > 1. Then VDEG(B,() = NEIGHBOR(B,G) if |B| = 1 and VDEG(B,G) =
{u | wisin a separating set that is adjacent to B} if |B| > 1. The degree of B in G is
DEGREE(B, ) = |[VDEG(B, (G)|.

Definition 4.2 Let B be a subset of vertices in G = (V, E) where |V| > k and let (g be the
largest order of B if |B| > 1. The demand of B such that G can reach k-vertez-connectivity
is

max{k — DEGREE(B, (),0} if |Bl=1 orB

is a special block,
> wr DEMAND,(R, i) if 1 < |B| <k and

B is a separating set,
0 if B=V and

DEMAND,(B, () = B is a k-block,

max{k — DEGREE(B, ) 4+ Yyg DEMAND,(Q, G), if B#V and
0} B s a k-block,
max{k — DEGREE(B, () + Yyg DEMAND,(Q, (),

S v DEMAND(H, G) 4+ Y yr DEMAND(T, G) } otherwise,

10



Figure 2: Ilustrating the degree and the demand of a subset of vertices in a graph. In G,

DEGREE(A, (¢) = 1 and DEMAND4(A, () = 4; DEGREE(B, () = 4 and DEMANDy(B, ) = 2;
DEGREE(C, () = 2 and DEMAND4(C, G) = 3; DEGREE(D;, G) = 3 and DEMANDy(D;, () =
1, 1 < < 5; DEGREE(H,(G) = 3 and DEMAND4(H,() = 1; DEGREE(/,() = 2 and
DEMAND4(/, () = 2.

where R is a special block in B, () ts a spectal block in B that is contained in a separating
r-set, r < lg, H is an ({g + 1)-block in B that is not contained in separating (g-sets, and T
is a special block in B that is not contained in any ({g + 1)-block in B.

If G is k-vertex-connected, then DEMANDy(B,G) = 0. The demand of G for reaching k-
vertex-connectivity is DEMANDg(V, (). Recall that if B is a special block for reaching k-
vertex-connectivity, then BORDER(B, ) = B (Corollary 3.2). Intuitively, given a subset of
vertices B with VDEG(B, G)UB C V, VDEG(B, (i) separates a vertex in B\ VDEG(B, () from
a vertex in V' \ (BUVDEG(B, (¢)). The demand of B is the minimum number of edges needed
to add to B such that the degree of B is at least k£ in the resulting graph, i.e., the demand
of B becomes zero.

By the above definition, DEMAND;(V, ) > DEMAND(S, G)+DEMAND;_|5|(V \ S, G = S)
for any separating set § with cardinality less than £. An example for the degree and the
demand of a subset of vertices in a graph is illustrated in Figure 2.

Let G = (V, E) be a (k—1)-vertex-connected graph. To increase the vertex-connectivity
of G by one, DEMAND(V, (&) equals to the number of k-blocks that are leaves in its k-block
tree, for every k < 4 [ET76, HR91, HR93, Hsu92]. For & < 3 and G is not (k — 1)-vertex-
connected, our definition is equivalent to similar definitions given in [ET76, HR91, WN93].

11



4.2 Demanding Vertices in a Block

We now give a definition to identify vertices in an {-block B, to whom adding new edges
increases the degree of By (i.e., decreases the demand of B,).

Definition 4.3 Let B be a subset of vertices in G = (V, F) with DEMANDy(B,G) > 0. Let u
be a vertex in B. If there is a vertex v such that DEMAND(B, ) > DEMAND,(B, G U {(u,v)}),
then u is a demanding vertex in B for reaching k-vertex-connectivity.

Note that if B is a special block in G for reaching k-vertex-connectivity, then by Corollary 3.2
BORDER(B, () = B. By the definition of a special block, NEIGHBOR(B,G)U B C V. Thus
every vertex in B is a demanding vertex in B for making G k-vertex-connected.

We describe in the following claims, the intersection and inclusive relations of various
blocks. We first describe the intersection of two (-blocks, ¢ < 4.

Claim 4.4 Let By and By be two (-blocks, { < 4. Then By N By is a subset of a separating
set that is adjacent to both By and By and whose cardinality is less than (. Furthermore,
B1N By is in every separating set which separates a vertex in By \ By and a vertex in By \ By.

Proof: This claim follows from the structural descriptions of all 2-blocks [Har69], 3-blocks
[HT73, Tut66], and 4-blocks [Hsu92, KR91, KTDBC91]. O

Claim 4.5 Let By and By be two (-blocks, { < 4. Let T = By N By. For reaching k-vertex-
connectivity, k < 4, there is no special block in I.

Proof: It £ < 1, then Z = . Thus we assume that ¢ > 1. We also know that if { = 4,
then there are at least four internally vertex-disjoint paths between every two vertices in B;,
i € {1,2}. By Menger’s theorem, the degree of any subset of vertices in Z C B; is at least
four. Thus there is no special block in Z. Hence we only have to prove the claim when ¢ is
two or three. By Claim 4.4, 7 is part of a separating set with cardinality less than .

Case 1: { = 2. Thus T = {u}, where u is a vertex. Because By and By are 2-blocks, © must be
adjacent to at least two vertices in By \ By and to at least two vertices in By \ B;. The degree
of u is at least four. Thus {u} cannot be a special block for reaching k-vertex-connectivity.
Case 2: { = 3. Let H C 7 be a subset of vertices with degree less than four. Then either
INEIGHBOR(H, ') N By| = 1 or |[NEIGHBOR(H,G) N By| = 1. Without loss of generality,
assume that [NEIGHBOR(H, )N By| = 1. Let X = (NEIGHBOR(H,G)NBy)U(Z\ H). Thus
|X| < 2 and X is a separating set which separates a vertex in H and a vertex in By \ H.
This contradicts the fact that By is a 3-block. O

The following claim and corollary lead to a lemma for lower bounding the smallest
augmentation number.

12



Claim 4.6 Let By and By be two distinct {-blocks in G, { < 4. For making G four-connected,
if By € By and By € By, then there is no intersection between the set of demanding vertices
in By and the set of demanding vertices in B;.

Proof: Let T = By N By. If T = ), then the claim is obviously true. Thus we assume that Z
is non-empty. By Claim 4.4, Z C VDEG(B;, ). Thus there is no demanding vertex of B;,
i€ {1,2},in 7. O

Corollary 4.7 Let uy and uzy be two vertices in G = (V, E). Then DEMAND4(V, G U {(uq,uz2)}) >
DEMAND4(V, () — 2.

Proof: By the definition of the demand of ¢ in order to decrease the demand, the degree of
vertices should be increased. Note that by adding the edge (uy,us), the degrees of uy and
uy both increase by one. Let w be an integer that is either one or two.

Case 1: u, is not a demanding vertex for any block (special or non-special) in the graph.
Increasing the degree of u,, does not decreasethe demand.

Case 2: u, 1s a demanding vertex for a special block. By definition of a special block and
Claim 4.5, w,, cannot be in any other special block. Also by the way the demand of the
graph is computed, the demand of the graph is decreased by at most one by increasing the
degree of u,,.

Case 3: u, 1s a demanding vertex for an (-block. By Claim 4.6, u,, cannot be a demanding
vertex for any other (-block. Thus the demand of the graph is decreased by at most one by
increasing the degree of u,,.

Note that by adding an edge, several blocks of the same order z, 1 < x < 4, that are
in the same (x — 1)-block B can be merged into an z-block. However, the demand of B can
be decreased by at most two according to the way the demand is computed and the above
discussion. The demands of those blocks not containing an endpoint of the added edge or
that are not merged stay the same. For reaching four-connectivity, the demand of the graph
is decreased by at most two by adding the edge (uy, uz). O

DEMANDy(V, ()

Lemma 4.8 We need to add at least >

raise the vertez-connectivity of G to four.

Proof: Follows from Corollary 4.7. O

-‘ edges to G = (V, E) in order to

5 Properties of Separating Sets

In this section, we examine properties of separating sets related to the smallest augmentation
of a graph for reaching k-vertex-connectivity.
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5.1 Fundamental Properties

‘Classiﬁcation of Components‘

A connected component H is created by removing a separating set § from G if H is a
connected component in G — 8, but H is properly contained in a connected component H’ of
G and H’ contains a vertex that is not in S U V. We first describe an important definition
to classify components created by removing separating sets.

Definition 5.1 Given a set of separating sets {Sy,...,S,}, an x-component H, is a con-
nected component in G — U, S;, with the property that H is also a connected component
in G—S&', where (1) 8" C S;, for some 1 < j < w, (2) H is created by removing S’, (3)
x = |8, and (4) x is the smallest integer satisfying the above conditions.

For example, in G — {1,2,3} in Figure 1, Gy = ({5}, 0) is a 1-component, G5 = ({6},0) is a
2-component, and Gz = ({7},0) is a 3-component. A connected component not containing
any vertex in the set of removed separating sets is a 0-component. Recall from the definition
of separating sets, for every separating (-set S in (&, there are at least two (-components in

G-—S.

Given a set of separating sets S = {S1,...,S,}, let Vo = U S,. The connection of a
connected component H in GG — Vg is the number of vertices in Vs that are adjacent to (in
() a vertex in H. Thus the connection of an z-component is .

‘ Demand and Component ‘

Let H be a y-component created by removing a separating z-set, * > y, § from G =
(V,E). Let U C S where u € U implies that there is a (y + 1)-block B C Vi U S and
u € B. We define ®(H) = U U V. The contribution of H for computing DEMAND(V, () is
DEMAND,(®(H), ). It is also denoted as H contributes DEMANDg(®(H), () in computing
DEMAND,(V, G). Note that DEMAND,(®(H ), G) > DEMAND;_is|(Va, G — S). The following
claims and corollary state the relation between the demand of the graph and each of the
components created by removing a separating set.

Claim 5.2 Let S be a separating (-set in G, { < 3. Let Gy = (Vi, E1) be an (-component in
G'—=S. Then there is an ({+1)-block Byyy where (1) Beyr € (VAUS), and (i) DEGREE(Bpy1, G) <
L.

Proof: We prove this claim is true for any value of ¢ up to three using induction on the
value of |Vi|. If |[V1| = 1, then V; is an (¢ + 1)-block with degree ¢. Thus this claim is true

for any value of ¢ up to three. For induction hypothesis, we assume that this claim is true
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for any (7 with at most s vertices, where s is an integer and s > 1. We now prove that
this claim is true Gy with s 4 1 vertices. If there is an (£ 4+ 1)-block R with Vi C R, then
VDEG(R,G) = §. Thus DEGREE(R, G) = (. Hence the claim is true. Assume that there
are at most ¢ internally vertex-disjoint paths between two vertices in V. Thus we can find
a separating set §', |S’| < £, to separate two vertices in V. If § and &’ are not crossing
each other, then there is an |S§’|-component G} = (V/, F}) in G — &', and V] C Vy. Thus
we can apply the induction hypothesis. Assume that S and S’ are crossing each other. Let
S = &1 U S, where &' separates S; and Sy, and let S € V. Let &' = §§ U S} where S
separates S; and S5, and let S§ C Vi. Then §; U S) and S; U S are separating sets. Since
¢ < 3, either |S;US]| < 3or |S;US]| < 3. Assume without loss of generality, let " = S;US]
and |S”] < 3. Thus there is an |S§”|-component G| = (V/", E]) in G — 8" and V" C Vy.
Thus we may apply the induction hypothesis to prove this claim. Hence the claim holds. O

Claim 5.3 Given a separating set S in G = (V. F), each (-component, { < |S|, in G — 8
contributes at least k — { in computing DEMAND(V, &), k < 4.

Proof: Let H be an (-component in GG — S. Let V7 be the set of vertices in H. Assume that
H is created by removing &’ where &' C S and |S’| = (. By properties of the 4-block graph
and Claim 5.2, there is an ({4 1)-block with degree ( in Vi US’. Thus it contributes at least
k — { in computing DEMAND(V, 7). O

Corollary 5.4 Let S be a set of separating sets in G = (V, E). For making G k-vertex-
connected, k < 4, every connected component in G — Vi with connection { contributes at

least k — ( in computing DEMAND,(V,G) if { < k.
Proof: This is a corollary of Claim 5.3. O

We then state a claim to quantify the number of various components after removing a
set of up to three separating sets with the same cardinality.

Claim 5.5 Let S;, 1 <1 < 3, be separating (-sets, { < 3, in G. Let w;; be the number of
g-components in G —8;, 1 <1 < 3. Gwen any 1 <r <3 and 1 < h <7, in G—-U_ S,
there are (3I_, w;3) — a3 3-components, (wp2 — x9) 2-components not containing the above
3-components, and (wp1 — x1) 1-components not containing the above 2- or 3-components
where 0 v =1 — 1.

Proof: We first prove the claim for the case r = 2. If §; and S, are in the same 3-block, then

there are at least (w3 + wz3 — 1) 3-components.

If they are in the same 2-block, but not in the same 3-block, then there are (w; 3+ w3 3)
3-components. In this case, if, furthermore, S is in a 2-component in G — Sy, then there are
(w12 — 1) 2-components.
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If they are in the same 1-block, but not the same 2-block, then there are (w; 35+ ws3)
3-components. If, furthermore, S is in a 2-component (respectively, 1-component) in G'— &;.
Then there are either (wq 2 — 1) 2-components (respectively, (wy; — 1) 1-components). The
case for r = 3 can be proved using a similar strategy. O

Separating Degree and Dividing Degree‘

Given a subset of vertices S, the separating degree SD(S, () is the number of |S|-components
in G— S if S is a separating set. For convenience, if S is not a separating set, sSD(S,G) = 1.
The dividing degree DD(S, ) is cOM(G — S) — cOM(G) + 1, i.e., the number of connected
components created by removing §. The separating degree of any separating set is at least
two. The dividing degree of a separating set is greater than or equal to its separating degree.
Intuitively, the separating degree of a separating set is the number of connected components
that cannot be separated by removing a proper subset of S. For example, in Figure 1, the
separating degree of the separating triplet {2, 3, 4} is two and its dividing degree is five,
while there are seven connected components in the resulting graph obtained by removing {2,

3,4},

The following claim and corollary are extended from a claim given in [Hsu92] and
describe the properties of the degree of any subset of vertices in a separating set.

Claim 5.6 [Hsu92] Every vertex u in a separating set S is adjacent to (in G) a vertex in
each of the |S|-components in G — S.

Proof: Assume that v is not adjacent to an |S|-component H in G — . Thus H is also a
connected component in GG — (S \ {u}). Then H is not an |S|-component. O

Corollary 5.7 The degree of any subset of vertices in a separating set S is at least equal to
the separating degree of S.

Proof: Follows from Claim 5.6. g

Corollary 5.8 Let §1 and Sy be two distinet separating (-sets. The degree of any subset of
vertices in S; NSy is at least SD(S1, G) + SD(S2, G) — 1.

Proof: This is a corollary of Claim 5.6 and Claim 5.5. O

We now state a claim with regard to the creation of new separating sets when adding
edges. We will show that by adding edges properly, no separating set with undesirable
properties (e.g., with separating degree greater than two) is created.

Claim 5.9 Let x be the vertex-connectivity of G = (V, E). Let u and v be two vertices in V,
and let G' = G U {(u,v)}. (1) Every separating k-set in G’ is also a separating k-set in G,
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i.e., adding an edge creates no new separating k-set. (2) Adding an edge creates only new
separating (-sets, { > r, whose separating degrees are two. (3) If u and v are both not in any
separating (-set, then the separating degree of any separating (-set in GG does not increase by
adding (u,v).

Proof: Note that all separating sets in G and ' must be of cardinality at least .

Part (1): Adding an edge in a graph does not decrease the number of internally vertex-
disjoint paths between every two vertices. If S is a separating x-set in G’, let G be a
connected component in G' — . If both v and v are in G, then § is a separating s-set in
(. The above is also true if both v and v are in §. If v isin GGy and v is in S (or vice versa),
then S is a separating set with cardinality at most x in G. Thus the claim holds.

Part (2): Let S be a separating (-set in G', { > &, but not in G. If sD(S,G’) > 2, then
SD(S,G) > 2. Thus S is also a separating set in G.

Part (3): Without connecting a connected component to a separating set S, the separating
degree of & does not increase. O

‘Components that are not Complicated

A separating set with cardinality less than &—1 is trivial for reaching k-vertex-connectivity if
its dividing degree is two and it contains no special block. A separating set with cardinality
less than & — 1 is non-trivial for reaching k-vertex-connectivity if it is not trivial.

Let H be a connected component in ¢ — S, where § is a separating set. Let R be
the set of separating sets in ®(H) that are not proper super sets of S. Let B be the set
of blocks in ®(H) that are not adjacent to S. The component H is simple for reaching
k-vertex-connectivity if (1) the dividing degree of every separating i-set, ¢« < k — 1, in R, is
two, (2) there is at most one i-block in B with degree less than i for every 1 < ¢ < k—1, and
(3) if there is an i-block B; with degree less than ¢ and a j-block B; with degree less than
J, then B; properly contains B;, (4) if there is a separating (k — 1)-set in R with dividing
degree more than two, then it is in a (k — 2)-block with degree less than k& — 2. If H is not
simple, then H is complicated. Let R' be the set of separating sets in R with cardinality less
than k& — 1 and let R” be the set of separating (k — 1)-sets in R with dividing degree more
than two. A simple component has the property that there are two vertices v and v in ®(H)
such that every separating set in R’ U R” separates u and v.

In the following three claims, let S be a separating (-set in G = (V, E) and let H be
an h-component in G — S. Let R be the set of separating sets in ®(H) with cardinality less
than k& which are not proper super sets of S. Let S’ € R. Let B be the set of blocks in ®(H)
that are not adjacent to §. The proofs of these lemmas can be easily deduced.

Claim 5.10 For making G k-vertex-connected, k < 4, if DEMANDL(®(H),G) =
DEMAND_¢(Viy,G — S), then the followings are true. (1) h = (. (2) H is simple. (3
S’ is trivial if r < k—1. (4) There is no special block in S’ if r =k —1 and DD(S',G) > 2.

~——
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Claim 5.11 For making G k-vertez-connected, k < 4, if DEMANDL(®(H),G) <
DEMAND_¢(Vy,G — S) + 1, then the following are true. (1) H is simple. (2) There is
at most one separating set in R with a special block. (3) DD(S',G) =2 if |S'| < k — 1.

Claim 5.12 Let B' = {Y | Y € B where the degree of Y is less than its smallest order}.
For making G k-vertexz-connected, k < 4, if DEMANDy(P(H),G) < DEMANDg_(Vy, G — S)+
2, then the following are true. (1) There is at most one separating set in R with dividing
degree more than two and cardinality less than k — 1. (2) If there is a separating set in R
with dividing degree more than two and cardinality less than k — 1, then the dividing degree
of all other separating sets in R is two and there is no special block. (3) |B'| < 2 and if
|B'| = 2, then the dividing degree of all other separating sets in R is two and there is no
special block. (4) If there is a separating set in R with dividing degree more than two, then
there is no special block.

A connected component H in G — & with DEMAND,(®(H), ) = DEMANDy_¢(Vy, G — S)+r
is an r-simple component.

5.2 Augmenting within a Separating Set

Let S be a subset of vertices in G = (V, E). Then ax(S,G) is the minimum number of
edges needed to add such that in the resulting graph |[NEIGHBOR(F,G)| > min{k, |V \ F|}
for every F' C S. If S is a separating set with cardinality less than k, then ax(S, ) is the
minimum number of edges to add such that there is no special block in § for making ¢
k-vertex-connected. It is obvious that ay({c}, ) = 0 for any cutpoint ¢, and a5(S,G) < 1
for any separating set § with cardinality at most two.

Claim 5.13 Let S be a separating (-set in G. For making G k-vertex-connected, { < k, the
followings are true. (1) 2-ar(S,H) > DEMANDL(S,G) > ar(S,G), k < 4. (2) au(S,G) < 3.
(3) If ¢ =1, then ay(S,G) <2, ay(S,G) = 2 implies SD(S,G) = 2, and ay(S,G) = 1 implies
SD(S,G) < 3. (4) If { = 2, then ay(S,G) < 3, ay(S,G) > 0 implies SD(S,G) < 3, and
as(S,G) > 1 implies SD(S,G) = 2.

Proof: Part (1) is trivial since adding an edge to a special block reduces its demand by at
most 1. There are two endpoints of an edge, thus this part follows. Part (2) is true for { = 3
[Hsu92]. We prove parts (3) and (4). For the case of { = 1, let S = {u}. The degree of u
is at least two (by the fact that the separating degree of any separating set is at least two
and Corollary 5.7). Since ax({u},G) = k — DEGREE({u}, (), the claim is true. For the case
of £ =2, let § = {u,v}. The degrees of u and v are both at least two. If u is adjacent
to v, then the degrees of u and v are at least three. Thus a4(S,G) < 2 and ay(S,G) = 2
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if sSD(S,G) = 2. If w and v are not adjacent, then a4(S,G) < 3, and a4(S,G) = 3 implies
SD(S, ) = 2. Note that a4(S,G) =1 could imply either SD(S,G) = 2 or SD(S,G) = 3. It
is also true that a4(S,G) = 2 implies sSD(S, G) = 2. O

5.3 Separation Constraint

Let S be a subset of vertices in G = (V| E). If |S| < k, the separation constraint of S for
making G k-vertex-connected is SCx(S,G) = ax(S,G) + AUG,_5/(G — S). The separation
constraint for S is the number of edges needed to add to (¢ such that in the resulting graph (1)
there is no separating set S’ C S, (2) there is no separating set S’ with cardinality less than k
and S C &', and (3) for any /' C S, DEGREE(F, () > k unless FUNEIGHBOR(F, () = V. The
separation constraint of a graph for reaching k-vertex-connectivity is the largest separation
constraint among all separating sets with cardinality less than k.

Intuitively, if a graph is k-vertex-connected, then GG — § is (k — |S])-vertex-connected
for any subset of vertices § with cardinality less than k. There is also no subset of vertices
in § with degree less than k.

Lemma 5.14 (1) We need to add at least SC(S, G) edges to G in order to make G k-vertex-
connected. (2) SCx(S,GU{e}) > sCp(S,G) — 1, where e is an edge not in G.

Proof: Note that if ¢ is k-vertex-connected, then G —§ must be (k — |S|)-vertex-connected.
Thus we must add at least AUG,_|s|(G'— ) edges. It is also true that for all ' C S,
either F' U NEIGHBOR(F, () = V or |[NEIGHBOR(F,G)| > k. Thus we must add at least
ap(S,G) edges. Observing that if ai(S,G) > ax(S,G U {e}), then one of the endpoints of
e must be in §. Thus adding e does not decrease AUG,_|s|(G — S). Observing also that if
AUGL_s|(G' = 8) is decreased by adding an edge ¢/, then both of its endpoints must not be
in §. Thus adding ¢’ does not decrease a;(S, ). This proves the lemma. O

For augmenting a triconnected graph to reach four-connectivity, SC4(S, () = a4(S, G)+
SD(S,G) — 1. This lower bound of the smallest four-connectivity augmentation number
imposed by a separating triplet when the graph is triconnected is also given in [Hsu92].

The following claims state the way to reduce the separation constraint and the demand
of a disconnected graph.

Claim 5.15 FEvery non-special {-block, 0 < { < 4, with degree less than { properly contains
a non-special ({4 1)-block with degree less than {4 1.

Proof: This claim follows from the structure of the 4-block graph. a
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Claim 5.16 [or making a disconnected graph k-vertex-connected, 2 < k < 4, we can add an
edge such that the demand of the graph is reduced by two and at the same time the separating
constraint of the graph is reduced by one.

Proof: Let GG and G5 be two distinct connected components in G. By Claim 5.15, we can find
a k-block B;, for all ¢ € {1,2}, in GG; with degree less than k and B; is properly contained in a
w-block with degree less than w, for all 1 <w < k. Let u, for all ¢ € {1,2}, be a demanding
vertex in B;. Note that u; is not part of any separating set with cardinality less than k. From
the definition of the demand of a graph, DEMAND,(V, G U {(u1,uz2)}) = DEMAND(V,G) — 2.

Let G/ = G'U {(uy,uz2)}. Since coM(G’) = coM((G) — 1, the separation constraint
of any separating (k — 1)-set is reduced by one. Let & be a separating set with cardinal-
ity less than & — 1. By the way the demand is defined, DEMAND;_5|(V \ S,G' = S) =
DEMAND;_5/(V \ S, G — §) —2. Using the above and the fact that coM(G") = com(G) —1,
AUGL_s|(G" = §) = AUG_5)(G — S) — 1. Thus the separation constraint of S is decreased
by one. a

Let G = GG — S and let V' be the set of vertices in G'. It is well-known that (1)
AUG(G") = coM(G") — 1, and (2)

DEMAND;_is)(V', G')

AUGE_s/(G") = max{ 5

ydi_is)-1 — 1}

for all &k —|S| € {2,3} [HR91, HR93, RG77], where dj_|s—1 is the maximum number of

connected components obtained in ' by removing a separating (k — |S| — 1)-set.

Let 7(n, k) be the minimum number of edges needed to augment an empty graph of n
vertices to reach k-vertex-connectivity. It is well-known [Har62] that

n—1 if k=1,

[%w otherwise.

r(n, k) = {

We know that AUG,(G) > r(coM(G),l). Thus we have the following simple corollary for a
lower bound on the value of the separation constraint for a separating set.

Corollary 5.17 Let & be a separating set with cardinality less than k in G. For making
G k-vertex-connected, (1) SCx(S,G) > ap(S,G) + coM(G = S) =1 if |S| = k=1, and (2)

SCu(S, G) > (S, G) + P’“"‘S“CO?(G - 5)1 if S| < k—1.

Proof: Let k' = k—|S| and let ' = G —S. Thus k¥’ > 1. Since AUGR(G") > r(coMm(G"), k'),
this corollary holds. a
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5.4 Critical, Massive, and Balanced

Let S be a separating set with cardinality less than &k in G = (V, E). For making GG k-vertex-

connected, if |S| < k and sci(S,G) > [DEMAN];]“(V’ G)-‘, then § is massive. If |S| < k and

DEMAND(V, )
2

SCr(S,G) =

separating set is balanced. For a balanced graph, it seems that the “most important job”
in augmenting a graph is to make sure that the demand of the graph becomes zero. For an
unbalanced graph, “taking care of” critical and massive separating sets seems to be more
important than “taking care of” the demand of the graph. We now describe properties
of critical and massive separating sets (e.g., their cardinalities and inter-relations) in the

, then § is critical. A graph with no critical and massive

following paragraphs.

Claim 5.18 Let S be a separating set in G = (V,E). Let V! =V \ S and let ¢ = G = S.
DEMAND;_15/(V',G') | .
+ ’V k2|$|( ) ) Zf

For making G k-vertex-connected, k <4, sCx(S,G) = ap(S,G)
|S| < k—1 and S is critical or massive.

Proof: Let dj, be the maximum number of connected components obtained in G’ by removing
a separating h-set. Let |S| = (. Let k' =k — (. Since S is critical or massive,

(1)

ap(S,G) + AUGE(G') > ’VDEMANDk(V, G)w |

2

DEMAND (V' G')
2

Note that AUGK(G') = max{dy_1 — 1, [
[DEMAND;C/(V’, G’)w
2

-‘}, since k' < 3. We will prove

that AUGH(G') = . In computing AUG/(G'), assuming that

DEMAND (V' G’
dk,_1—1>{ w(V, )-‘.

2

Then AUGEL(G') = dpr—1 — 1. Thus we can obtain the following from Equation (1).

(2)

k(8. G) +dy_y — 1> {DEMANE;«(V, G)w |

Let S’ be a separating set in G/ whose removal makes the resulting graph contain dy/_q
connected components. By Corollary 5.4, each connected component in G' — &’ contributes
at least ¢+ 1 in computing DEMAND,(V, (), except the one that is connected to & in GG
of which contributes at least one. There are at least two connected components in G’.
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Since G' = G — § and § is a separating set, by Claim 5.3 each connected component in G’
contributes at least & in computing DEMAND;(V, ). Thus

DEMAND,(V,G) > ap(S,G)+ ({+ 1) - (dp—y — 1) + k= (+ 1. (3)

By substituting Equation (3) into Equation (2), we can obtain a;(S,G) > 4. This is a
contradiction to parts (2), (3), and (4) in Claim 5.13. Thus the claim holds. O

Claim 5.19 For making G = (V, F) k-vertex-connected, k < 4, let S be a separating set
in G with cardinality less than k — 1 and let 6 = 2 - ap(S,G) — DEMANDL(S,G). (1)
If DEMANDL(V \ S,G) > 6 4+ DEMAND;_5|(V \ S, G = 8), then S is not massive. (2) If
DEMAND,(V \'S,G) > 6 + DEMAND,_5(V \ S,G = S), then S is neither critical nor mas-
sive.

Proof: Let G = G — S and let V! = V \'S. Let { = |S| and let ¥ = k — (. By
! !
DEMAND;/(V,G )] Thus 5C4(S, G) =

Claim 5.18, if § is critical or massive, AUGK/(G') = [

ak(S, G
DEMANDg(V', G) > DEMAND.(S,G) + DEMANDg(V',G'). Thus if DEMAND(V',G) > ¢
DEMAND (V. ') = 2a4(S, G)~DEMANDL(S, G DRMAND(V', ), then [PMANDALY:
[DEMAND;C(V, G)w

2

! !
) + [DEMAND;'(V & )-‘ We also know that DEMAND.(V, (') > DEMAND,(S, &)

_I_
_I_
G

)l>

SC(S,G). HDEMAND,(V', () > 6+DEMANDy(V’, ('), then

> SCr(S, G).

O

Claim 5.20 For making a connected graph triconnected, (1) there is no massive separating
1-set, and (2) if there is a critical separating 1-set, then we can add an edge to reduce the
demand of the graph by two and at the same time reduces the separation constraint of the
graph by one.

Proof: Let ¢ be a cutpoint in G = (V, E). Note that as({c},G) < 1. Let V! =V \ {¢} and
let ¢/ = G — {¢}. By Claim 5.18, scs({c}, @) = as({c},G) + [DEMANDz(V,G)] It is

2
obviously true that DEMAND3(V, () > DEMANDs({c}, ) + DEMANDo(V', G').

Part (1): We first prove that {c} cannot be massive.

Case 1: as({c},G) = 1. The degree of ¢ is two and DEMAND3({c}, &) = 1. This also im-

plies DD({c}, ) = 2 and {¢} is a 2-block. If DEMAND,(V', (') is even, then scs({c},G) <

[DEMAND;),(V, G)w
2

. Thus {¢} cannot be massive. Assume that DEMAND(V”, ') is odd. Let

G' = G1 UGy, where 7 and (G5 are the two connected components in G'. Let V;, 7 € {1,2},
be the set of vertices in ;. Thus DEMAND,(V’, ') = 37, DEMAND,(V;, 7). Observe that
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DEMAND(V;,G') > 2, ¢ € {1,2}. If DEMAND(V’, (") is odd, without loss of generality,
assume that DEMANDy(V4, ') is odd. Hence there are at least three 2-blocks with a positive
demand for reaching biconnectivity. This implies DEMAND3(V], ) > DEMANDy(V;, 7). By
Claim 5.19, {¢} cannot be massive.

Case 2: as({c},G) = 0. Thus DEMAND3({c}, ) = 0. This impliesscs({c}, G) < [
By Claim 5.19, {¢} cannot be massive.

DEMAND;(V, G)w
> .

Part (2): We now prove part (2) of the claim. Assume that {c} is critical and there is another
critical or massive separating (-set S, { < 2. We will discuss in the following two cases, the
structure of GG when {c} is critical.

Case 1: as({c},G) = 0. Thus every component in G — {c} is simple and there is no cutpoint
other than ¢ in GG. If DD({c},G) > 2, then scs3({c},G) > 3. If S is also critical, then
S03(S, ) > 3. However, in this case, there is a block with a positive demand whose degree
does not reduce because of the removal of ¢. Thus DEMAND3(V', G') > DEMAND,(V', ().
By Claim 5.19, {¢} cannot be critical. Thus if S is critical, DD({c}, () = 2.

Case 2: as({c},G) = 1. Thus pDD({c},G) = 2. We will prove that the dividing degree of
any cutpoint d # ¢ is two and there is no critical or massive separating pair. Assume that
DD({d}, ) > 2, then there are two 2-blocks with positive demands whose degrees do not
decrease because of the removal of d. Thus DEMANDs(V', ') > DEMAND(V’, ) 4+ 2. By
Claim 5.19, {¢} cannot be critical if DD({d}, &) > 2. Note that scs({c},G) > 3. If there
is a critical or massive separating pair, then its dividing degree is at least four. However,
this implies DEMAND3(V’, ") > DEMAND(V’, &) + 2. Thus there is no critical or massive
separating pair.

From the above discussion on the structure of G, we know that we can find two 3-
blocks By and By with positive demands and B; is properly contained in a 2-block Z; with a
positive demand. Both B; and Z; contain ¢ or are adjacent to ¢. Furthermore, every cutpoint
in (G separates a vertex in By and a vertex in By. By the way the demand is computed, the
demand of the graph is decreased by two by adding an edge between a demanding vertex in
By and a demanding vertex in 5. The separation constraint of every critical separating set
is also decreased by adding such an edge. O

Claim 5.20 states that in augmenting an undirected graph to reach triconnectivity,
the separation constraints of separating 1-sets do not “reveal” any additional information
in computing the smallest triconnectivity augmentation number. Thus one can derive an
algorithm for finding a smallest triconnectivity augmentation without keeping track of sep-
aration constraints of separating 1-sets. This simplified approach is exactly the one used in
[HRO1] to construct a linear-time algorithm. However, it is possible that there is a massive
separating (-set to reach k-vertex-connectivity, for some ¢ < k — 1. In Figure 3, we give a
graph containing a massive separating 1-set for reaching four-connectivity.
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Figure 3: Illustrating a graph containing a massive separating (-set for reaching k-vertex-
connectivity, { < k — 1. Note that sc4({1},G) =5 and DEMAND,(V, ) = 8. Thus {1} is a
massive separating 1-set for reaching four-connectivity. We need to add five more edges to
four-connect G. A smallest four-connectivity augmentation using exactly five edges is shown

in G'.
5.5 Structure of Massive Separating Sets

The following claim is from [ET76, HR91, Hsu92].

Claim 5.21 ([ET76, HR91, Hsu92]) If G is (k — 1)-vertex-connected, k < 4, then the
followings are true for making G k-vertex-connected. (1) There is at most one massive
separating (k—1)-set. (2) There are at most two critical separating (k — 1)-sets. (3) If there
is a massive separating (k — 1)-set, then there is no critical separating (k — 1)-set.

Claim 5.22 Let § be a massive separating triplet for making a connected graph G = (V, F)
four-connected. (1) If ay(S,G) = 0, then sD(S,G) > 4 and there are at least four 3-
components in G — S which each contributes exactly one in computing DEMAND,(V, ). (2)
If ay(S,G) > 0, then G is triconnected, SD(S', () = 2 for every separating triplet 8" # S,
and there is no special block that is not in S. (3) There is no other massive separating triplet.

Proof: Let ¢; be the number of :-components in G — S.

Part (1): SC4(S,G) = Y0, ¢ — 1. Let g3 = ¢4 + ¢4 where ¢ is the number of 3-components
which contributes exactly one in computing DEMAND(V, ) and ¢} is the number of other 3-
components contributing at least two in computing DEMAND,(V, ¢). By Claim 5.3, DEMAND4(V, G) >

Gh+2-q¢5+2-qg2+ 3 gs. Inorder for sy(S,G) > [DEMAN]QM(V? G)-‘7 qh > 4.

Part (2): 8C4(S,G) = a4(S,G)+37_, ¢i—1. Note that 2-a4(S, G) —DEMAND,(S, ) < 2 and
g3 < 3. If 2-a4(S,G)—DEMAND4(S, () = 2, then g3 = 2 and ¢ = 0. Thus DEMAND,(S,G) >
DEMAND4(S,G)+qs+2-¢2+3-¢1. If g2+ ¢1 > 0, G is not triconnected, there is another
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separating triplet with separating degree more than two, or there is a special block not in

S, then DEMAN];4(S’ &) > as(S,G) + Z?:l g — 1.

Part (3): From (2) and Claim 5.21, if a4(S, ) > 0, then there is no other massive separating
triplet. Assume that a4(S,G) = 0. By (1), the separating degree of S is at least four. Thus
by (2), there is no massive separating triplet §" with a4(S’,G) > 0 and &' # S. O

Claim 5.23 Let § be a massive separating (-set, { < 3, for making a connected graph
G = (V. E) four-connected. (1) as(S,G) > 0. (2) There is no other massive separating
h-set, h < 3.

Proof:
Part (1) directly follows from Claim 5.19.(1).

Part (2): Assume that S’ is a massive separating h-set, h <3, and &’ # S.

Case 1: h = 3. From Claim 5.22.(2), a4(S',G) = 0. From Claim 5.22.(1), sp(S,G) > 5.
Since a4(S,G) > 0, it is not possible that S C §’. This implies there is a |S|-component in
G — S whose contributes two less in computing DEMAND,_5)(V \ S, G — §) than in comput-
ing DEMAND4(V, (). By Claim 5.19 and by the fact that 2-a4(S, ) — DEMAND4(S,G) < 2,
S cannot be massive.

Case 2: h < 2. fSNS" # 0, then 2 ay(S,G) — DEMAND4(S,G) = 1 and 2 - a4(S', G) —
DEMANDy(S’, () = 1.

Let © = DEMAND;_5/(V \ S,G —8). By Claim 5.18, sC4(S,G) = au(S,G) + [ﬂ
DEMAND4(V, () > DEMAND4(S, () + . Assume that 2 - a4(S, ) — DEMAND4(S,G) = 1. If
S’ is massive, then it is either the case that there is a special block not containing in S or
there is a |S’|-component in G — S’ who contributes more in computing DEMAND(V, &) than
in computing DEMAND_|s|(V \ &, G — §). Thus DEMAND4(V, G) > DEMAND4(S,G)+z. As

a result, SC4(S,G) < DEMAN];4(V7 G)‘

If 2 a4(S,G) — DEMAND4(S,G) = 2, then DD(S,G) = 2 and SNS" = 0. If S’ is
massive, then it is either the case that x is four and DEMANDy(V, () > DEMAND4(S,G) + «
or DEMAND(V, ) > DEMAND4(S,G) + x4+ 1. Thus S is not massive. We have derived a
contradiction. Hence the claim holds. O

Corollary 5.24 Let GG be a connected graph that is not triconnected. For making G four-
connected, if there is a massive separating set, then we can add an edge to reduce the sepa-
ration constraint of G' by one.

Proof: Let § be the massive separating set. Assume that |S| = 3. By Claim 5.22, there
are at least four 3-components in G — S and there is no other massive separating set. By

25



adding an edge (u,v) such that u and v are in different 3-components in GG — S, we reduce
the dividing degree of S. Thus the separation constraint of the graph is reduced.

Assume that |S| < 3. By Claim 5.23, a4(S,G) > 0 and there is no other massive
separating set. If a4(S,G) = DEMAND4(S, (), we add an edge (u,v) such that u is a
demanding vertex in a special block in §. By doing so, a4(S,G U {(u,v)}) = a4(S,G) — 1.
Thus the separation constraint of the graph is reduced. If a4(S, ) < DEMAND4(S, ), then
we can find two special blocks By and By in & with u; € B; and (uy,us) € G. aq(S,G' U
{(u,v)}) = as(S,G) — 1. Thus the separation constraint of the graph is reduced. O

5.6 Structure of Critical Separating Sets

Claim 5.25 Let S be a separating set with cardinality less than three in G = (V, F). For
making G four-connected, if S is eritical, then we can add an edge to reduce the separation
constraint of every critical separating set by one.

Proof: Let R be the set of separating sets in (¢ whose cardinalities are less than three.

Case 1: a4(S,G) < 1. From Claims 5.10 and 5.11, § is the only separating set in R whose
dividing degree might be greater than two. Let H be a connected component in G — &§.
Furthermore, if there is a critical separating triplet, then its dividing degree is no more than
four and it is the only non-trivial separating triplet in H. Thus the dividing degree of S is
two. It is possible to add an edge (u1,uz2) such that every separating set in R with dividing
degree two is no longer a separating set in the resulting graph. Furthermore, by adding this
edge, the dividing degree of every critical separating triplet is decreased by one. We can also
choose u; to be a demanding vertex in an z-block with a positive demand, for all x < 4.
Case 2: ay4(S,G) = 2. Let Hy,..., H, be connected components in G—&. Since § is critical,
by Claim 5.19, there cannot be any ¢-simple components, ¢ > 2. There is at most one
2-simple component. Furthermore, if there is one, then all other components are 0-simple
components. There are at most two 1-simple components. The cases when there is no 2-
simple component is similar to Case 1. By the structure revealed in Claim 5.12, if there is
a 2-component, we can also use the approach as the one used in Case 1. O

We now state a claim for the structure of a set separating sets. For convenience, a set of
separating sets {57,..., Sk} has a sample set {Q1,...,Q,}if {S1,..., Sk} can be disjointedly
partitioned into r nonempty partitions Wy, ..., W,, where (); C R for all R € W, and Q); is
either a special block or a separating set. In the above, if (); C 5;, then S; is sampled by
Q);. A sample set with the minimum cardinality is a minimum sample set.

Claim 5.26 Let {S1,..., Sk} be a set of separating triplets. If the cardinality of its minimum
sample set is more than two, then we can find three separating triplets in {S1,..., Sk} such
that the intersection of every two of them does not contain a separating set or a special block.
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Proof: We pick a set B; in the samples and S} from {S1,...,S,} whose sample is B;. We
then remove B; from the set of samples and all sets in {57, ..., S} that are sampled by Bj.
Using a strategy that is similar to the above, we pick S} and S3. Then S5, 53, and S5 are
the three sets that we want. O

In the following claim, we will prove that critical separating triplets in four-connecting
a graph are “nicely” structured.

Claim 5.27 For making a connected graph G = (V, E) four-connected, let Y be the set of
eritical separating triplets in G. The size of a minimum sample set for Y is at most two.

Proof: If |Y| < 2, then the size of its minimum sample set is no more than two. Thus we
assume that |)| > 2 and the minimum cardinality of a sample set is more than two. By
Claim 5.26, there are three separating triplets &1, Sz, and S such that S; NS, is neither a
separating set nor a special block, for all 1 < < j < 3.

We now prove that DEMAND4(V, ) must be greater than 2 - SC4(S,, () for some 1 <
w < 3. Thus &, is neither critical nor massive. Let w; ; be the number of j-components in

G —8;, wherel <j<3and1 << 3.
By Corollary 5.17, for any 1 <17 < 3,
3
SC4(SZ', G) = Cl4($2', G) + Zwm‘ — 1.
7=1

Without loss of generality, assume that r; and ry are two integers such that a4(S,,,G) +
Wpy 3 < ag(S;, G) + wiz and wy, 1 + w0 > wig + wie for all 1 < ¢ < 3. By Claim 5.3,
Corollary 5.4 and Claim 5.5,

3 6 if Wy > 2,
DEMAND,(V, G) > D (DEMANDL(S;, G)+w; 3)+2-wy o3 wi1—4 5 ifwy; =1 and wyp > 1;
i=1 4 otherwise.

We know that w;3 > 1 and 2 - a4(S;, ) — DEMAND4(S,;,G) < 2, for all 1 < ¢ < 3. It is
impossible that

SCA(S..C) > ’VDEMANDAI(V, G)-‘ ‘

2

We have derived a contradiction. Thus the claim holds. O

Claim 5.28 For making a connected graph G = (V, E) k-vertex-connected, 1 < k < 4, let
Sy and Sy be two distinct critical separating (k—1)-sets. If Sy and Sy are in the same (-block
{ <k, and § NSy is not an union of separating sets, then G is (-vertex-connected.
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Proof: Let T = §; N Sy. Note that s0(S;, () = as(S;, G) + DD(S;, ) — 1. Let ¢;; be the

number of j-components in G' — &;.

If there is a special block in Z, then every vertex in this special block is not adjacent
to any vertex in §; or 8. By Corollary 5.8, the degree of any subset of vertices in 7 is
three and Z contains no separating set. Hence & = 4, sD(S;,G) = sD(S2,G) = 2, and
2 - a4(S;, ) — DEMAND4(S;,G) < 1. There are ¢1 5 + ga3 — 1 3-components, ¢12 + ¢22 2-
components, and ¢; 1+ ¢21 1-components in G— (S;US;). Assume without loss of generality,
as(S1,G) + q12 < a4(S2, G) + ¢q22. By Claims 5.3, DEMAND,(V, () > DEMAND(S1, () +
(37, SD(Si, G))—142+(q1 2+ G2.2) +3-(q1.1+q2.1). If G is not triconnected, then it is either (1)
12+ @2t @1+ q21 = 0 and DEMAND,(V, () > DEMANDL(S;, G) + (X7, sp(S;, ) —1 (i.e.,
there is a 3-component containing a separating 1-set or a separating 2-set), (2) ¢11+¢2.1 > 0,
(3) g12 > 0 and ¢22 > 0, or (4) there is a special block in Sy \ Z. In all cases, S; is less than
half of the demand of G and thus is not critical. We have reached a contradiction. Hence
the claim is true.

Assume that there is no special block in 7 and ' is not (-vertex-connected. By
Claims 5.3 and 5.5, DEMAND(V, G) > S°7 (DEMANDL(S:, G) + ¢:3) + 2 q12+3 - q11 — L.
Without loss of generality, assume that SC;(S1, ) < SC(S2, ). Hence & is less than half
of the demand of G and thus is not critical. O

5.7 Reducing the Separation Constraint

Claim 5.29 Let uy and uy be two vertices in a connected graph G = (V, E) that are not four-
connected and (uy,usy) ¢ E. Let S be a separating triplet in G. Then sCy(S, G U {(u1,u2)}) =
S04(S,G)—1if (1) sCy(S,G) > 2, u; is a demanding vertex in an x-block, for all4—0 < @ <
4, and S separates uy and uz, (2) uy and uy are demanding vertices in two distinet special
blocks in S, or (3) uy is a demanding vertex in S, uz € S, and a4(S,G) = DEMAND4(S, ().

Proof: This claim holds for conditions (2) and (3), since adding such an edge reduces a4(S, i)
by one. We now prove this claim holds for condition (1). Since ¢ = 3, the number of connected
components in (G'U{(uy,us)})— S is one less than the number of connected components in

G — S for condition (1). Thus this claim holds. O

Lemma 5.30 Let GG be a connected graph that is not triconnected. For making G four-
connected, if there is a critical or massive separating set, we can find two vertices u and v
in G' such that the separation constraint of G is reduced by one by adding the edge (u,v).

Proof: 1f there is a massive separating set, then by Claims 5.22 and 5.23 it is the only
separating set that is massive and there is no critical separating set. We find v and v as
described in the proof of Corollary 5.24.
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If there is a critical separating set with cardinality less than three, we find v and v as
described in the proof of Claim 5.25.

For the rest of the discussion, let ¢ be the vertex-connectivity of (G. Assume that there
is a critical separating triplet. If there is exactly one critical separating triplet S, then we can
find v and v such that they demanding vertices in z-blocks, for all 2 < = < 4. Furthermore,
u and v are separated by & and every separating (-set in (.

It there are more than one critical separating triplet, we find a minimum sample set
K whose cardinality less than three (Claim 5.27) by exhaustively enumeration. Let W; be
an arbitrary set in K. If Wy is a special block, then W; is an union of exactly two critical
separating sets whose separating degrees are two. By checking all possible configurations of
a separating triplet with special blocks, in order to have two critical separating triplets the
followings must be true: (1) Wi is a degree-3 vertex that is a unique special block in each
critical separating triplet, (2) there are exactly two critical separating triplets, and (3) G is
triconnected. Thus we may assume that every set in K is a separating set by itself. Note
that if K contains a separating x-set, * < 3, then by Claim ?? (' is x-vertex-connected.
Thus K cannot contain a separating 1-set and a separating 2-set at the same time. Let r
be the smallest integer such that K contains a separating r-set. We can find « and v such
that (1) they are demanding vertices in a-blocks, for all 2 < <4, (2) they are in r-blocks
with degree r — 1, and (3) they are separated each time a set in K is removed. By adding
the edge (u,v), the separating degree of every critical separating triplet is decreased by one.
Thus the separation constraint of the graph is decreased by one. a

6 Properties of Wheels

In the following lemma, we show that the separation constraint of a crossing separating set
in a wheel cannot be massive.

Claim 6.1 Let W be a wheel whose unit size is less than four. For reaching four-connectivity,
any crossing separating set in W cannot be massive.

Proof: Let W be a wheel in G = (V| F). Let S be a crossing separating set in W and let «;
be the number of i-components in GG — S. By definition, |S| € {2, 3}.

Case 1: |S| = 3. Then x3 = 2. By Corollary 5.17, sC4(S,G) > a4(S,G) + X7, x; — 1. By
Claim 5.3, DEMAND4(V, ') > DEMAND4(S, G)+3-21+2-22+23. In order for S to be massive,
2:5C4(S, () must be greater than DEMAND4(V, )+1. Thus 2-a4(S, () > DEMAND4(S, G)+1.
It is impossible for any crossing separating set to satisfy this condition.

Case 2: |S§| = 2. Then 23 = 2 and 23 = 0. By using an argument that is similar to the one
used in Case 1, we can also derive the fact that 2 - a4(S,G) > DEMAND4(S,G) 4+ 1. Since
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there is no edge between two distinct non-adjacent sides of a polygon, the above inequality
does not hold.
This proves the claim. a

Note that if a separating set is massive, then its separation constraint is a lower bound
for the smallest augmentation number. From this claim, we know that the separation con-
straints of crossing separating sets never “contribute any additional information” in lower
bounding the smallest augmentation number. We will use this fact to speed up our algorithm
for finding a smallest augmentation (Section 8).

We define a wheel component for a wheel W with unit size k as follows. It is either (1)
a connected component in G — W, or (2) a side with degree k£ — 1. Intuitively, by adding an
edge into each wheel component, we eliminate all separating k-sets represented by the wheel.
Note that the wheel component for a wheel with unit size three is also defined in [Hsu92].

We define the wheel constraint of a wheel W = C U {Wy, Wy,...,W,_4} for reaching
k-vertex-connectivity to be [ﬂzﬂlw + ax(C, ) and is denoted as WCx(W, (7), where w(W)
is the number of wheel components in W. The wheel constraint of a wheel is the smallest
number of edges needed to add to eliminate all separating sets represented by the wheel.

Lemma 6.2 Given a wheel W in G, we need to add at least WCi(W, () edges to k-vertex-
connect G. O

Note that a version of Lemma 6.2 is reported in [Hsu92] for the case of & = 4 and G is
triconnected.

Lemma 6.3 Let W be a wheel in G = (V, E) with unit size three. For making G four-
connected, (1) if we,(W, G) > [DEMAN];;;(V, G)-‘, then G is triconnected, and (2) if wey (W, G) =
[DEMAND;;(V, G)w

2

, then G is biconnected and the separating degree of each separating pair

18 two.

Proof: Assume that there are w wheel components in W. Note that each wheel component
contributes at least one in computing DEMANDy(V, ) and DEMANDs({a}, () = as({c}, G).
Thus DEMAND4(V, () > w + as({c}, G) and Wy (W, G) = as({c},G) + [%w The only case
that the wheel constraint is greater than the ceiling of half of the demand of the graph is when
the degree of the vertex ¢ in the center is degree-3, in which case a4({c},G) = 1. If G is not
biconnected, then it is either the case that there is a cutpoint in a wheel component or the case
that there is a 1-component not containing W. Thus DEMAND4(V, G) > w + 2 + as({c}, G).

Thus the wheel constraint is less than [DEMAN]ZM(V’ G)-‘

. If there is a separating pair with
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separating degree more than two, then DEMAND4(V,G) > w 4 3 + as({c}, ). Hence the

DEMANDy(V, G)w -
5 .

wheel constraint is less than [

Note that in [Hsu92], a star wheel is a wheel whose wheel constraint satisfies (1) of
Lemma 6.3. The center of the star wheel is a degree-3 vertex.

7 Updating the Four-Block Graph

After adding the edge (u,v) to &, we show methods to obtain 4-BLK(G U {(u,v)}) by per-
forming local operations on 4-BLK(().

In the discussion, we assume that the two endpoints of the added edge are demanding
vertices of 4-blocks. Note that similar results for maintaining a structure that is analogous
to our 4-block graph are reported in [KTDBC91] under the case of adding an arbitrary edge.

7.1 Merging of Blocks

The following claim identifies the set of h-blocks that will be merged into an h-block after
adding an edge.

Claim 7.1 Let u and v be demanding vertices in two h-blocks, h > 1, of G.. All h-blocks B
that are in the same (h — 1)-block satisfying at least one of the following conditions merge
into an h-block in G U {(u,v)}. (1) B contains u or v. (2) Let w be a vertex in B. There is
no separating (h — 1)-set S such that w is separating from both u and v after removing S.

Proof: Let 'H be the set of all h-blocks that are merged into an h-block as specified in the
claim. Observed that there are A — 1 internally vertex-disjoint paths between every two
vertices wy and w;y in blocks of H before adding the edge (u,v). By adding the edge (u,v),
wy and ws cannot be separated by removing any separating (h — 1)-set. Thus vertices in
h-blocks of H are in the same h-block after adding the edge (u,v). It is also easy to prove
that there is no vertex x such that = is not in any block of H, but x is in the same h-block
with vertices in ‘H after adding the edge (u,v). O

Note that a demanding vertex in an h-block must also be a demanding vertex in some
a-block for all @ < h. Thus if v and v are in 4-blocks, we might have to merge 1-blocks. For
each z-block merged, we have to merge several (x + 1)-blocks within it, for all 1 <2 < 3.

Updating the Demand
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If the input graph is triconnected and we want to raise its vertex-connectivity to four, the
conditions under which the addition of an edge reduces the demand of the graph by two are
discussed in [Hsu92]. We give a claim for the general case of raising the vertex-connectivity
by more than one.

Claim 7.2 Let { be the vertex-connectivity of a connected graph G- = (V, E) and let uq and us
be two vertices in G. Let G' = G U{(uy,uq)}, where (uy,uz) € E. Then DEMAND(V, (") =
DEMAND,(V,G) =2 if (1) 4 > k > (41, (2) ur and uz are in different ({ + 1)-blocks with
degree (, and (3) for any { < & < k, u; is a demanding vertex in an x-block, i € {1,2}.

Proof: Note that G is (-vertex-connected. Thus V is an (-block. By Claim 7.1, adding
the edge (uy,usz) causes several (¢ 4 1)-blocks to be merged into an (¢ 4 1)-block. Let B
the (¢ 4+ 1)-block created by merging the set of (¢ + 1)-blocks {Bi,...,B,}. Given an -
block By, an (x + 1)-block By, and a demanding vertex u in Bz, u is a demanding vertex
of By if By C B,. Without loss of generality, assume that w; € B;, ¢« € {1,2}. Hence
DEMAND(B;, G') = DEMAND(B;,G) — 1. The demand of any (¢ + 1)-block not containing
Uy or uy stays the same.

By Corollary 4.7, DEMAND;(V,G") > DEMAND,(V, () — 2. By the definition used
to calculate the demand of the graph, DEMAND;(V, G') > DEMAND,(V, ) — 2 if and only
if DEMAND,(B,G") > Y7, DEMANDg(B;,G’). This above condition also implies B # V
and k& — DEGREE(B,G) > (X, DEMAND(B;,)) — 2. Since DEGREE(By,G) = ( and
DEGREE(B,, ) = (, >}_{ DEMAND(B,;,G) > 2. (k — (). By the fact that £k — (¢ > 2,

I DEMAND(B;, ) > 4. Since k < 4 and DEGREE(B,G) > (, (3X!_; DEMAND4(B;, ) —
2 > k — DEGREE(B, (). We have derived a contradition. This proves the claim. a

Corollary 7.3 By adding an edge as described in the proof of Lemma 5.30, the demand of
the graph is decreased by two if there is a critical separating set.

Proof: If the edge e is added according to the proof of Claim 5.25, then the two endpoints of
e are in different (-blocks with degree ¢ — 1 and the graph is (¢ — 1)-vertex-connected. Thus
by Claim 7.2 and Claim 5.28, the demand of the graph is decreased by two.

It e is added according to the proof of Claim 5.29, then it is either the case that G
is triconnected or the two endpoints of e satisfy the conditions in Claim 7.2. However, we
know that GG is not triconnected. Thus by Claim 5.28, this corollary is true. O

7.2 Creation of Separating Sets

A separating set can be created by adding an edge (u,v) as described in the following way.
Let S be a separating set in ¢ whose separating degree is two. (Recall that the separating
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Figure 4: Illustrating the creation of a separating (¢ + 1)-set from a separating (-set by
adding an edge. In G, {1, 2, 3} is a separating triplet. After adding the edge (4, 5), {1, 2,
3} is no longer a separating triplet. Two separating 4-sets {1, 2, 3, 4} and {1, 2, 3, 5} are
created in G'.

degree is the number of different |S|-components in G — S.) Then S U {u} and SU {v} are
two separating sets if v and v are in two distinct non-trivial |S|-components. (Note that a
trivial component is a connected component with exactly one vertex.) An example is given
in Figure 4.

Let v and v be two vertices in G = (V, E). A set of separating (-sets A’ in the same
{-block is co-linear with respect to two vertices u and v, if every separating set in X" separates
u and v. Let &1, 89, and S3 be three separating sets that are co-linear with respect to u and
v. Then S, is in-between S; and Ss if there is a vertex w in §; and a vertex w’ in Sz such
that Sy separates w and w'.

Claim 7.4 Given two vertices u and v in G and a set of co-linear separating (-sets M,
|IM| > 2, we can uniquely order separating (-sets in M as Sy,...,Sm, such that S; is
in-between S;_1 and Siyq, for all 2 < i < |M|—1. O

Note that the two separating sets created by adding an edge as specified in the paragraphs
before Claim 7.4 are co-linear. By the introduction of these two co-linear separating sets,
two sets of co-linear separating sets are concatenated into a set of co-linear separating sets.
An example is illustrated in Figure 5.

We now identify the condition under which a set of co-linear separating sets is created
by adding an edge in addition to the case of concatenating two existing sets of co-linear
separating sets.

Claim 7.5 Let uy and vy be two vertices in G = (V, E) such that (uy,v1) € E. Given a set
of co-linear separating (-sets M with respect to uy and vy, then the following two sets are
co-linear in GU{(u1,v1)}. (1) The set of separating ({+ 1)-sets created by adding uq to each
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Figure 5: Ilustrating sets of co-linear separating sets and the concatenating of two sets of
co-linear separating sets by adding an edge. The sets {{1, 2}, {3, 4}} and {{9, 10}, {11,
12}} are both sets of co-linear separating sets with respect to vertices 13 and 14. After
adding the edge (6, 7), {{1, 2}, {3, 4}, {5, 6}, {5, 7}, {9, 10}, {11, 12}} is a set of co-linear

separating set with respect to vertices 13 and 14.

separating (-set in M. (2) The set of separating ({ 4+ 1)-sets created by adding vy to each
separating (-set in M. O

Thus we can create a set of co-linear separating sets with a non-empty common intersection
by adding an edge. Two sets of co-linear separating sets M; and M created from the set
of co-linear separating sets M by adding the edge (u1,v1) as described in Claim 7.5 can be
denoted as M @ (uq, v1). Note that if another edge (ug,v2) is added and M is also co-linear
with respect to uy and vg in G, then (up to) four sets of co-linear separating sets are created
in GU{(uy,v1), (uz,v2)} and can be denoted as M & (uy,v1) & (uz, v2). We will assume that
each pair (u;,v;) is an ordered pair such that M is co-linear with respect to u; and v; in G,
for all ¢ and j. Note that for finding a smallest augmentation, there is no need to maintain
co-linear sets. They can be recognized on the spot when we traverse the block graph from
the block containing one endpoint to the block containing the other endpoint of an added
edge.

7.3 Creation of Wheels

By further adding edges, a set of co-linear separating sets becomes a wheel. Before the
statement of a claim to characterize the above, we give the following definition. Given a
set of co-linear (-separating sets {Si,...,S,}, the center C is a subset of vertices in NI_;S;
such that (1) [NEIGHBOR(C,G) N H| > |C|, and (2) every vertex in C is adjacent to (in the
original graph) a vertex in H, for every H that is a connected component in GG — (S; U S;41),
1 <e<p.

The following claim identifies the conditions under which a new wheel is created by
adding an edge. It can be easily verified.

34



Figure 6: Illustrating the creation of a wheel by adding an edge. The set {{9, 1, 2}, {9, 3,
43,49, 5, 6}} is co-linear with respect to vertices 7 and 8, and its center is {9}. By adding
the edge (7, 8), a wheel with center {9} and sides {1, 2}, {3, 4}, and {5, 6} is created.

Claim 7.6 Let G = (V, E) be a graph with sets of co-linear separating sets M & (uy,v1) &
o B (Up—1,Vp—1) and let u, and v, be two vertices in G. Let M be co-linear with respect to
u; and vy, for all 1 # j, and let M contain h separating sets. Let S; be the ith separating
set in the unique ordering of members in M as illustrated in Claim 7.4 and let C be the
center of M. If the cardinality of every separating set in M is p + |C|, then G U {(up,v,)}
contains a wheel with center C and sides Wq,..., Wyyo where (1) W; = 8;, 1 <@ < h, (2)
Wit ={u1, .. upo1,upf, and (3) Wige = {og, ..., 01,0, ) a

Note that the special case of creating a polygon by adding an edge (u1,vy) is given in [HR91].
Note also that the number of sides in a wheel can increase if the underlying set of co-linear
separating sets has added new members. An example is illustrated in Figure 6 for the
creation of a wheel by adding an edge. Note that for reaching four-connectivity, we only deal
with wheels whose unit sizes are two or three. If we always add edges whose two endpoints
are demanding vertices of 4-blocks, then we can create a set of co-linear separating triplets
whose vertex in the center is degree more than three. However, a set of co-linear separating
triplets with a center vertex whose degree is less than four could exist in the original input
graph.

7.4 Splitting of Wheels

The following claim states the modifications made on wheels after adding an edge. Before the
statement of this claim, we give some definitions. Let W be a wheel in G with the center C and
sides Wy,...,W,. Let k be the unit size of W. Given a side W;, NEXT(W;) = W(it1) mod 4
and PREV(W;) = W(4i—1) mod q- The two sides of a vertex u, Qi(u) and Q(u), are W;
and Wiit1) mod ¢, respectively, if u is separated from vertices in W;42) mod 4 by removing

CUW;UW(it1) mod ¢- If u € Wi, then the two sides of u, Qq(u) and Qa(u), are Wig4i—1) mod 4
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and W(i11) mod 4, respectively. Let u and v be two vertices in G. If u, v, and W are in the
same k-block, then either C U Qq(u) U Qa(u) = CU Q1(v) U Qz(v) or they are co-linear with
respect to u and v.

Claim 7.7 Let u and v be two vertices in G and let W be a wheel in G with the center C
and sides Wh, ..., W,. If the two sides of u and the two sides of v are not the same, then W
is split into two wheels Wy and Wy in GU{(u,v)}, where (1) C is the center for both wheels,
(2) the sides of Wy are Qz(u), NEXT(Qa(u)),...,PREV(Q1(v)), Qi(v), and (3) the sides of
Wy are Qa(v), NEXT(Q2(v)), ..., PREV(Qq(u)), Q1(u).

Proof: Similar to a proof for updating polygons in triconnectivity augmentation [HR91]. O

The operation defined in Claim 7.7 is called split.

7.5 Updating the Structure

When an edge is added between two vertices that are demanding vertices, we apply the
following updating operations to maintain the 4-block graph structure. Let v and v be the
two endpoints of the new edge. If u and v are in different connected components, then the
updating operations are trivial. Assume that they are in the same connected component.
Using the 4-block graph, we can decide the largest integer ¢ such that u and v are both in
an ¢-block B;. Let P be the path in the (¢ 4+ 1)-block tree for B; between the (i 4+ 1)-block
containing v and the (¢ + 1)-block containing v. We update the (¢ + 1)-block tree for B; by
traversing the path P. Let B;41 be a non-trivial (¢ 4+ 1)-block encountered when we traverse
P. Let & and S, be the two separating i-sets in P that are both adjacent to B;yq. Let
B! .,y be an (¢ + 2)-block containing S;, j € {1,2}. We apply updating operations on the
(2+2)-block tree for B;y; as there is an edge added between a demanding vertex in B{ ;. , and
a demanding vertex in By ;,,. If we encounter a wheel in P, then we have to apply a split
operation as described in Section 7.4. The above updating operation is applied recursively
until we have reached the 4-block tree structure for each 3-blocks. The updating operations
required to perform in each level of block trees are discussed in the above subsections.

8 An Algorithm for Four-Connectivity Augmentation

In this section, we first give a lower bound of the smallest four-connectivity augmentation
number. Based on this lower bound, we give our algorithm for finding a smallest four-
connectivity augmentation.
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8.1 A Simple Lower Bound for the Augmentation Number

DEMAND(V, G)w
= .

Given ¢ = (V, E), the demand constraint for making ¢ k-vertex-connected is

The wheel constraint of GG is the largest wheel constraint among all wheels with unit size less
than k. Recall that the separation constraint of (G is the largest separation constraint among
all separating sets with cardinality less than k. We now give a theorem stating a lower bound
based on the demand constraint, the separation constraint, and the wheel constraint of G.

Let
DEMAND(V, )

2

LOW(G) = max{{ -‘ ,n%gx{sck(é’, G)},rg&vx{WCk(W, G},

where S is a separating set with cardinality less than &, and W is a wheel with unit size less

than £ in G.

Theorem 8.1 AUG,L(G) > LOW(G).
Proof: By Lemmas 4.8, 5.14, and 6.2. O

Note that AUG4((G) = LOW4(G) when G is triconnected [Hsu92]. Note also that
AUGE(G) = LOW(G) for £ < 3 [HRI1, HR93].

8.2 The Algorithm

We now state an algorithm for finding a smallest four-connectivity augmentation on an
undirected graph. Our algorithm is based on the following approach. Using the lower bound
on the number of edges needed (Theorem 8.1) as a guideline, we make sure that each time
we add an edge, this lower bound is decreased by one. We keep adding an edge until the
graph is triconnected. Let G = (V| F) be the resulting triconnected graph. We know that
the lower bound given in Theorem 8.1 equals to AUG4(G) if GG is triconnected. Thus we
can apply the algorithm given in [Hsu92] to wrap up the computation. By doing this, we
guarantee that the number of edges added is minimum in four-connecting the original input
graph.

In finding a proper edge to add before the graph becomes triconnected, we use in-
formation available in its 4-block graph instead of getting the information directly form the
current graph. Since the 4-block graph is a forest and we can update the 4-block graph fairly
easily when an edge is added using properties given in Section 7, we can have a polynomial
time implementation.

We describe our algorithm in Algorithm 1, prove its correctness, and analyze its com-
plexity.
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graph function aug0Oto4(graph G); {* The input graph G contains at least five vertices. *}
if GG has exactly five vertices, then
return a complete graph with five vertices;
let 7' be 4-BLK(G);
let s be the separation constraint of G
let d be the demand constraint of G
while G is not triconnected do
if GG is not connected, then
use Claim 5.16 to find a pair of vertices u and v
1. elseif d > 1 and s > d then
if there is a massive separating set with cardinality less than three then
use Claim 5.23 to find a pair of vertices u and v
else if there is a massive separating triplet then
use Claim 5.22 to find a pair of vertices u and v
fifis:=s-1
2. else if d > 1 and s = d then
else if there is a critical separating set with cardinality less than three then
use Claim 5.25 to find a pair of vertices u and v
else if there is a critical separating triplet then
use Claim 5.27 to find a pair of vertices u and v
fifis:=s—1;,d:=d—-1

3. else find two vertices u and v using Claim 7.2; d :=d — 1

fi fi fi
4. G:=GU{(u,v)}; update T
end while;

return aug3to4(() {* Function aug3to4 finds a smallest four-connectivity augmentation
for a triconnected G [Hsu92]. *}
end augOto4;

Algorithm 1: An algorithm for finding a smallest set of edges whose addition four-connects
an undirected graph with at least five vertices.
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‘ Correctness ‘

We now prove that algorithm aug0Oto4 finds a correct solution.

Lemma 8.2 Let u and v be the two vertices found in step 4 of algorithm augOto4. If G s
not triconnected, then LOW4(G U {(u,v)}) = LOW4(G) — 1.

Proof: Note that the value of LOW4(() depends upon the values of three constraints. If G
is not connected, then by Claim 5.16, we can reduce LOW4((G) by one by adding an edge.
A constraint dominates LOW4(() if the value of that constraint is equal to LOW4(G). From
Lemma 6.3, if ¢ is not biconnected, then the wheel constraint does not dominate LOW4(G).
It is also easy to see that if G is biconnected, but not triconnected, and the wheel constraint
of a wheel is equal to the demand constraint, then reducing the demand constraint implies
reducing the wheel constraint. Thus we only have to consider the following two cases.

Case 1: The demand constraint dominates the lower bound, but the separation constraint
does not. Algorithm augOto4 finds u and v in step 3. By Claim 7.2, we know that the
demand is reduced by two in the resulting graph. Thus the demand constraint is reduced
by one.

Case 2: The separation constraint dominates. Our algorithm finds a pair of vertices in
steps 1 and 2. Note that by Lemma 5.30, we can guarantee that the separation constraint
is decreased by one by adding an edge. In the case of both the separation constraint and
the demand constraint dominate the lower bound (i.e., there is a critical separating set),
Corollary 7.3 guarantees that the demand constraint is reduced by one.

From the discussion in Cases 1 and 2, the lemma holds. O

Theorem 8.3 Algorithm augOtod finds a smallest four-connectivity augmentation for G
and AUG4(G) = LOW(G).

Proof: By Theorem 8.1 and Lemma 8.2. O

We note that algorithm aug0Oto4 can be modified to find a smallest k-vertex-connectivity
augmentation, for any & < 3, if we know the followings. (1) An algorithm to construct the
k-block graph. (2) A formula to compute the smallest (-vertex-connectivity augmentation
number, for all £ < k. This is needed for finding critical and massive separating sets. (3)
An algorithm to find a smallest k-vertex-connectivity augmentation for a (k — 1)-vertex-
connected graph. This is needed to wrap up the whole computation as algorithm aug3to4
does in algorithm augOto4. We remark that we know all of the above for any £ < 3.

Complexity

Let n and m be the numbers of vertices and edges in G. To implement algorithm aug0to4, we
are required to perform the following computations. (1) The algorithm must maintain and
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update the 4-block structure once a new edge is added. (2) The identification of critical and
massive separating sets under the conditions that new separating sets may be created and the
separation constraint of an existing separating set may decrease. It takes O(n - a(n,n) +m)
time to construct the 4-block graph using routines in [HT73, KTDBC91]. In this structure,
we can retrieve all needed information for our augmentation algorithm. Methods for updating
the 4-block graph are discussed in Section 7 and are also reported in [KTDBC91]. They can
be implemented using the standard dynamic tree manipulation operations as used in various
vertex-connectivity augmentation algorithms [HR91, Hsu92, RG77]. Each operation takes
O(log n) time. Note that AUG4(G) = O(n). Thus the overall time complexity for (1) during
the entire execution of the algorithm is O(n - logn).

The total size of the 4-block graph is O(n) [KTDBC91]. To implement (2), note that we
can dynamically maintain the separation constraints of separating triplets under the adding
of edges using data structures similar to the ones used in various augmentation algorithms
[RGT77]. Note also that if there is a massive separating set, then it is the only separating set
that is massive. We add edges to balance the graph. Once it becomes balanced, then it stays
balanced. If there is a critical separating set, then its separation constraint is decreased each
time an edge is added.

By Claims 5.23 and 5.25, the graph has the following special structure if there is a
critical separating set with cardinality less than three. The 2-block graph is a star with a
possible degenerated case of being a path. The 3-block graph for every but one 2-block is
a path. The only 3-block tree that might not be a path is either a path or a star. If the
2-block graph is a star that is not a path, then all 3-block trees are paths. Let & be the
separating set with cardinality less than three with separating degree more than two. S is
an empty set if there is no such separating set. If this is the case, then we add an edge where
their endpoints are demanding vertices of degree-0 or degree-1 2-blocks. The two endpoints
are also demanding vertices of 3-blocks and are separated by S if S # . By doing this, the
demand of the the graph is decreased by two and the added edge satisty Claim 5.25 if there
is a critical separating set with cardinality less than three. Hence we have the following
lemma.

Lemma 8.4 Algorithm augOto4 can be implemented to run in O(n -logn +m) time. O

Lemma 8.5 The number AUG4(G) can be computed in O(n - a(n,n) +m) time.

Proof: The 4-block graph can be constructed in O(n - a(n,n) + m) time. Note that the
demand constraint can be computed in O(n) time once we have the 4-block graph. The
wheel constraints of all wheels can also be computed in O(n) time since there are only O(n)
wheels. The separation constraints of separating triplets can be computed in O(n) time using
the 4-block graph, since there are O(n) separating triplets that are regular and not crossing
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(Claim 6.1). To compute the separation constraints of separating pairs, we need to compute
AUGy(G — &) for all separating pairs Sy that are not crossing (where there are O(n) of them)

in G (Claim 6.1). Note that AUGy(G — S2) = max{d; — 1, [DEMANDQ(VZ\ 62, G — 52)-‘ 1,

where d; is the maximum number of connected components obtained in GG— &, by removing a
cutpoint. This value can be computed in O(n) time once the 2-block graph is computed. The

separation constraints of separating 1-sets, where there are O(n) of them, can be computed
in O(n) time using an approach that is similar to the one used in computing the separation
constraints of separating pairs. a

9 Concluding Remarks

We have shown an O(n - logn + m)-time algorithm for finding a smallest four-connectivity
augmentation where n and m are the number of vertices and edges in the input graph, respec-
tively. We also have shown a formula to compute th smallest four-connectivity augmentation
number in O(n - a(n,n) + m) time, where « is the inverse of the Ackermann function.

Our paper not only has answered the algorithmic aspect of the vertex-connectivity
augmentation problem, but also has studied several useful properties about the structure
of a graph that is not four-connected, e.g., the separating (-sets and (¢ 4 1)-blocks, for all
1 < ¢ < 4. Note that the separating sets with cardinality less than four can have non-
trivial intersections. The blocks can also have non-trivial intersections. We have shown
the evolution of this structure when an edge is added to optimally increase the vertex-
connectivity of a graph.

In developing our algorithm for increasing the vertex-connectivity of an undirected
graph to four, we have established theorems that might be useful in answering questions
arising from solving the fundamental problem of raising the vertex-connectivity of an undi-
rected graph by an arbitrary value.

Acknowledgments

The author wishes to thank helpful comments from referees.

41



References

[Ben94]

[Bol79]

[CBKT93]

[CoxT5]

[CS89]

[DBT90]

[ETT76]

[EveT9]

[FBWS9]

[FCT0]

[FJ81]

[FJ93]

[Fra92]

A. A. Benczir. Augmenting undirected connectivity in RNC and in randomized

O(n?) time. In Proc. 26th Annual ACM Symp. on Theory of Computing, pages
658-667, 1994.

B. Bollobas. Graph Theory: An Introductory Course. Springer-Verlag, New
York, 1979.

R. F. Cohen, G. Di Battista, A. Kanevsky, and R. Tamassia. Reinventing the
wheel: an optimal data structure for connectivity queries. In Proc. 25th Annual

ACM Symp. on Theory of Comp., pages 194-200, 1993.

L. H. Cox. Disclosure analysis and cell supression. In Proc. American Statistical

Assoctation, pages 3800-382, 1975.

G.-R. Cai and Y.-G. Sun. The minimum augmentation of any graph to a k-
edge-connected graph. Networks, 19:151-172, 1989.

G. Di Battista and R. Tamassia. On-line graph algorithms with SPQR-trees.
In Proc. 17th Int’l Conf. on Automata, Language and Programming, volume

LNCS # 443, pages 598-611. Springer-Verlag, 1990.

K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAM J. Comput.,
5(4):653-665, 1976.

S. Even. Graph Algorithms. Computer Science Press, Rockville, MD, 1979.

D. Fernandez-Baca and M. A. Williams. Augmentation problems on hierarchi-
cally defined graphs. In 1989 Workshop on Algorithms and Data Structures,
volume LNCS # 382, pages 563-576. Springer-Verlag, 1989.

H. Frank and W. Chou. Connectivity considerations in the design of survivable

networks. IEEE Trans. on Circuit Theory, CT-17(4):486-490, December 1970.

G. N. Frederickson and J. JaJa. Approximation algorithms for several graph
augmentation problems. SIAM J. Comput., 10(2):270-283, May 1981.

A. Frank and T. Jordan. Minimal edge-coverings of pairs of sets. Manuscript,

June 1993.

A. Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM
J. Disc. Math., 5(1):25-43, February 1992.

42



[Gab91]

[Gus8T]

[Gus89]

[Har62]

[Har69]

[HRO1]

[HR93]

[Hsu92]

[Hsu93]

[HT73]

[JG86]

[Jor93al

[Jor93b]

[Kan93a]

H. N. Gabow. Applications of a poset representation to edge connectivity and
graph rigidity. In Proc. 32th Annual [EEE Symp. on Foundations of Comp.
Seci., pages 812-821, 1991.

D. Gusfield. Optimal mixed graph augmentation. SIAM J. Comput., 16(4):599—
612, August 1987.

D. Gusfield. A graph theoretic approach to satistical data security. SIAM J.
Comput., 75:552-571, 1989.

F. Harary. The maximum connectivity of a graph. Proc. Nat. Acad. Sci.,
48:1142-1146, 1962.

F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.

T.-s. Hsu and V. Ramachandran. A linear time algorithm for triconnectivity
augmentation. In Proc. 32th Annual IEFE Symp. on Foundations of Comp.
Seci., pages 548-559, 1991.

T.-s. Hsu and V. Ramachandran. On finding a smallest augmentation to bi-

connect a graph. SIAM J. Comput., 22(5):889-912, 1993.

T.-s. Hsu. On four-connecting a triconnected graph (extended abstract). In
Proc. 33rd Annual IEEE Symp. on Foundations of Comp. Sci., pages T0-79,
October 1992.

T.-s. Hsu. Graph Augmentation and Related Problems: Theory and Practice.
PhD thesis, University of Texas at Austin, October 1993.

J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected compo-
nents. SIAM J. Comput., 2:135-158, 1973.

S. P. Jain and K. Gopal. On network augmentation. IEEFE Trans. on Reliability,
R-35(5):541-543, 1986.

T. Jordan. Increasing the vertex-connectivity in directed graphs. In Proe. 1st
Fuorpean Symp. on Algorithms, volume LNCS #726, pages 236-247. Springer-
Verlag, 1993.

T. Jordan. Optimal and almost optimal algorithms for connectivity augmenta-

tion problems. In Proc. 3rd IPCO Conference, pages 75-88, 1993.

A. Kanevsky. Finding all minimum-size separating vertex sets in a graph.

Networks, 23:533-541, 1993.

43



[Kan93b]

[KG93]

[KRO1]

[KT92]

[KTDBC91]

[KUS6]

[LP91]

[Mat72]

[Mat 78]

[Men27]

[MHTST]

[NGM90]

[Ple76]

G. Kant. Algorithms for Drawing Planar Graphs. PhD thesis, Utrecht Univer-
sity, the Netherlands, 1993.

M. Y. Kao and D. Gusfield. Efficient detection and protection of information in
cross tabulated tables I: Linear invariant test. SIAM J. Discrete Mathematics,
6(3):460-476, 1993.

A. Kanevsky and V. Ramachandran. Improved algorithms for graph four-
connectivity. J. Comp. System Sei., 42:288-306, 1991.

S. Khuller and R. Thurimella. Approximation algorithms for graph augmen-
tation. In Proc. 19th Intl Conf. on Automata, Language and Programming,
volume LNCS #623, pages 330-341. Springer-Verlag, 1992.

A. Kanevsky, R. Tamassia, G. Di Battista, and J. Chen. On-line maintenance of
the four-connected components of a graph. In Proc. 32th Annual IEEE Symp.
on Foundations of Comp. Sci., pages 793-801, 1991.

Y. Kajitani and S. Ueno. The minimum augmentation of a directed tree to a

k-edge-connected directed graph. Networks, 16:181-197, 1986.

J. A. La Poutré. Dynamic Graph Algorithms and Data Structures. PhD thesis,
Utrecht University, 1991.

D. W. Matula. k-components, clusters, and slicings in graphs. SIAM J. Appl.
Math., 22(3):459-480, 1972.

D. W. Matula. k-blocks and ultrablocks in graphs. J. Combinatorial Theory,
Series B, 24:1-13, 1978.

K. Menger. Zur allgemeinen kurventheorie. Fund. Math., 10:96-115, 1927.

T. Masuzawa, K. Hagihara, and N. Tokura. An optimal time algorithm for
the k-vertex-connectivity unweighted augmentation problem for rooted directed
trees. Discrete Applied Mathematics, pages 67-105, 1987.

D. Naor, D. Gusfield, and C. Martel. A fast algorithm for optimally increasing
the edge-connectivity. In Proc. 31th Annual IEEE Symp. on Foundations of
Comp. Sct., pages 698-707, 1990.

J. Plesnik. Minimum block containing a given graph. ARCHIV DER MATH-
EMATIK, XXVIIL:668-672, 1976.

44



[Ram93]

[RGTT]

[Sor88]

[SWK69]

[Tar83]

[Tut66]

[TWO4]

[UKWSS]

[Wat87]

[WHN90]

[WNS8T]

[WN93]

[WY93]

V. Ramachandran. Parallel open ear decomposition with applications to graph
biconnectivity and triconnectivity. In J. H. Reif, editor, Synthesis of Parallel
Algorithms, pages 275-340. Morgan-Kaufmann, 1993.

A. Rosenthal and A. Goldner. Smallest augmentations to biconnect a graph.

SIAM J. Comput., 6(1):55-66, March 1977.

D. Soroker. Fast parallel strong orientation of mixed graphs and related aug-
mentation problems. Journal of Algorithms, 9:205-223, 1988.

K. Steiglitz, P. Weiner, and D. J. Kleitman. The design of minimum-cost
survivable networks. IEEFE Trans. on Circuit Theory, CT-16(4):455-460, 1969.

R. E. Tarjan. Data Structures and Network Algorithms. STAM Press, Philadel-
phia, PA, 1983.

W. T. Tutte. Connectivity in Graphs. University of Toronto Press, 1966.

S. Taoka and T. Watanabe. Minimum augmentation to k-edge-connect specified
vertices of a graph. In ISAAC’94, volume LNCS #834, pages 217-225. Springer-
Verlag, 1994.

S. Ueno, Y. Kajitani, and H. Wada. Minimum augmentation of a tree to a

k-edge-connected graph. Networks, 18:19-25, 1988.

T. Watanabe. An efficient way for edge-connectivity augmentation. Tech. Rep.
ACT-76-UILU-ENG-87-2221, Coordinated Science lab., University of Illinois,
Urbana, IL, 1987.

T. Watanabe, Y. Higashi, and A. Nakamura. Graph augmentation problems
for a specified set of vertices. In Proc. 1st Annual Int’l Symp. on Algorithms,
volume LNCS #450, pages 378-387. Springer-Verlag, 1990.

T. Watanabe and A. Nakamura. Edge-connectivity augmentation problems. J.

Comp. System Seci., 35:96-144, 1987.

T. Watanabe and A. Nakamura. A minimum 3-connectivity augmentation of a

graph. J. Comp. System Seci., 46:91-128, 1993.

T. Watanabe and M. Yamakado. A linear time algorithm for smallest augmenta-
tion to 3-edge-connect a graph. IEICE Trans. on Fundamentals of Flectronics,
Communications and Computer Sciences, E76-A(4):518-531, April 1993.

45



