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Abstract

This report proposes a new wavelet–based approach to solving the edge detection problem.  The
proposed scheme adopts Canny’s three criteria [3] as a guide to derive a wavelet–style edge filter such that
the edge points of an image can be detected efficiently and accurately at different scales.  Since Canny’s
criteria are suitable for those edge detectors that detect local extremes, the desired wavelet  is therefore
chosen to be anti–symmetric.  In order to reconstruct the original image, the dual of the desired wavelet is
also required.  Basically, the pair of wavelets are  represented as linear combinations of translations of  a
scaling function.  By introducing a constrained optimization process, the set of  expansion coefficients of the
desired wavelet and its dual as well, can be determined.  In order to implement the desired edge detector, a
continuous wavelet  has to be converted into the discrete form.  For this purpose, the format of the discrete
wavelet transform has to be developed.  Since the proposed edge filter is wavelet–based, the inherent multi-
resolution nature of wavelet transform provides more flexibility in the analysis of images.  Also, since an
optimization process is introduced in the filter derivation process, the performance of the proposed filter is
better than that of Mallat–Zhong’s edge detector. In real implementation, the experimental results show
that the proposed approach is indeed superb. 
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I. Introduction

Digital edge detection is an important early vision process for reducing the amount of data in raw

images to facilitate the subsequent high–level image understanding tasks.  It has been of interest to research

in the area of computer vision from the outset[1]–[23].  In [1], Marr and Hildreth proposed an important

zero–crossing detection technique.  They introduced a new method to process an image by applying Lapla-

cian of Gaussian filters characterized by different variances.  In [3], Canny  used a smoothed gradient meth-

od to locate points with extreme values in an image as edge points.  In his approach, edge detection is char-

acterized as a constrained optimization process which has to fulfill three criteria.  The three criteria are

good detection, good localization, and low spurious response. The filter he obtained is equivalent to

performing a Gaussian filtering followed by a gradient detection.  Edge operators which are similar to this

kind can be found in [4], [5], [10]–[14].  Another important solution for edge detection is to solve the prob-

lem by using spatial frequency response.  Researchers in this aspect designed optimal edge filters in the

frequency domain [15]–[18].   In [19]–[20], an image was modeled as a random field and the pixels with

abrupt changes of statistical properties were detected as edge points.  Recently, a new edge filter based on

wavelet transform has been proposed by Mallat and Zhong [4].  They combined the properties of wavelet

transform and a gradient method to form a ‘‘multi–scale’’ edge detector.  In their work, the first derivative

of a cubic spline function is utilized to detect the local extreme values of a wavelet transform as edge points.

However, the ultimate goal of the work is to efficiently compress the input image.  Therefore, although the

adopted wavelet is capable of detecting edges, the performance of edge detection was not a major concern

in their work.

Basically, wavelet is a basis of functions that can  be applied to efficiently and accurately represent

‘‘things’’.  The thing could be a signal, system, process or physical phenomenon.  A wavelet basis can be

orthonormal or non–orthogonal.  The orthogonal wavelet bases have been successfully used in applied

mathematics [29]– [30] and digital signal processing [29].  However, for some applications, especially in

edge detection, the orthonormality of wavelet basis is a strict limitation on designing an efficient edge filter

[4], [5], [29].   Torre and Poggio[7]  pointed out that if an edge detector  is to detect the zero–crossings of

output as edge points, it must be symmetric with respect to the origin.  On the other hand, if an edge detector

is to detect the local extreme as edge points, it must be anti–symmetric with respect to the origin.  In this

report, we propose a scheme with Canny’s criteria as a guide to derive a wavelet–style edge filter such that
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the edge points of an image can be detected efficiently and accurately at different scales.  Since Canny’s

criteria are suitable for those edge detectors that detect local extremes, the desired wavelet  is therefore

chosen to be anti–symmetric.  In order to obtain the information for reconstructing the original image and

to avoid the orthonormality constraint of a wavelet, the dual of the derived wavelet is also required.  Basi-

cally, the pair of wavelets, i.e., the desired wavelet and its dual, are represented as linear combinations of

translations of a scaling function.    In this report, the quadratic spline function and the cubic one, respec-

tively, are adopted as a scaling function to expand the desired filter.  By introducing a constrained optimiza-

tion process, the set of coefficients of the desired wavelet and that of  its dual one as well, can be deter-

mined.  In order to implement the desired edge detector, a continuous wavelet has to be converted into the

discrete form.  For this purpose, the format of the discrete wavelet transform has to be developed.  In sum, the

proposed edge filter is similar to a gradient edge detector.  Since it is wavelet–based, the inherent multire-

solution nature of wavelet transform provides more flexibility in the analysis of images.  Also, since an

optimization process is introduced in the filter derivation process, the performance of the proposed filter is

better than that of Mallat–Zhong’s edge detector. In real implementation, the experimental results show

that the proposed approach is indeed superb.

In what follows, the relations between edge detection and non–orthogonal wavelet transform will be

introduced in Section II.  Then, in Section III, the three criteria for designing an optimal edge filter pro-

posed by Canny are briefly described.  The detailed procedure for designing a near optimal edge filter is

elaborated in Section IV.  In Section V, the derived filter is extended to 2–D and its dual wavelet is deter-

mined.  Section VI reports some experimental results and Section VII concludes the work with some dis-

cussions.

��� ���� ����	�
�� 
�� ������������
� �
����� ��
������

Wavelet transform (WT) [25] for multiresolution local analysis on signals has been proved to be

very effective.  It has been successfully applied to image compression, signal detection such as speech,

seismic, biomedical, and other signals.  The format of a WT, based on its supporting basis, can be catego-

rized into two classes, i.e., the orthonormal basis and the non–orthogonal one.  It has been pointed out that

the orthonormal scheme is not a must in deriving a good edge detector [4], [5], [29].  There were a number
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of researchers who designed  their edge detectors based on non–orthogonal wavelet bases [4], [5], [29].  In

what follows, the model of wavelet bases is described.

Some notations which will be used throughout the report will be elaborated.  All the functions con-

sidered here are in L2(R), the space of square–integrable functions over real numbers.  For f(x) and g(x) in

L2(R), the inner product � f (x), g(x) �� � f (x)g(x)dx and the convolution f (x) * g(x)� � f (u)

g(x� u)du.  The Fourier transform of f(x) is denoted by  f
^
(�)� � f (x)e�i�xdx.  The scaled function,

1
s �(xs), of �(x) is denoted by �s(x).   A wavelet is a function �(x)� L2(R) satisfying the admissibility

condition  C�� � |�
^
(�)|2

|�|
d���.  A continuous wavelet transform of a signal f(x), with wavelet �(x),

is

Wsf (x)�� f (u), 1
s �(x� u

s ) ��� f (u),�s(x� u) �

� f * �s(x).                                                 (1)
From the Fourier transform of Equation (1), we have

W
^

sf (�) � f
^
(�)�

^
(s�).

The dyadic wavelet transform of f(x) is:

W2jf (x)� f * �2j(x), (2)

for scale parameter s� 2j for j� Z.  Furthermore, if there exists two strictly positive constants

�1 and �2 such that

� �� R, �1 	 

�

j���

|�
^
(2j�)|	 �2, (3)

then �(x) has a dual wavelet �(x), by which the signal  f(x) can be reconstructed as follows:

f (x)� 

�

j���

W2jf (x) * �2j(x). (4)

From the Fourier transform of Equation (4), we have



�

j���

�
^
(2j�)�

^
(2j�) � 1. (5)

Let �(x) denote the scaling function whose Fourier transform is an aggregation of �
^
(2j�) and �

^
(2j�) for

j� 1, i.e.,

|�
^
(�)|2 �


�

j�1

�
^
(2j�)�

^
(2j�). (6)
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A direct implication of Equation (6) is

|�
^
(2j�1�)|2� |�

^
(2j�)|2 � �

^
(2j�)�

^
(2j�). (7)

Equation (7)  illustrates the relations among �(x), �(x) and �(x) at different scales.  If  the scaling function

�(x) and the wavelet function �(x) are determined beforehand,  based on Equation (7),   the corresponding

dual wavelet �(x) can be derived.

Let S2j be the smoothing operator with respect to the scaling function �(x) defined by
S2jf (x) � f (x) * �2j(x). (8)

Suppose that f(x) is defined at the finest resolution, i.e.,   f (x) � S20f (x).  By using the scaling function

�(x) and the wavelet function �(x),  a signal f(x) can be decomposed into different components

�S2j f (x)�
j�1,2,..

 and �W2j f (x)�
j�1,2,..

.  S2j f (x) is an approximation view of f(x) at scale 2j and W2j f (x)

the difference between S2j�1 f (x) and S2j f (x).  If �(x) and �(x) are considered respectively as the low–

pass and high–pass filter, then S2j f (x) is equivalent to the low frequency component  of f(x) at scale 2j and

W2j f (x) the high frequency component, i.e., the edge information of f(x) at scale 2j.   Therefore, by using

the information of �S2j f (x)�
j�1,2,..

 and �W2j f (x)�
j�1,2,..

, the original function can be reconstructed.  The

reconstruction is a recursive process based on Equation (7).  Multiplying both sides of Equation (7) by f
^
(�)

and taking the inverse Fourier transform, we obtain

S2j�1f (x) * �2j�1(x) � S2jf (x) * �2j(x)�W2jf (x) * �2j(x), (9)

where �(x) � �(� x).   By Equation (9), S2j�1 f (x) can be recovered from S2j f (x) and W2j f (x).   Apply-

ing the above process recursively, the original signal, f (x) � S20 f (x), can be reconstructed.

 In the previous contents, S2j f (x) is known as an approximation scheme of f(x) at scale  2j, where

S2j f (x) is a better approximation of f(x) than S2j�1 f (x) for j � Z�, and W2j f (x) the edge information of

f(x) at the scale  2j [4], [26].  It has been proved that the multi–scale edge information can provide a com-

plete and stable description of a signal[8].  Based on this concept, Mallat and Zhong [4] introduced a very

efficient multi–scale method which uses the extremes of wavelet transform to represent an image.  This

method only needs low algorithmic complexity and produces accurate reconstruction results.  Let W2j f (n)

be the discrete form of W2j f (x).  If the edge points are selected by detecting the zero–crossings of

W2j f (n), then this wavelet transform is equivalent to a Marr–Hildreth edge detector [1]; while if we denote

the local extreme of W2j f (n) as edge points, it corresponds to a Canny edge detector [3].  The wavelet,
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proposed by Mallat and Zhong, is a Canny–style edge detector.  In this report, we propose a scheme, which

integrates the properties of wavelet transform and Canny’s criteria, to derive a wavelet and its correspond-

ing dual wavelet for efficiently detecting edge points and reconstructing original image.

In the derivation of the desired wavelet, both the quadratic and cubic spline functions are chosen as

scaling functions.  The scaling function, �(x), in the frequency domain can be written as follows[4]:

 �
^
(�)� e�i�1��

�

m�1

H(2�m�), (10)

where H(�) is a 2� periodic differentiable function satisfying

 |H(�)|2� |H(�� �)|2 � 1 and H(0)� 1. (11)

The parameter, 0� �1 � 1, is a sampling shift.  With the form in Equation (10), we have

�
^
(2�)� e�i�1�H(�)�

^
(�). (12)

As in [4], we may impose further that the Fourier transform of the desired wavelet �(x) and its dual wavelet

�(x) are:

�
^
(2�)� e�i�2�G(�)�

^
(�), (13)

and

�
^
(2�)� ei�2�K(�)�

^
(�), (14)

where G(�) and K(�) are two 2� periodic differentiable functions and 0� �2 � 1 is another sampling

shift.  Plugging Equations (12)–(14) into Equation (7), since �(x) is symmetric with respect to 0, we have

|H(�)|2� G(�)K(�)� 1. (15)

It can be proved that  if H(�), G(�) and K(�) satisfy Equations (10) and (15), �
^
(2�), �

^
(2�) and �

^
(2�)

defined in Equations (12)–(14) will satisfy Equation (7).  In general, H(�) is determined in advance, and

G(�) is adjusted to satisfy the requirements of a specified application.  Therefore, once H(�) and G(�) are

known, K(�) can be obtained by solving Equation (15) and �(x) can be determined by Equation (14).

The three 2� periodic functions H(�), G(�) and K(�) can be expanded respectively as follows:

H(�)� �
�

n���

h(n)e�in�, G(�)� �
�

n���

g(n)e�in� and K(�)� �
�

n���

k(n)e�in�, 

where {h(n)}n	Z, {g(n)}n	Z and {k(n)}n	Z  are three real sequences satisfying

�
�

n���

|h(n)|2 ��, �
�

n���

|g(n)|2 �� and �
�

n���

|k(n)|2 ��.
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Plugging the above expansions into Equations (12)–(14) and taking their inverse Fourier transforms, we

obtain

1
2
�(x

2
) � ��

n���

h(n)�(x� n� �1), (16)

1
2
�(x

2
) � ��

n���

g(n)�(x� n� �2), (17)

and 1
2
�(x

2
) � ��

n���

k(n)�(x� n� �2).       (18)

Equations (16)–(18) indicate that 1
2
�(x

2
), 1

2
�(x

2
) and 1

2
�(x

2
) can all be considered as the linear combinations

of �(x� n� �), where �  is a constant shift.  In general cases, the shift constants ��i
�
i�1,2

  are set to 0.

However, in some special cases, by adjusting �1 and �2  will make  the coefficients {h(n)}n�Z,

{g(n)}n�Z and  {k(n)}n�Z  converge to zero quickly as n 	�.

���� �������� 	
� ����
�� ���� �������
�

Before a good edge filter is designed, one has to know what criteria are needed to evaluate the perfor-

mance of an edge filter.  In this section, the three criteria proposed by Canny[3] which can be used in eva-

luating the performance of an edge detector are briefly introduced.  In his brilliant approach, edge detection

is characterized as an optimization problem which has to fulfill three criteria.  The three criteria include

good detection, good localization, and low spurious response.  Canny [3] converted the above three con-

ceptual criteria into practical rules.  First, the good detection criterion is converted into the detection of a

high signal–to–noise ratio.  Second, the good localization criterion is equivalent to obtaining a low mean–

squared deviation value of the detected edges.  Third, the filter should delete spurious edges.  Let  f(x) be  a

step edge with f(x) = 1 when x 
 0, and f(x)=0 otherwise.  Assume the desired filter is �(x) and the re-

sponse of �(x) to f(x) at x is R�(x).  Let  N(x) be the Gaussian white noise in f(x) and RN(x)  the response of

the noise.  If �2 represents the variance of N(x), then the signal–to–noise ratio can be defined as follows [3]:

SNR�
R�(0)

RN
�

����
�
�

��

f (� x)�(x) dx
����

� �
�

��

�2(x)dx

� �(�). (19)
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As to the second criterion, good localization, Canny defined it as follows [3]:

Localization�

����
�
�

��

f�(x)��(x)dx
����

� �
�

��

��2(x)dx�
� �(��).                                                    (20)

As to the third criterion, Canny stated that the edge filter should not produce spurious maxima in response

to a single edge.  That is, there is a need to limit the number of peaks of the filter output within the filter’s

spatial spread.  The mean distance, xmean, between peaks in the noise response of �(x), using a result due to

Rice [32] , can be expressed as follows:

xmean � 2�
�����

�

	

�
�

��

��2(x) dx

�
�

��

���2(x)dx

�����




�

1
2

� KW,

where xmean is set  as some fraction K of the operator width .  In [32], the value of W is not well defined.

Therefore, Canny[3]  made a rough estimate of K for the probability of a spurious edge as follows:

K(�) �
|��(0)|

��	
�
�

��

���2(x)dx�
�

1�2

��	
�
�

��

�2(x)dx�
�

1�2

����
�

0

��

�(x)dx
����

. (21)

Equation (21) is the so–called multiple response criterion.  Based on the above three criteria, Canny max-

imized the product of �(�)�(��) and kept K(�) constant to obtain his optimal edge detector.  Sarkar and

Boyer [9] considered the multiple response criterion from another viewpoint.  They modified Canny’s

multiple response criterion as follows[9] :

K(�) �
�����

�

	

�
�

��

��2(x)dx

�
�

��

���2(x)dx

�����




�

1�2

�����

�

	

�
�

��

�2(x)dx

�
�

��

x2�2(x)

�����




�

1�2

. (22)
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In order to avoid confusion, in this report K1(�) and K2(�) represent Canny’s and Sarkar–Boyer’s multiple

response criterion, respectively.  In the next section, the detailed procedure for deriving the proposed edge

filter will be elaborated.

IV. Derivation of a New Wavelet–Based Edge Filter

In this section, we will derive a new wavelet–based edge filter by an optimization method.  Here, we

assume that the step edge to be detected is the same as the one described in Section III.  Let  �(x) denote the

desired wavelet that can detect edge points correctly.  In order to detect abrupt intensity changes in an

image f(x), the convolution, f (x) * �(x), should detect the edges from the image.

By Equation (17) with �2 set to 0, the wavelet  1
2
�(x

2
) can be expanded as a linear combination of

�(x� n)’s as follows:

1
2
�(x

2
)��

n

c(n)�(x� n). (23)

Let �(x) be symmetric with respect to the  origin, i.e., �(x)� �(� x).  In the introduction, we have stated

that �(x) has to be anti–symmetric with respect to the origin, therefore

c(n)�� c(� n).

It means Equation (23) can be rewritten as

1
2
�(x

2
)� �

�

n�1

c(n)[�(x� n)� �(x� n)]. (24)

In general, the expression in Equation (24) is not satisfactory because it requires many c(n)’s to represent

the wavelet �(x).  For example, if an edge filter �(x) is expressed in the following form:

1
2
�(x

2
)� �(x� 1�3)� �(x� 1�3),

it is obvious that more than two coefficients are needed to expand the desired edge filter �(x).  In order to

reduce the number of coefficients involved in expressing �(x), a more general form is defined as follows:

1
2
�(x

2
)� �

�

n�0

c(n)[�(x� n� �)� �(x� n� �)], (25)

where 0� �� 1.  Basically, Equation (24) can be considered as a special case of Equation (25).  In prac-

tice, n cannot vary from 0 to �.  Under the circumstances, the desired wavelet  �(x) can only be approxi-

mated by a finite form as follows:

�(x)	� 2
N

n�0

c(n)[�(2x� n� �)� �(2x� n� �)]. (26)
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Now,  the problem at hand is to solve the set of coefficients {c(n)}n�0,1,..,N  and � such that �(x) can effi-

ciently and accurately detect edge points of an image f(x).  In order to obtain {c(n)}n�0,1,..,N  and �,  a

constrained optimization process is introduced.  Based on Canny’s edge optimality criteria, an objective

function is defined as follows:

W � 1
�
, (27)

where �� �(�) � �(��) � (0 . 0001 � K(�)).  Here, �(�) and �(��)  are Canny’s good detection and

good localization criteria, respectively.  K(�) is either Canny’s (Equation (21) ) or  Sarkar–Boyer’s ( Equa-

tion (22) ) multiple response criterion.  The reason why a small constant, 0.0001, is added to the objective

function  is to protect the terms in �(�) and �(��) from being cancelled out.  With the objective function W,

the resulting coefficients {c(n)}n�0,1,..,N may decay very slowly and the requirement of compact support

of a wavelet  is not satisfied.  Under the circumstances, in real implementation, an extra constraint is

introduced to guarantee fast decay when the proposed edge filter is applied.  Expecting the resulting c(n)’s

to decay with the rate n�2,  the extra constraint is defined as follows:

�� �
N

n�1

�n2c(n)
c(0)
��, (28)

where � is an adjustable parameter.  Plugging this constraint into the objective function, W, a new objective

function W� is formed:

W� �
�

�
. (29)

Based on the objective function defined in Equation (29),  a constrained optimization process can be

executed.  The set of unknown coefficients {c(n)}n�0,1,..,N  and � can be determined after the process is

complete.  In [4], Mallat and Zhong chose the quadratic spline function as their scaling function, i.e.,

�
^
(	) � �sin		2

		2

3

. (30)

The Fourier transform of its corresponding wavelet is



^
(	) � i	�sin		4

		4

4

. (31)

Notice that the selection of Mallat–Zhong’s mother wavelet did not introduce any optimization process.  In

this report, Canny’s three optimality criteria [3] for deriving an optimal edge filter are introduced.  Based

on these criteria, a constrained optimization process is executed to determine the set of expansion coeffi-
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cients of the desired edge filter.  Here, the quadratic and the cubic spline functions are selected, respective-

ly, as the scaling function to expand �(x).  Experimental results show that the quadratic spline function

works better than the cubic one.  In what follows,  the derivation details of �(x) will be elaborated.

In general, the Fourier transform of a spline function Nm(x) is defined as follows:

N
^

m(�) � e�im2��sin��2
��2
�m

.

Nm(x) is a quadratic spline function when m=3  and a cubic one  when m=4 .  If Nm(x) shifts m
2

 to the left, it

is symmetric with respect to the origin.   The shifted spline function,

�
^ m(�) � �sin��2

��2
�m

, (32)

can be used as a scaling function to expand �(x).  When m=3, by the inverse Fourier transform, the scaling

function is:

�3(x) �
�
��
�

	

x2�2 
 3x�2
 9�8, if � 3�2 � x �� 1�2,

3�4 � x2, if � 1�2 � x � 1�2,

x2�2 � 3x�2
 9�8, if 1�2 � x � 3�2,
0, otherwise .

(33)

When m=4, the scaling function is:

�4(x) �

�

�
�

�

	

(x
 2)3�6, if � 2 � x �� 1,

� x3�2� x2 
 2�3, if � 1 � x � 0,

x3�2 � x2 
 2�3, if 0 � x � 1,

(2� x)3�6, if 1 � x � 2,
0, otherwise .

(34)

Plugging �3(x) or �4(x) into the objective function, W’, the set of unknown coefficients{c(n)}n�0,1,..,N

and � can be determined by an optimization method.  Once the set of coefficients {c(n)}n�0,1,..,N  and �  in

�(x) are determined with the assistance of Canny’s criteria, these coefficients can be plugged back into

Equation (26) and the desired optimal filter, �(x), is obtained.

In the derivation process, a quadratic scaling function �3(x) is used as an example.  The calculations

of the set of  integrals and derivatives, including 

0

��

�(x), 

�

��

�2(x), 

�

��

��2(x), |��(0)|, 

�

��

���2(x)
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and �
�

��

x2�2(x) which are needed in the determination of �(�), �(��) and K(�) are elaborated in Appendix.

Based on the calculations described in Appendix, �(�), �(��), and K(�) can be determined accordingly

and  the objective function, W,’ is obtained. In Equation (27), the objective function, W’, has N+2 unknown

coefficients, i.e., {c(n)}n�0,1,..,N  and �, needed to be solved.  By applying the quasi–Newton method,

{c(n)}n�0,1,..,N  and � for a near optimal �(x) can be determined.  In a number of simulations, the best set of

coefficients {c(n)}n�0,1,..,N  and � for an optimal edge detector based on a quadratic spline function is as

follows:

�� 1
2

, c(0) � 1 . 915714, c(1) � 1 . 212978, c(2) � 0 . 337216, c(3) � 0 . 092042,

and c(n) � 0 . 0, for n � 4.                                (35)

Plugging the above results into Equation (26) and taking the dilated scale 2j as a variable, the best edge

detector can be rewritten as follows:

�2j(x) � 1
2j�1
�

3

n�0

c(n)[�( x
2j�1� n� 1

2
)� �( x

2j�1� n� 1
2

)]. (36)

m
solution

1
solution

2
solution

3
solution

4
Mallat ’s
wavelet

c(0) 1.915714 1.909686 1.939113 2.001813 2.0
c(1) 1.212978 1.101535 1.200166 1.095990 0.0
c(2) 0.337216 0.244036 0.303512 0.230633 0.0
c(3) 0.092042 0.022197 –0.000303 –0.002869 0.0
c(4) 0.0 0.002861 –0.000001 –0.000038 0.0
c(5) 0.0 0.0 0.000119 0.000959 0.0
 1.326794 1.288330 1.281402 1.274669 1.0
K1 0.517765 0.527944 0.534319 0.531151 0.547723
K2 2.562118 2.624933 2.624024 2.634735 3.035067

K1 0.686967 0.680165 0.684678 0.677042 0.547723
K2 3.399403 3.382780 3.362429 3.358416 3.035067

  Table 1. Solutions 1–4 are four sets of coefficients obtained from four
independent constrained optimization processes. Column 5 illustrates
the set of coefficients needed in Mallat–Zhong’s [1] approach.

The first four columns of Table 1 illustrate four different sets of simulation results after performing opti-

mization.  It is obvious that the best set of coefficients is in column 1.  Plugging the best coefficient set into

Canny’s optimality criteria[3] , the value of the performance index is

 �(�)�(��)K(�) � 0 . 686967.
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One thing to be noticed is that different sets of coefficients listed in Table 1 all reach a very stable perfor-

mance.  Most importantly, they improve the performance of Mallat–Zhong’s[4] method by roughly about

25% if Canny’s multiple response criterion is chosen, i.e., �(�)�(��)K1(�); and 10% if Sarkar–Boyer’s

multiple response criterion is chosen, i.e., �(�)�(��)K2(�).  In order to make comparison, the cubic spline

function, �4(x), is also taken as a scaling function.  It is unfortunate that the derivation process is much

more tedious than the case of quadratic spline function. Here, part of the derived coefficient sets and their

corresponding �(�), �(��) and K(�)  are listed in Table 2.  From Table  2, the best set of coefficients

{c(n)}n�0,1,..,N of  an optimal wavelet for edge detection based on a cubic spline function is as follows:

�� 1�2, c(0) � 1 . 909686, c(1) � 1 . 215350, c(2) � 0 . 344036, c(3) � 0 . 122197,

c(4) � 0 . 028610, and c(n) � 0 . 0 for n � 5.                                                                   (37)

 One thing to be noticed is that the optimal solution always appears at �� 1�2.   Compared with the case of

�3(x), the coefficient set {c(n)}n�0,1,..,N of �4(x) decays slower than that of �3(x).  Besides, in the experi-

ment the usage of �3(x) turns out with more accurate results.  Therefore, the quadratic spline function is

finally selected as our scaling function.

m
solution

1
solution

2
solution

3
c(0) 1.909686 1.909746 1.945367
c(1) 1.215350 1.101479 1.187987
c(2) 0.344036 0.243926 0.304037
c(3) 0.122197 0.021398 0.002662
c(4) 0.028610 0.0 –0.000731
c(5) 0.0 0.0 –0.008827
 1.140802 1.072068 1.065773
K1 0.490747 0.508424 0.516452
K2 2.824526 2.952272 2.945144

K1 0.559845 0.545065 0.550420
K2 3.222226 3.165037 3.138854

  Table 2. Solutions 1–3 are three sets of coefficients obtained from three
independent constrained optimization processes by using the cubic
spline scaling function.

V. Reconstructing Original Image from �(x) and �(x)

It has been mentioned in Section II that  an image can possibly be reconstructed once the scaling

function, the wavelet function as well as its corresponding dual wavelet are determined.  In what follows,

we will divide the whole reconstruction process into two parts.  In the first part, the known functions �(x)

and �(x) will be used to derive their corresponding dual wavelet, �(x).  This part will be conducted in 1–D.
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However, since an image is 2–D by nature, the derivation has to be extended to 2–D.  Therefore, in the

second part, the continuous functions �(x), �(x) and �(x) will first be converted into their 1–D discrete

WTs.  Then, the inverse WTs of theses discrete WTs are derived.  The discrete WTs of �(x), �(x) and �(x)

and their inverse in 1–D are then used to derive the 2–D format .  Finally, an example describing how to

apply the derived 2–D edge filter to detect edge points in arbitrary direction at different scales will be

illustrated.  It is based on these edge information an image can be reconstructed.

A. Deriving the Dual Wavelet �(x)

Based on Equations (12) and (14), the definitions of �(x), �(x) and �(x) in the frequency domain are

clearly defined. Besides, their relationship is defined by Equation (15).  In Section IV, we have chosen the

quadratic spline function as the scaling function for deriving the desired edge filter.  Therefore, H(�) in

Equation (12) is determined beforehand.  Furthermore, based on a constrained optimization process, the

set of coefficients for the desired wavelet can be decided.  In other words, G(�) in Equation (13) can be

determined.  Under the circumstances, K(�) in Equation (14) can be obtained by solving Equation (15).

Once K(�) is determined, it can be plugged back into Equation (14) and then the dual wavelet �(x) can be

derived by taking the inverse Fourier transform of Equation (14).  In what follows, the detailed procedure

will be elaborated.

Based on Equation (32), the Fourier transform of a quadratic spline function has the following form:

�
^
(�) � �sin��2

��2
�3. (38)

From Equation (12) , if �1 is set to 0, we obtain

H(�) � (cos��2)3. (39)

From the inverse Fourier transform,  the set of {h(n)}| n |�6 is shown in Table 3.  It is easy to find that h(n) is

symmetric with respect to the origin.  As to the desired wavelet �(x), if we let  j=1, based on Equation (36),

we have

1
2
�(x

2
) � �

M

n�0

c(n)[�(x� n� 1
2
)� �(x� n� 1

2
)],

where M is a positive integer.  Under the circumstances, the number of coefficients needed in an expansion

is 2M+1.  In the subsequent derivation, M is consistently set  to 5.   By taking the Fourier transform, we have



15

�^(2�) � i�
M

n�0

2c(n) sin[(n� 1
2

)�]�
^
(�). (40)

It has been stated in Section IV that the best edge filter always appears when the shift is set to 1/2, i.e.,

�^(2�) � e�
�
2G(�)�

^
(�).  From Equation (13), G(�) can be derived

G(�) � iei�2�M
n�0

2c(n) sin[(n� 1
2

)�]. (41)

n h(n) g(n) k(n) l(n)
–6 0.0 0.0 0.00000268 0.0
–5 –0.000423989 0.0 0.00166352 0.0
–4 0.00110237 0.0 –0.00519218 0.0
–3 –0.00404203 –0.092042 0.00721728 0.0078125
–2 0.0363783 –0.337216 –0.04377623 0.046875
–1 0.254648 –1.212978 0.20687030 0.1171875
0 0.424413 –1.915714 –0.20687030 0.65625
1 0.254648 1.915714 0.04377623 0.1171875
2 0.0363783 1.212978 –0.00721728 0.046875
3 0.0363783 0.337216 0.00519218 0.0078125
4 0.00110237 0.092042 –0.00166352 0.0
5 –0.000423989 0.0 –0.00000268 0.0

Table 3. Coefficients of the impulse response of the filters h(n), g(n), k(n) and l(n).

The coefficient set of {g(n)}| n |�6 can then be determined and is listed in Table 3.  It is obvious that {g(n)}

is anti–symmetric with respect to 1/2.  Finally, from Equation (15), K(�) can be calculated as follows:

K(�) �
e�i�2(1� cos6��2)

i�
M

n�0

2c(n) sin[(n� 1
2)�]

. (42)

The coefficients of  {k(n)}| n |�6 are listed in Table 3.  Once {h(n)}, {g(n)}  and {k(n)} are determined, the

corresponding dual wavelet �
^
(�) can be determined, where

�
^
(�) � ei�4K(�

2
)�

^
(�
2

) �
1� cos6��4

i�
M

n�0

2c(n) sin[(n
2�

1
4)�]

�sin��4
��4
�3. (43)

Based the above results, the corresponding discrete WTs and their inverse as well can be calculated.

B. Deriving the Discrete WT and Inverse WT

In what follows, the derivation process is similar to Mallat–Zhong’s method[4].  Let

h2j(n) and g2j(n) denote the discrete filters obtained by putting 2j� 1 zeros between all two consecutive
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coefficients of h(n) and g(n), respectively.   Based on Equations (2) and (8), the discrete WT is given as

follows:

S2j�1f (n) � S2jf * h2j(n), (44)

and

W2j�1f (n) � S2jf * g2j(n). (45)

Furthermore, by putting �W2jf (n)�
j�0

 and �S2jf (n)�
j�0

 back together the original image  f(x) can be  recov-

ered.  The process is the so–called inverse wavelet transform[4].  Based on Equation (9), the inverse WT is

given as follows:

S2j�1f (n) � S2jf (n) * h2j�1(� n)�W2jf (n) * k2j�1(n), (46)

where k2j(n) is obtained by putting 2j� 1 zeros between all two consecutive coefficients of k(n). 

Now, we illustrate the 2–D WT and its inverse WT.  Let  �(x, y) denote  the scaling function as fol-

lows:

�(x, y) � �(x)�(y),

whose Fourier transform is given by

�
^
(�x,�y) � �

^
(�x)�

^
(�y)   with   �

^
(�) � e�i�1� �

�

p�1
H(2�p�), (47)

where �1 is a shift.  In 2–D wavelet transform, there are two wavelets needed to be defined.  Let �1(x, y) and

�2(x, y)  denote  two wavelets in x and y directions, respectively, and  �1(x, y) and �2(x, y) are their corre-

sponding ‘‘dual’’ wavelets.  Their Fourier transforms are as follows[4]:

 �^1(2�x, 2�y) � e�i�2�xG(�x)�
^
(�x)�

^
(�y), (48)

�^2(2�x, 2�y) � e�i�2�yG(�y)�
^
(�x)�

^
(�y), (49)

           �
^1(2�x, 2�y) � ei�2�xK(�x)L(�y)�

^
(�x)�

^
(�y), and (50)

    �
^2(2�x, 2�y) � ei�2�yL(�x)K(�y)�

^
(�x)�

^
(�y), (51)

where �2 is another shift.  The 2� periodic functions G(�), K(�) and L(�) satisfy the following rela-

tions:

|H(�)|2� G(�)K(�) � 1, and L(�) �
1� |H(�)|2

2
. (52)

At scale 2j, the 2–D wavelet transform of the function f(x,y) has two components defined respectively as

follows:

W1
2jf (x, y) � f * �1

2j(x, y) and W2
2jf (x, y) � f * �2

2j(x, y), (53)



17

where �1
2j(x, y)� 1

22j �
1( x

2j ,
y
2j) and �2

2j(x, y)� 1
22j �

2( x
2j ,

y
2j).   Besides,  the 2–D smoothing operator S2j is

defined as the convolution between f(x,y) and �2j(x, y), i.e.,

S2jf (x, y)� f * �2j(x, y), (54)

where �2j(x, y)� 1
22j�( x

2j ,
y
2j).  Assume that l(n) is the inverse Fourier transform of L(�).  Let l2j(n) de-

note the discrete filter obtained by putting 2j
� 1 zeros between all two consecutive coefficients of l(n),

and d(n) be the Dirac filter whose impulse response is equal to 1 at n=0 and 0 otherwise.   We denote S20f  as

the finest resolution view and S2Jf the coarsest resolution view of  f(x,y).   Based on Equations (53) and (54),

a procedure which can be used to derive the 2–D discrete wavelet transform of f(x,y) has been proposed by

Mallat and Zhong[4].  The procedure is described as follows:

                                       S20f (x, y)� f (x, y);  j=0;

                                      while j� J do

W1
2j�1f (m, n)� S2jf (m, n) * [g2j(m), d(n)];

W2
2j�1f (m, n)� S2jf (m, n) * [d(n), g2j(n)];

S2j�1f (m, n)� S2jf (m, n) * [h2j(n), h2j(n)];

                                                  j=j+1;

                                     end;

Here,  I(m, n) * [a(m), b(n)] specifies two separate sets of convolutions with respect to m, n, respectively,

of an image I(m,n)  using the 1–D filters a(m) and b(n).   As to the inverse WT, when a 1–D WT is extended

into a 2–D WT,  the format of Equation (9) can be rewritten as follows [4]:

S2j�1f (x, y) * �2j�1(x, y)� S2jf (x, y) * �2j(x, y)� W1
2jf (x, y) * �1

2j(x, y)

                                                                             + W2
2jf (x, y) * �2

2j(x, y), (55)

where �(x, y)� �(� x,� y), �1
2j(x, y)� 1

22j �
1( x

2j ,
y
2j) and �2

2j(x, y)� 1
22j �

2( x
2j ,

y
2j).  Based on Equation

(55), Mallat and Zhong[4] proposed a procedure for deriving the discrete inverse 2–D wavelet transform of

f(x,y) as follows:

                                       j=J;

                            while j� 0 do

S2j�1f (m, n)� S2jf (m, n) * [h2j�1(� m), h2j�1(� n)]         

   �W1
2jf (m, n) * [k2j�1(m), l2j�1(n)]  
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   � W2
2jf (m, n) * [l2j�1(m), k2j�1(n)];

                                       j=j–1;

                                     end.

Based on the above information, it is sufficient to reconstruct the original image.

Next, we will illustrate how to use W1
2jf (x, y) and W2

2jf (x, y) to calculate some related information of

the detected edge points from an image.  At scale 2j, the modulus of the gradient vector of the input image

f(x,y) is defined as follows [4]:

M2jf (x, y)� |W1
2jf (x, y)|2� |W2

2jf (x, y)|2� , (56)

and the degree of the gradient vector is:

A2jf (x, y) � Arg(W1
2jf (x, y)� i W2

2jf (x, y)). (57)

If we locate the point, whose modulus has a local maxima and is larger than a threshold, then it is classified

as an edge point.  Thus, the edge points at scale 2j in any direction can be exactly detected.  At the corre-

sponding locations, by using the magnitudes of M2jf (x, y), the edge strengths can be determined.   Further-

more, based on the values of A2jf (x, y), the directions of the detected edges  are decided.  The above proce-

dure is the so–called multi–scale edge detection [4].

VI. Experimental Results

A series of experiments have been conducted to corroborate the proposed theory.  Three standard

256� 256 images, Lena (Figure 1.(a)), house (Figure 1.(b)) and multi–pepper (Figure 1.(c)), were

adopted to test the effectiveness of the proposed edge filter.  In the experiments, the format of the wavelet

adopted was as follows ( Equation (36)):

�(x) � 1
4
�

5

n�0

c(n)[�(x
4
� n� 1

2
)� �(x

4
� n� 1

2
)].

When this wavelet  was extended to the 2–D case, there would be two wavelets in x and y directions, respec-

tively.  They were:

�1(x, y) � �(x) 1
4
�(

y
4

)           and            �2(x, y) � 1
4
�(x

4
)�(y).

In the real implementation, the convolution between an image f (x, y) and �1(x, y) was first performed in x

direction, then followed by the convolution with 1
4
�(x

4
) in y direction.  In this way, the partial derivative of
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f(x,y) in x direction, fx, could be obtained.  Similarly, the partial derivative of f in y direction, fy, was ob-

tained by convoluting f(x,y) with �(y)  in y direction followed by another convolution with 1
4
�(x

4
) in x

direction.  The gradient vector  ( fx, fy) provided the rate of change of intensity at a point (x,y).  If we locate

the local maximum of M(x, y) � f2
x � f2

y�  and threshold it, all the edge points of f(x,y) can be detected.

Here, a threshold T was used to delete the spurious edge points [3], [4].    In all experiments, the T was set to

25 for all images. Before thresholding, the value of edge strength of each point was normalized such that  its

value ranged from 0 to 255.  In order for comparison, the Mallat–Zhong’s approach was also implemented

and tested on the set of images. Figure 2(a), (c), and (e) show a series of results when Mallat–Zhong’s

wavelet was applied to the Lena image at different scales.  In contrast to the above results,  Figure 2(b), (d),

and (f) show the corresponding results which were obtained by applying our filter.  Figures  3 and 4 show

the results of another two series of experiments on the house image and the multi–pepper image, respec-

tively.  One thing to be  noticed is that there were no preprocessing or postprocessing involved in the whole

procedure.  From the above results, it is obvious that our results contained less noise information than  those

obtained by Mallat–Zhong’s method.   For example,   in Figure 2(a) there exists many noises as well as

discontinuities near the pillar and the hat of the Lena image.  However, these defects did not happen in our

result (Figure 2(b)).  The above fact means our method has better ability to remove noises and to preserve

edge continuity in an image.  From the resolution viewpoint, both Mallat–Zhong’s wavelet and ours be-

haved similarly.  That is, a coarse resolution resulted in fewer spurious responses as well as better effect on

noise removal.  However, low resolution also lose the precision of edge localization.  In our experiments,

when the resolution S was set to 22, the performance was the best in terms of noise removal and precision.

On the other hand, from the detected edge information �W1
2jf (m, n)�

j�1,2,3
 and �W2

2jf (m, n)�
j�1,2,3

 as well

as the coarsest view S23f (m, n), the original image  f(x,y)  can be reconstructed approximately by using the

inverse wavelet transform.  Figure  5 (a), (b) and (c) show the reconstruction results of the Lena, the house

and the multi–pepper images, respectively.  From the reconstructed images, it is hard to distinguish the

differences between the original images and the reconstructed ones.

VII.Conclusions and Discussions

In this report, we  have proposed a new wavelet–based approach to solving the edge detection prob-

lem.  This scheme has taken advantage of the properties of wavelet transform and Canny’s criteria to derive

a wavelet such that the edge points can be detected efficiently and accurately.   The proposed edge filter is
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similar to a gradient filter.   Since it is wavelet–based, the inherent  multiresolution nature of a wavelet

provides more flexibility in the analysis of images.   Unlike Mallat–Zhong’s filter, the proposed edge filter

was derived by executing an optimization process.  Therefore,  the performance of the proposed filter is

much better than that of Mallat–Zhong’s edge detector.   In real implementation, the proposed filter is easy

to implement.

In comparison with Mallat–Zhong’s wavelet–based approach[4], our method is different in several

aspects.  First, although Mallat–Zhong’s method was able to detect edges at different scales, its ultimate

goal was to reconstruct the whole image from the pieces of edge maps which were extracted from different

scales.  The first derivative of a cubic spline function was chosen as their mother wavelet.  The capability of

their edge filter is limited.  In this report, the desired wavelet was derived by executing an optimization

process.  This process tried to optimize three criteria proposed by Canny.  Under the circumstances, it is

obvious that our filter certainly produced better results than that of Mallat–Zhong’s.   From the experimen-

tal results, it is apparent that our results contained less noise information than  those  obtained by Mallat–

Zhong’s method.
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��������

In this appendix, the calculation of several integrals and derivatives which are needed in the deter-

mination of �(�), �(��) and K(�) will be elaborated as follows:

Case 1: The derivation of �
0

��

�(x).

�
0

��

�(x) �� 2
N

n�0

c(n) �
0

��

[�(2x� n� �)� �(2x� n� �)]dx� �
N

n�0

c(n) �
n��

�n��

�(y)dy.

Let R1 � �
n��

�n��

�(y)dy.  Plugging �3(x) into R1, the following cases have to be considered:

when 0 � �� 1	2,

R1 � 


�
�




3�	4� �3	3, if n � 0,

23	48� �	8� �2	4� �3	6, if n � 1,

1	2, otherwise;

when 1	2 � �� 1,

R1 � �� 1	16� 9�	8� 3�2	4� �3	6, if n � 0,

1	2, otherwise .

Case 2: The derivation of �
�

��

�2(x).

�
�

��

�2(x) ��
N

m�0

� 4
N

n�0

c(m)c(n) �
�

��

[�(2x� m� �)� �(2x� m� �)][�(2x� n� �)� �(2x� n� �)]dx,

��
N

m�0

� 4
N

n�0

c(m)c(n) �
�

��

[�(x)�(x� m� n)� �(x)�(x� m� n� 2�)]dx.            

Let R2 � �
�

��

�(x)�(x� m� n)dx, and T2 � �
�

��

�(x)�(x� m� n� 2�)dx.  Plugging �3(x) into R2

and T2, we have

R2 � 


�
�




11	20, if m� n � 0,

13	60, if m� n �� 1,

1	120, if m� n �� 2,

0, otherwise .
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For the case of  T2, the following conditions have to be considered.  If 0 � �� 1�2,

T2 � �
��
�

�

11�20� 2�2 	 4�4 � 8�5�3, if m	 n � 0,

13�60� 5��6	 2�2�3	 4�3�3� 8�4�3	 4�5�3, if m	 n � 1,

1�120� ��12	 �2�3� 2�3�3	 2�4�3� 4�5�15, if m	 n � 2,
0, otherwise;

and if 1�2 
 �
 1,

T2 ��
�
�

17�40	 5��4� 7�2 	 10�3 � 6�4 	 4�5�3, if m	 n � 0,
4�15� 4��3	 8�2�3� 8�3�3	 4�4�3� 4�5�15, if m	 n � 1,
0, otherwise .

Case 3: The derivation of �
�

��

�
2(x).

�
�

��

�
2(x) �16�
N

m�0

�N
n�0

c(m)c(n) �
�

��

[�
(x)�
(x	 m� n)� �
(x)�
(x	 m	 n	 2�)]dx.

Let R3 � �
�

��

�
(x)�
(x	 m� n)dx, and T3 � �
�

��

�
(x)�
(x	 m	 n	 2�)dx.  Plugging �3(x) into

R3 and T3, we have

R3 � �
��
�

�

1, if m� n � 0,
� 1�3, if m� n �� 1,

� 1�6, if m� n �� 2,

0, otherwise .

As to the case of T3, the following situations have to be considered.  If 0 � �� 1�2,

T3 �
�
�
�
�

�

1� 12�2	 40�3�3, if m	 n � 0,

� 1�3� 2�	 8�2� 20�3�3, if m	 n � 1,

� 1�6	 �� 2�2	 4�3�3, if m	 n � 2,
0, otherwise;

and if 1�2 
 �
 1,

T3 � �
��
�

�

7�2� 15�	 18�2� 20�3�3, if m	 n � 0,

� 4�3	 4�� 4�2	 4�3�3, if m	 n � 1,

0, otherwise .

Case 4: The derivation of  .

|�
(0)|� |�
N

n�0

2c(n) �
�

��

[�
(2x	 n	 �)� �
(2x� n� �)]dx|.  If 0 � �� 1�2, |�
(0)| �� 16� c(0)	

(8�� 4)c(1); and if 1�2 
 �
 1, |�
(0)| � (8�� 12)c(0).

Case 5:  The derivation of �
�

��

�

2(x).
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�
�

��

���2(x) �64�
N

m�0

�N
n�0

c(m)c(n) �
�

��

[���(x)���(x� m� n)� ���(x)���(x� m� n� 2�)]dx.

Let R4 � �
�

��

���(x)���(x� m� n)dx, and T4 � �
�

��

���(x)���(x� m� n� 2�)dx.  Plugging �3(x)

into R4 and T4, we have

R4 � �
�	



�

6, if m� n � 0,
� 4, if m� n �� 1,
1, if m� n �� 2,
0, otherwise .

As to the case of T4, the following situations have to be considered.  If 0 
 �
 1�2,

T4 � �
�	



�

6� 20�, if m� n � 0,
� 4� 10�, if m� n � 1,
1� 2�, if m� n � 2,
0, otherwise,

and if 1�2 � �� 1,

T4 �	


�

� 9� 10�, if m� n � 0,
2� 2�, if m� n � 1,
0, otherwise .

As to the multiple response criteria, if Sarkar–Boyer’s criterion [9] is used, the following integral is need-
ed.

Case 6: The derivation of �
�

��

x2�2(x).

�
�

��

x2�2(x) ��
N

m�0

� 4
N

n�0

c(m)c(n) �
�

��

x2[�(2x�m� �)� �(2x�m� �)][�(2x� n� �)� �(2x� n� �)]dx

                 � 1
2
�N
m�0

�N
n�0

c(m)c(n)	


�
�
�

��

[(y� m� �)2 � (y� n� �)2]�(y)�(y� m� n)dy

                                � �
�

��

[(y� m� �)2 � (y� n� �)2]�(y)�(y� m� n� 2�)�
�
�

dy.

Let  R5 � �
�

��

[(y� m� �)2 � (y� n� �)2]�(y)�(y� m� n)dy, and T5 � �
�

��

[(y� m� �)2 �

(y� n� �)2]�(y)�(y� m� n� 2�)dy.  Plugging �3(x) into R5 and T5, we have
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R5 �

���
�

����
�

�

�

43
280

� 11�2

10
� 11�n

5
� 11n2

10
, if m� n � 0,

131
840

� 13�
30
� 13�2

30
� 13n

30
� 13�n

15
� 13n2

30
, if m� n � 1,

131
840

� 13�
30
� 13�2

30
� 13n

30
� 13�n

15
� 13n2

30
, if m� n �� 1,

29
1680

� �

30
� �

2

60
� n

30
� �n

30
� n2

60
, if m� n � 2,

29
1680

� �

30
� �

2

60
� n

30
� �n

30
� n2

60
, if m� n �� 2,

0, otherwise .

As to T5, we have to consider the following situations.  If 0 � �� 1	2,

T5�

�����

�����
�

�

�

43
280

� 7�2

10
� 2�4� 12�5

5
� 8�6

5
� 16�7

21
�

11n2

10
131
840

� 13�
20
� 19�2

30
� �

3� 8�4

3
� 34�5

15
� 16�6

15
� 8�7

21
�

( 13
30

29
1680

� 7�
40
� 43�2

60
� 3�3

2
� 5�4

3
� 14�5

15
� 4�6

15
� 8�7

105
�

( 1
60

0, otherwise;

� 4�2n2� 8�4n2 � 16�5n2

3
, if m� n � 0,

� 5�
3
� 4�2

3
� 8�3

3
� 16�4

3
� 8�5

3
)
 (n2 � n), if m� n � 1,

� �

6
� 2�2

3
� 4�3

3
� 4�4

3
� 8�5

15
)
 (n2 � 2n), if m� n � 2,

and if 1	2 � �� 1,

T5�

�

�
�

�

�

5
112

� 9�
8
� 109�2

20
� 21�3

2
� 11�4 � 34�5

5
� 12�6

5
� 8�7

21
, if m� n � 0,

22
105

� 6�
5
� 44�2

15
� 44�3 � 10�4

3
� 26�5

15
� 8�6

15
� 8�7

105
�

( 8
15

0, otherwise .

� 8�
3
� 16�2

3
� 16�3

3
� 8�4

3
� 8�5

15
)
 (n2 � n), if m� n � 1,
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(a) Lena image. (b) House image

(c) Multi–pepper image
Fig. 1. (a)–(c) show a series of original images: (a) the Lena
image, (b) the house image, and (c) the multi–pepper image.

using Mallat�s wavelet . using our wavelet .

(a) Edge points from W1
21f (m, n) and W2

21f (m, n) (b) Edge points from W1
21f (m, n) and W2

21f (m, n)
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(c) Edge points from W1
22f (m, n) and W2

22f (m, n)
using Mallat–Zhong’s wavelet. using our method.

(d) Edge points from W1
22f (m, n) and W2

22f (m, n)

using Mallat–Zhong’s wavelet using our method.
(e) Edge points from W1

23f (m, n) and W2
23f (m, n) (f) Edge points from W1

23f (m, n) and W2
23f (m, n)

Figure 2 (a), (c), and (e) represent respectively the detected edges when Mallat–
Zhong’s filter is applied to the Lena image at scale S = 21, 22, and 23.  (b), (d)
and (f) are the results obtained by applying our wavelet on the Lena image at S
= 21, 22, and 23, respectively.

using our method .
(a) Edge points from W1

21f (m, n) and W2
21f (m, n) (b) Edge points from W1

21f (m, n) and W2
21f (m, n)

using Mallat–Zhong’s wavelet.
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(c) Edge points from W1
22f (m, n) and W2

22f (m, n)
using Mallat–Zhong’s wavelet. using our method.

(d) Edge points from W1
22f (m, n) and W2

22f (m, n)

using our method.
(e) Edge points from W1

23f (m, n) and W2
23f (m, n)

using Mallat–Zhong’s wavelet
(f) Edge points from W1

23f (m, n) and W2
23f (m, n)

Figure 3 (a), (c), and (e) represent respectively the detected edges when Mallat–
Zhong’s filter is applied to the house image at scale S = 21, 22, and 23.  (b), (d)
and (f) are the results obtained by applying our wavelet on the house image at S
= 21, 22, and 23, respectively.

using our method .
(a) Edge points from W1

21f (m, n) and W2
21f (m, n) (b) Edge points from W1

21f (m, n) and W2
21f (m, n)

using Mallat–Zhong’s wavelet.
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using Mallat–Zhong’s wavelet. using our method.
(c) Edge points from W1

22f (m, n) and W2
22f (m, n) (d) Edge points from W1

22f (m, n) and W2
22f (m, n)

using Mallat–Zhong’s wavelet using our method.
(e) Edge points from W1

23f (m, n) and W2
23f (m, n) (f) Edge points from W1

23f (m, n) and W2
23f (m, n)

Figure 4 (a), (c), and (e) represent respectively the detected edges when Mallat–
Zhong’s filter is applied to the multi–pepper image at scale S = 21, 22, and 23.
(b), (d) and (f) are the results obtained by applying our wavelet on the multi–
pepper  image at S = 21, 22, and 23, respectively.

(a) Lena image. (b) House image



32

(c) Multi–pepper image
Figure 5 Based on �W1

2jf (m, n)�
j�1,2,3

, �W2
2jf (m, n)�

j�1,2,3
and the coarsest view S23f (m, n)

, the reconstructed Lena image, house image, and multi–pepper image are illustrated
respectively in (a), (b) and (c).
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In this paper, the wavelet theory is applied to solve the edge detection as well as the image recon-

struction problems.  By the above formulation, the problem becomes to determine the coefficients h(n),

g(n) and k(n) such that the edge points can be detected efficiently and the original image can be recon-

structed correctly.  Since the scaling function �(x) will be chosen in advance and h(n)’s can be derived

accordingly.  Then, the major work is to derive the coefficients g(n) and k(n).  In this paper, a constrained

optimization process is used to guide the derivation of the coefficients set g(n)’s.  In the optimization pro-

cess, Canny’s criteria are introduced as the constraints and the properties of wavelet theory are used.  After

that, the set of coefficients k(n)’s can be determined from the coefficients h(n)’s  and g(n)’s.  Thus, the dual

wavelet is constructed.  From the functions �(x), �(x) and �(x), the so–called discrete wavelet transform

and its corresponding inverse transform are developed for efficient data analysis.

VIII. Accuracy of Edge Localization Across Scales

In the previous section, in order to make the coefficients{g(n)}n�Z decay quickly, an appropriate

shift is made.  This shift makes the set of coefficients g(n) be anti–symmetric with respect to 1�2.  It has

been pointed out in [5] that this kind of adjustment will result in a displacement of the edge position be-

tween the input f(n) and the output W2jf (n).  The effect of delocalization is more significant when the scale j

increases.  This phenomenon also happens in Mallat–Zhong’s approach [4], [5], [6].  In what follows, we

will analyze the amount of shift and then propose a solution to this potential problem.

In Fourier theory, if a shift is made on � in the input signal  f(n), then there exists a phase shift �  in the

Fourier transform of  f(n).  Based on this understanding, the phase change of W2jf (n) can be used to esti-

mate the amount of edge displacement. Assume that the coefficient set h(n) of the low–pass filter is sym-

metric with respect to �1 and that of the high–pass filter (g(n)) is anti–symmetric to �2.  Then, their Fourier

transforms can be rewritten as follows:

H(�)� H(�)e�i�1�, 

and

G(�)� G(�)e�i�2�,

where the inverse Fourier transform of H(�) and G(�) are symmetric and anti–symmetric with respect to

the origin, respectively.  Assume that  f(n) has N points and �k �
2�k
N

, k=0, 1, .., N–1.  By taking the dis-

crete Fourier transform of Equations (44) and (45) and applying recursively, we have

W
^

2jf (�k) � S
^

2j�1f (�k)G(2j�1�k)e
�i2j�1�2�k,                                                   
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� S
^

2j�2f (�k)H(2j�2�k)G(2j�1�k)e
�i2j�2�1�ke�i2j�1�2�k, 

� F(�k)�
�
�
�
j�2

n�0

H(2n�k)�
�
	

G(2j�1�k)e
�i�1�k


j�2

n�0

2n

e�i2j�1�2�k, 

� F(�k)�
�
�
�
j�2

n�0

H(2n�k)�
�
	

G(2j�1�k)e
�i�k[(�1��2)2j�1��1], (58)

where S
^

20f (�k) � F(�k).   From the above derivation, it is obvious that the amount of phase shift is

(�1 � �2)2j�1 � �1.  That is, the amount of edge shift between f(n) and W2jf (n) is  (�1 � �2)2j�1 � �1

pixels at scale j.  From Equations (39) and (41), the setting of  �1 and �2 in our derivation process are

�1 � 0 and �2 � 1�2.    Therefore, at scale 2j, the amount of edge shift between f(n) and W2jf (n) is 2j�2

pixels.  As to the 2–D wavelet transform, the amount of edge shift depends on the edge orientation. Since

the maximum amount of edge shift is 2j�2 pixels in x and y directions, respectively.  Therefore, the amount

of edge shift toward any orientation should be less than  2j�2 1� 1
 � 2j�3�2 pixels.

From the above analysis, it is obvious that the maximum edge shift in an image at scale j is 2j�3�2

pixels.  Based on the above analysis,  we propose a coarse–to–fine approach to solve the edge delocaliza-

tion problem.  The proposed approach is described as follows.  Let E2j(m, n) denote the edge points de-

tected from W1
2jf (m, n) and W2

2jf (m, n) by selecting the local extreme and thresholding the value of

|W1
2jf (m, n)|2 � |W2

2jf (m, n)|2
 .  Since the amount of edge shift in E21(m, n) is less than 21�3�2 pixels, the

effect of delocalization is small.  It means the position of each edge point in E21(m, n) is very close to its

corresponding edge point in the original image.  Therefore, the edge points in E21(m, n) can be used as the

bases to adjust the position of each edge point in E2j(m, n) for j � 1.   Assume that the edge point to be

adjusted in E2j(m, n) is P.  For each edge point P in E2j(m, n), a target edge point Q1 of  E2j�1(m, n) within a

window mask is searched such that the distance between P and Q1 is minimum and, Q1 and  P have the

same edge direction.   Here, a 5� 5 search mask is used.  Then, the point Q1 is used as P to search the next

edge point  Q2 in E2j�2(m, n) such that the distance between Q1 and Q2  is minimum and their edge direc-

tion is consistent.  This process is applied recursively until the final edge point Qj�1 in E21(m, n) is found.

Finally, the position of Qj�1 is used as a precise location to adjust the position of P.  In this way, all edge

points in E2j(m, n) for j � 1 will have very accurate positions.


