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Object tracking is an important task for active vision and robotics.  This paper presents a 3D

feature-based tracker for tracking multiple moving objects with a computer-controlled binocular

head.  Our tracker operates in two phases: an initialization phase and a tracking phase.  In the initial-

ization phase, correspondence between 2D features in the first stereo image pair is determined reli-

ably by using the epipolar line constraint and the mutually-supported consistency.  In the tracking

phase, the feedback loop is established by first predicting new 3D feature locations with the Kalman

filters and then projecting them onto the 2D images to guide the extraction of 2D features in the new

image pair.  Here, we propose a RANSAC-based clustering method for motion segmentation and

estimation by using the principle of rigid body consensus which states that all the extracted 3D fea-

tures on a rigid body have the same 3D motion.  This new method leads to a feature-clustering algo-

rithm which provides a systematic way for managing splitting, merging, appearance and disappear-

ance of multiple moving rigid objects –– including articulated objects, such as robot manipulators.

By using the motion estimates obtained with the RANSAC-based method as the measurements for

the Kalman filters, we are able to use linear Kalman filters for predictive visual tracking, instead of

the extended Kalman filters which most people used for tracking.  Experiments have shown that our

tracking system does give good results and can serve as a robust 3D feature tracker for an active bin-

ocular vision system.
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I.  INTRODUCTION

Advocated and pioneered by Aloimonos and Bajcsy in the eighties [3][5], active vision is

now an important field in computer vision.  Just a few years ago, in order to conduct real experiments

on different problems in active vision, researchers had to build their own robotic heads which pro-

vided mechanisms for modifying the extrinsic or intrinsic parameters of the cameras under computer

control [1][7][10][11][12][17][18][19].  Recently, computer controllable binocular heads have be-

come commercially available (e.g., TRC and GEC-Marconi).  In the next few years, due to the avail-

ability and popularity of the experimental equipment, active vision can be expected to receive even

more attention from the researchers in the field of computer vision and robotics.  There are many

interesting and important problems in active vision, including gaze control, attention shift, eye-hand

coordination, and object tracking.  In this paper, we present a new 3D feature-based tracker for track-

ing multiple moving objects in a cluttered environment with a computer-controlled binocular head.

Our work is closely related to the work by Kitchen and Cooper.  Cooper built a 2D feature-

based tracker that can track about 35 feature points in the image at a rate of 5 frames per second and

organized them into clusters on the basis of their motion [9].  The attributes of the features he used in

tracking were not just the location of the feature point, but also an image patch centered at that loca-

tion.  Cheng and Kitchen extended this 2D tracker to a 3D feature-based tracking system by utilizing

information in stereo correspondence [6].  While they used the rigid body constraint in motion clus-

tering and estimation, their motion estimation method was nonlinear and their motion clustering al-

gorithm was quite primitive, which made their results sensitive to noise and initial guesses.  Further-

more, the initial stereo correspondences were selected manually in their system, and the motion

model they used could not even describe a constant angular velocity motion, not to say long term

motion behavior.  Another related work is the tracking system built by Zhang and Faugeras [27][28],

which used line-based features instead of point features.  Although line segments are useful features

for tracking, there can be more point features than line features in a natural scene, and it would be

better to use all the information available in order to get better results.  Also, using line segments only
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will limit its applications to classes of images where line features are prevalent [14].  In this paper, we

deal only with point features.  However, our approach can be easily extended to using both point

features and line features.

Among a few other interesting works on visual tracking are the following.  Wavering and

Lumia used TRICLOPS, the binocular head they built at the NIST, to track an object undergoing

random or periodic motion [12].  But only experiments on one moving object with simple back-

ground were shown.  Allen et al. [2] used a stationary binocular system to track a single object in real

time.  Once tracking was stable, the system can command a robot arm to grasp the moving object.

Their system relied on real-time stereo-triangulation of optical flow and tried to cope with the in-

herent noise and inaccuracy of visual sensors by applying a nonlinear filter to recover the correct

trajectory parameters.  Papanikolopoulos et al. [20][21] used a monocular hand-eye system to track a

moving target by introducing adaptive control techniques in order to compensate for inaccurate

modeling of the environment, such as depth estimation.  Their vision system detected motion by

computing optical flow based on the Sum of Squared Differences (SSD) method.  Another interest-

ing work on monocular visual tracking is the one by Koller, Daniilidis and Nagel [16], where 3D

parameterized models were used for 2D predictive matching.  Their experiments showed that mov-

ing vehicles could be detected and tracked automatically in monocular image sequences from road

traffic scenes recorded by a stationary camera.  Even though it is possible to perform visual tracking

with a monocular image sequence [16][21], many researchers who worked on monocular visual

tracking before have now shifted to work on binocular visual tracking, e.g., Kitchen [6] and Leou

[25].  The reason is simple.  It is easier to ”track” (and predict) 3D objects in 3D space rather than in

2D image domain.  The motion segmentation problem becomes easier and occlusion can be easily

detected or predicted by using 3D object and motion models.  Another advantage of using 3D fea-

tures is that it can simplify 3D object modelling and recognition.  Of course, the price one has to pay

is mainly the stereo correspondence problem, especially, the initial stereo correspondence problem.

Stereo correspondence is well-known to be a difficult problem.  Therefore, many papers on

binocular visual tracking and motion estimation assumed that stereo correspondence and/or 3D fea-
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ture correspondence over the frames were given [24], either for every stereo pair [26] or for at least

the first stereo pair [6].  In order to extract reliable stereo correspondence automatically, some

constraints have to be imposed to eliminate ambiguous correspondence.  In this paper, in addition to

the widely used epipolar line constraint, we also use a constraint of mutually-supported consistency,

which can remove most of the false matches that happen to satisfy the epipolar line constraint.

The use of the Kalman filters (KF) or the extended Kalman filters (EKF) has now become

popular for visual tracking.  Young and Chellappa [26] described the computer simulation of a track-

ing system using the EKF that took a number of noisy 3D points assumed to belong to the same rigid

object to estimate its motion.  Zhang and Faugeras [27] derived some closed-form solutions for some

3D motion models, and used them to formulate an EKF to deal with nonlinear measurement equa-

tions.  In this paper, we formulate a linear Kalman filter for motion tracking by using the motion

estimates as the measurements for the Kalman filter.

In order to track multiple moving objects with Kalman filters, the system has to partition the

3D feature points into several common-motion clusters before applying Kalman filtering.  Here, we

encounter a famous dilemma.  That is, if we do not know which feature belongs to which object be-

forehand, then we can not determine the motion for that object.  However, if we do not know the

motion for each object, it is hard to decide which feature belongs to which object.  In this paper, we

propose a RANSAC-based clustering method for solving the 3D motion clustering and estimation

problem by using the rigid body consensus principle (described below).  This clustering method is an

extension of the RANSAC (RANdom SAmple Consensus) algorithm proposed by Fischler and

Bolles [13].  Based on this method, we have successfully developed an autonomous 3D visual track-

ing system for tracking multiple moving objects with a controlled binocular head.  Rigidity implies

that the Euclidean distance between any two points on a rigid body will remain unchanged in the next

time instant, and the principle of rigid body consensus states that all the 3D features on a rigid body

should undergo the same 3D motion.  Notice that the rigidity property used in this paper is purely

from the viewpoint of the observer and based on only short term observation.  For example, let A, B

and C be three consecutive links of a robot manipulator, where A and B are connected by joint J1, and
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B and C are connected by joint J2.  Suppose during a short time interval, J2 moved but J1 did not.

Then, from the viewpoint of the observer, A & B form a rigid body together, while C is a different

rigid body undergoing a different motion.

Roughly speaking, our tracker consists of the following five components: feature extraction,

2D temporal correspondence, stereo correspondence, motion clustering and estimation, and 3D fea-

ture prediction by Kalman filtering.  This paper is organized as follows.  The system overview and

the main algorithm are stated in section II.  The temporal and stereo correspondence algorithms are

described in section III.  Motion clustering and estimation are described in section IV.  Motion kine-

matics and the formulation for the Kalman filter are described in section V.  Experimental results are

shown in section VI.  Conclusions are given in section VII.

II.  SYSTEM OVERVIEW OF THE STEREO TRACKER

The 3D object tracking system operates in two phases: an initialization phase and a tracking

phase.  Figure 1 shows the system block diagram of the initialization phase, and Figure 2 shows the

system block diagram of the tracking phase.  Initially, the stereo cameras are calibrated, in an auto-

matic way, to have a 3D measurement accuracy of 1 millimeter (assuming good feature detection)

Feature
Extraction

Correspondence

Figure 1. The system block diagram of the initialization phase.

Camera
Calibration

Initial Stereo

Feature
Extraction

& Triangulation
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[22].  The calibration parameters of the stereo cameras are used in the subsequent binocular visual

tracking.  In the initialization phase, salient features are extracted from the first stereo image pair and

initial stereo correspondences are determined by using both the epipolar line constraint and the

mutually-supported consistency constraint.

In the tracking phase, the 2D temporal matching module uses the prediction from the previous

images to locate possible 2D feature positions in the new images.  Based on the possible 2D corre-

sponding features in the stereo image pair, the stereo correspondence module uses the epipolar line

constraint and the mutually-supported consistency constraint to reduce ambiguous and error–prone

matches.  Once the stereo correspondences are obtained, we can compute, by stereo triangulation,

the corresponding 3D feature positions at the current time instant.  With the set of all 3D feature cor-

respondences between two successive image pairs, we then apply the rigid body consensus principle

to solve the motion clustering and estimation problem simultaneously.  By using the estimate of the

successive motion obtained from the motion clustering and estimation module as the measurements

of the Kalman filter, we can predict the 3D positions of the features at the next time instant, which are

then projected onto the 2D image planes to provide the information required by the 2D temporal

matching module.  The 2D temporal matching module uses this information to determine the search

region for the best match in order to reduce the searching time.  The main algorithm for our 3D fea-

ture-based tracker is described below:

Main Algorithm

Step 1: At time t = 0  {the initialization phase}

For the first image pair

Step 1.1: Extract 2D features by using Algorithm 1 with a larger threshold to allow

only salient features.

Step 1.2: Solve the initial stereo correspondence problem by using Algorithm 2,

and compute the initial estimates of the 3D feature locations

by stereo triangulation.
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Step 2: At time t = 1, 2, ...  {the tracking phase}

For each new image pair

Step 2.1: Extract 2D features by using Algorithm 1 with a lower threshold

(i.e., to allow more candidates in).

Step 2.2: IF t=1, THEN

For each 3D feature in track, set its 3D prediction p~(1) 

at time t = 1 to be the 3D estimate p^(0) obtained in Step 1.2 

(i.e., assuming zero initial object velocity).

ELSE ( t = 2, 3, ...)

For each 3D feature in track, set its 3D prediction p~(t) 

to be the one estimated in Step 2.7 at time t–1.

Step 2.3: For each 3D feature in track, compute the 2D projections in both the

left and right images.

Step 2.4: For  both the left and right images: 

For each 3D feature in track, use the 2D temporal matching

module described in Algorithm 3 to generate a set of candidates of

temporal correspondence.

Step 2.5: For each 3D feature in track, solve the stereo correspondence problem, and

compute its 3D estimated coordinates by using Algorithm 4.

Step 2.6: Use the RANSAC-based clustering method to segment multiple moving ob-

jects and estimate their 3D motion simultaneously:

IF t = 1,   {The initial clustering stage}

THEN

Use Algorithm 5 to partition the 3D features into different

common-motion clusters and, possibly, one un-clustered set.
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ELSE ( t = 2, 3, ...)   {The cluster maintenance stage}

Maintain clusters of 3D features by using Algorithm 8.

Step 2.7: For each common-motion cluster, use a Kalman filter to predict its next

movement, which are then used to predict the 3D feature locations,

{ p~(t � 1)}, in the next time instant.

END of Main Algorithm
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Figure 2.  The system block diagram of the tracking phase (t = 1, 2, ...).  The notation used is described below:  p^(t)
is the estimate of the 3D coordinates of a 3D feature point P in track at time t.  t

�t�1 and tTt�1 are the estimates of
the rotational and translational motion of the rigid body to which P belongs.  p~(t � 1) is the 3D prediction of P at time

t � 1, obtained by using the motion estimates from the Kalman filter.  q~L(t) and q~R(t) are the 2D projections of the
3D predicted feature p~(t), in the left and right images, respectively.  {q�L(t)} and {q�R(t)} are the sets of 2D features
extracted with a lower threshold.  �qL(t, k), k � 1, 2, 3 � and �qR(t, k), k � 1, 2, 3 � are the candidate sets of temporal
correspondence in the left and right images, respectively.  p^(t) is the estimate of the coordinates of the 3D feature point
P at time t.
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III.  TEMPORAL AND STEREO CORRESPONDENCE

A slightly modified version of the corner detector developed by Cooper, Venkatesh, and

Kitchen [8] was used for extracting salient features.  The basic algorithm for the feature extraction

module is described below.

Algorithm 1.  Feature Extraction: Given an intensity image, extract a set of corner features.

For each pixel (x,y) in an image,

Step 1: Compute �xI and �yI (e.g., using the Sobel operator).

Step 2: IF  |�xI| + |�yI| � Threshold_Gradient,  THEN

This point (x, y) is not a corner.

ELSE

Calculate positions (xl , xl) and (xr , xr) to left and right along the local contour

direction. Use a similarity test to decide whether the image patch centered at

(xl , xl) or at (xr , xr) differs from that at (x, y).

Step 2.1: IF  they differ,  THEN

(x, y) is a corner.

ELSE

(x, y) is not a corner.

END of Feature Extraction

The above feature extraction method (as with most corner detectors) obtains multiple re-

sponses in the neighborhood of corner points; therefore a form of ”non-maximum suppression” (on

the basis of proximity) is used to eliminate the redundant feature points.  With our algorithm, a corner

feature is accepted as a distinguished feature if it is the strongest corner within its suppression reign

(5�5 window in our experiments).  Otherwise, it is suppressed by a distinguished feature and will be

referred to as a suppressed feature.  Notice that both the distinguished features and the suppressed

features are salient features (i.e., obtained with a larger threshold in feature extraction) and will be

used in the stereo correspondence module, but in a different way.  For each feature point, the grayle-

vel values in a small neighborhood are stored as a graylevel template for future matching.
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III.1  Initial Stereo Correspondence

Let QL and QR be the two sets of feature points extracted from the left and right images, re-

spectively, at time t = 0.  If qL � QL and qR � QR are the 2D projections of the same 3D feature, then

the two small image patches centered at qL and qR should look the same, provided that the object

surfaces are Lambertian and there is no occlusion.  Therefore, we can determine if the two feature

points, qL and qR, are a stereo pair by checking if the image patches centered at qL and qR are similar.

A popular similarity measure used for finding stereo correspondence is the sum of square difference:

J� 1
M2
�
M

i�1

�
M

j�1

[IL(i, j)� IR(i, j)]2, (1)

where IL(i,j) and IR(i,j) are the image patches centered at qL and qR, respectively, and M�M is the

size of the image patches.

Because the stereo cameras are well-calibrated, we can use the epipolar-line constraint to re-

strict the search region in finding the stereo correspondence.  However, there are still ambiguous

stereo correspondences after using the epipolar-line constraint.  This paper uses a new constraint of

mutually-supported consistency to eliminate the unreliable stereo correspondence.  The definition of

this constraint is given in Step 3 of Algorithm 2.  An illustration of the mutually-supported consis-

tency constraint is shown in Figure 3.  The algorithm for initial stereo correspondence is described

below.

Algorithm 2.  Initial Stereo Correspondence:  Given two sets of salient features, in the left and

right images, at time t = 0, this algorithm determines the initial stereo correspondence pairs.

Step 1: For each distinguished feature in the left image:

Step 1.1: Determine the corresponding search area in the right image using epipolar

line constraint.

Step 1.2: For each salient feature (distinguished or suppressed) falling in the search

area, compute the similarity measure J.
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Figure 3. Illustration of the mutually-supported consistency constraint.
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Step 1.3: The feature having the largest J is regarded as the possible corresponding 

feature in the right image.

Step 2: For each distinguished feature in the right image,

Repeat the procedure similar to Step 1.

Step 3: Use the mutually-supported consistency constraint, as described below, to eliminate the

unreliable stereo correspondence found in Step 1:

For each stereo correspondence pair (A, B) obtained in Step 1.  

IF there exists a stereo correspondence pair (C, D) obtained in Step 2, such that

Distance(B,C) < Consistency_tolerance, and 

Distance(A,D) < Consistency_tolerance,

THEN

(A, B) is a mutually-supported stereo pair; 

ELSE

(A, B) is an unreliable stereo pair.

END of Initial Stereo Correspondence
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III.2  Temporal Correspondence

Consider Figure 2.  Let P be a 3D feature point in track.  Before taking the new stereo image

pair, IL(t) and IR(t), we have a prediction of the 3D coordinates of P at time t, denoted by p~(t).  With

the known camera parameters and p~(t), we can predict the image location of the 3D point P in the left

and right images, IL(t) and IR(t), respectively.  Let the 2D predictions of p~(t) in the left and right

images be denoted by q~L(t) and q~R(t), respectively.  The 2D temporal matching module shown in

Figure 2 is used to find the temporal correspondence.  That is, for each q~L(t) (or q~R(t)), the 2D tempo-

ral matching module finds the possible temporal correspondences  {qL(t, k), k � 1, 2, 3} (or

{qR(t, k), k � 1, 2, 3}) using the template matching method.  The algorithm for 2D temporal match-

ing is described in the following.

Algorithm 3.  2D Temporal Matching:  Given a set of 2D features {q�L(t)} (or {q�R(t)}) obtained

from Step 2.1 in the Main Algorithm, this algorithm generates a set of candidates of temporal corre-

spondence {qL(t, k), k � 1, 2, 3} (or  {qR(t, k), k � 1, 2, 3}) for each 2D feature prediction q~L(t)

(or q~R(t)) associated with a 3D feature.  In the following description, we use the left image as an

example.

For each of the 3D features in track:

Step 1: For each q�L(t) falling in the search region centered at q~L(t), within the 3�3

window centered at q�L(t), find the best temporal match by using a

similarity test with the intensity pattern, associated with the 3D feature,

in the previous image IL(t� 1).

Step 2: Among the matches found in Step 1, choose the best three temporal matches

to be the candidates of the image location corresponding to the 3D feature being

tracking.

END of 2D Temporal Matching
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To reduce the computation cost, the size of the search region used in the 2D template match-

ing module is adaptive to the data.  That is, it should depend on the uncertainty of 3D prediction, p~(t),

which is in turn a function of the uncertainty of the motion estimation.

III.3  Stereo Correspondence

At the output stage of the 2D temporal matching module, each 3D feature in track may have

multiple temporal matching candidates in the left and right images.  We then use the stereo corre-

spondence module to resolve the unique stereo pair from the multiple temporal candidates in both

images.  As in the initial stereo correspondence, both the epipolar line constraint and the mutual-

ly�supported consistency constraint are utilized here.  The details of the algorithm are shown below.

Algorithm 4: Stereo Correspondence and Triangulation:  For each 3D feature in track, this algo-
rithm resolves to find a unique stereo pair from multiple candidates of temporal correspondence, in
both images, obtained from 2D temporal matching module, and then computes the estimate of the
3D feature location by stereo triangulation.

For each 3D feature in track:

Step 1: For each temporal matching candidate qL(t, k), k� 1, 2, 3, in the left image:

Step 1.1: Determine the corresponding search area in the right image using the epipolar

line constraint.

Step 1.2: For each temporal matching candidate qR(t, k) falling in the search region,

within the 3�3 search window centered at qR(t, k), find the best stereo match

by computing the similarity measure J with the intensity pattern centered at

qL(t, k).

Step 2: For each temporal matching candidate qR(t, k), k� 1, 2, 3, in the right image,

repeat the procedure similar to Step 1.

Step 3: Among the stereo matches obtained in Steps 1 and 2, use the mutually-supported consis-

tency constraint (as described in Step 3 of Algorithm 2) to choose the best stereo match

in the following way:

Step 3.1: IF  no mutually-supported consistency pair,  THEN
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fail to track this 3D feature for this time instant.

Step 3.2: IF  only one mutually-supported consistency pair,  THEN

choose this pair to be the best stereo pair for the 3D feature

in track.

ELSE    {more than one mutually-supported consistent pair}

choose the stereo pair having the minimum error in 2D temporal matches

and the largest corner strength in feature detection.

Step 4: With the stereo correspondence found in Step 3, compute the estimate of the 3D feature

location p^(t) by stereo triangulation.

END of Stereo Correspondence and Triangulation

IV. CLUSTERING OF MOVING OBJECTS

To track multiple rigid objects, our system partitions the 3D feature points into several clus-

ters, each having a common 3D motion.  Once the clustering is done, for each cluster of 3D feature

points, a motion model can be used to predict the locations of the 3D features at the next time instant.

Due to the modeling error and the measurement noise, the 3D prediction may not be good enough,

and the temporal and stereo correspondences for some 3D features may occasionally go wrong and

jeopardize the performance of the tracking system.  In this section, we propose a new method for

verifying the 3D feature correspondences over time and for clustering the 3D moving features, based

on the principle of rigid body consensus.

Suppose there are N 3D features in track at time t–1, i.e., before taking the stereo image pair

of  IL(t) and IR(t).  Let p^ i(t� 1), i � 1, 2, ���, N, be the estimates of the 3D feature locations at time

t–1.  After taking the new stereo image pair IL(t) and IR(t) and going through Step 2.1 – Step 2.5 of

the Main Algorithm in section II, the system will obtain a set of new estimates for the 3D feature

locations at time t, i.e., p^ i(t), i � 1, 2, ���, N.  Let the set of 3D correspondences between time t� 1

and time t be denoted by:
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S(t � 1, t) � ��p^ i(t � 1), p^ i(t)�� i � 1, 2, ���, N�. (2)

In the following text, we may use S to represent S(t � 1, t) for simplicity when it causes no confu-

sion.  Our goal is to partition the 3D feature points into common-motion clusters by using the in-

formation contained in S(t � 1, t), t � 1, 2, 3, ···.  Simple clustering methods, such as the k-means

clustering, do not work due to the involvement of rotation motion.  Here, we propose a RANSAC-

based clustering method which can solve the motion clustering and estimation problem, simulta-

neously and robustly, by using the principle of rigid body consensus described in section I.

A 3D rigid body motion can be uniquely characterized by a rotation matrix R and a 3D

translation vector T.  For any three non-collinear 3D feature points, their 3D correspondence over

time can be used to compute a least square solution to the motion parameters, R and T, by using the

Arun method [4].  The strategy we used for clustering 3D feature points in the initial clustering stage

(t=1) is different from that in the cluster maintenance stage (t =2,3, ...).  In the initial clustering stage,

3D feature points are partitioned into common-motion clusters by Algorithm 5.  In the cluster main-

tenance stage, points having inconsistent 3D motion will be removed from the existing clusters and

merged into an un-clustered set S0.  If the number of un-clustered points in S0 exceeds Nmin, the

minimum size required for a consensus set, then the system will try to form new common-motion

clusters from the un-clustered set S0, which indicates the appearance of new moving objects (or clus-

ters).  Splitting and merging of clusters are also taken care of with our cluster maintenance algorithm.

The algorithms for generating the rigid body consensus sets are described below.

Algorithm 5.  Initial Clustering:  Given a set of 3D correspondences between t � 0 and t � 1,
S(0, 1), this algorithm partitions the 3D feature points into several clusters, each having a common
3D motion, and possibly, one un-clustered set S0.

Step 1: Given S(0, 1), partition 3D feature points into several clusters by using Algorithm 6.

Those 3D features classified to belong to a common-motion cluster in this step are mem-

bers (in contrast to candidates) of that cluster.
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Step 2: For each 3D feature point that was not classified into any common-motion cluster in Step

1, check if it can be assigned as a candidate of a common-motion cluster in the following

way:

The ith feature point, with 3D correspondence �p^ i(0), p^ i(1)�, is classified

into cluster j if it gives the smallest ej
i
� � p^ i(1)� 1Rj

0
p^ i(0)� 1Tj

0
� for

all j and ej
i
� Tolerance_Loose, where 1Rj

0
 and 1Tj

0
 are the rotation matrix

and the translation vector, respectively; otherwise, assign this feature to be

an un-clustered feature.

END of Initial Clustering

Algorithm 6.  Motion Clustering of an Un-clustered Set:  Given an un-clustered set of 3D corre-
spondences over time, S0, this algorithm partitions the 3D feature points into several common-mo-
tion clusters and, possibly, one remaining un-clustered set.

Repeat the following procedure until #(S0) < Nmin :

Step 1: Find the largest rigid body consensus set S* � S0 and its common 3D motion tRt�1 and

tTt�1 by using Algorithm 7.

Step 2: IF  #(S*) � Nmin,  

THEN

Step 2.1: Construct a new common-motion cluster with a unique cluster

identification having the motion tRt�1 and tTt�1.  The 3D feature

point having its 3D correspondence pair in S* will be assigned as a

member of this new common-motion cluster.

Step 2.2: Remove all the elements of S* from S0.

ELSE

Break from the Repeat procedure.

END of Motion Clustering of an Un-clustered Set
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Algorithm 7.  Finding the Largest Rigid Body Consensus Set:  Given a set of 3D correspondences
over time, S, this algorithm finds the largest rigid body consensus set and its common 3D motion.
Notice that the size of the largest rigid body consensus set generated by this algorithm can be smaller
than three due the three threshold of Tolerance_Tight.

Step 1: Determine the number of random trials, Ntrial�
k

w3  (refer to [13]).

Step 2: Find a motion consensus set instantiated by a random sample of size three from S:

Step 2.1: Randomly select a subset S1 of three feature pairs from S, and compute the

motion tRt�1 and tTt�1 by using the Arun method [4].

Step 2.2: Form the consensus set S1* from S, where S1* is the set of all

�p^ i(t� 1), p^ i(t)� � S such that

� p^ i(t)�
tRt�1 p^ i(t� 1)�t Tt�1 � � Tolerance_Tight.

Step 3: Repeat Step 2 for Ntrial times, and keep the largest consensus set.

Step 4: Recompute the motion parameters tRt�1 and tTt�1 from the largest consensus set by us-

ing a weighted version of the Arun method.

END of Finding the Largest Rigid Body Consensus Set

After executing the initial clustering algorithm, each 3D feature point will be either a mem-

ber or a candidate of a common-motion cluster, or still remain to be an un-clustered feature.  Sup-

pose that at time t–1, we have L(t� 1) common-motion clusters.  Let SM
j(t� 1, t) be the set of all

3D correspondences �p^ i(t� 1), p^ i(t)� such that their corresponding 3D feature points are members

of the jth common-motion cluster.  Let SC
j(t� 1, t) be the set of all 3D correspondences

�p^ i(t� 1), p^ i(t)� such that their corresponding 3D feature points are candidates of the jth common-

motion cluster. Let

Sj(t� 1, t) � SM
j(t� 1, t) � SC

j(t� 1, t) .
Then

S(t� 1, t) 	 S0(t� 1, t) � S1(t� 1, t) � ··· � SL(t�1)(t� 1, t) ,

where S0(t� 1, t) is the set of all un-clustered 3D correspondences.  Each common-motion cluster
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contains the following data:  a unique cluster identification denoted by j, a common 3D motion de-

noted by tRj
t�1

 and tTj
t�1

, and a set of 3D correspondences over time denoted by Sj(t� 1, t) which

can be divided into a member set SM
j(t� 1, t) and a candidate set SC

j(t� 1, t).  When a new image

pair is acquired, the new 3D correspondences over time can be obtained by using the algorithms de-

scribed in section III, and then the common-motion clusters have to be updated.  Re-clustering of the

new 3D correspondences over time is used to manage the splitting and merging of common-motion

clusters.  For a 3D feature Pi with 3D correspondence �p^ i(t� 1), p^ i(t)�, we define its motion simi-

larity error with respect to cluster j having motion tRj
t�1

 and tTj
t�1

 to be

ej
i
� � p^ i(t)�

tRj
t�1

p^ i(t� 1)�t Tj
t�1
�  . (3)

If the motion similarity error of a 3D feature Pi with respect to cluster j, ej
i
, is the smallest among all

active clusters , then this 3D feature Pi is said to be most similar in motion to cluster j, and cluster j is

the most similar-in-motion cluster for Pi.  Also, two common-motion clusters, j and k, are said to

have common 3D motion if the following two conditions are both satisfied:

1

#�SM
j�

�
�p^(t�1), p^(t)��SM

j

� p^(t)� tRk
t�1 p^(t� 1)�t Tk

t�1
� � Tolerance_Tight , (4)

1

#�SM
k�

�
�p^(t�1), p^(t)��SM

k

� p^(t)� tRj
t�1

p^(t� 1)�t Tj
t�1
� � Tolerance_Tight . (5)

The algorithm for maintaining the common motion clusters is described below.

Algorithm 8: Cluster Maintenance:  This algorithm maintains the appearance, disappearance,
splitting, and merging of the active common-motion clusters of 3D features.

Step 1: For each common-motion cluster j, j = 1, 2, ..., L(t� 1):

Step 1.1: Find the largest rigid body consensus set A 	 SM
j(t� 1, t) and update the

motion parameters tRj
t�1

 and tTj
t�1

 by using Algorithm 7.

Step 1.2: IF  #(A) is smaller than Nmodel_required ( = 3), the minimum number of the 3D

feature pairs required to instantiate a model,
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THEN

Assign all its members and candidates to be un-clustered and delete this

cluster (i.e., this common-motion cluster disappears).

ELSE

Step 1.2.1: Move the 3D correspondences which are in SM
j(t � 1, t) \ A

from SM
j(t � 1, t) to the un-clustered set S0.  That is, the inconsistent

members are removed from the jth cluster and assigned to be

un-clustered.

Step 1.2.2: For each candidate in the jth common-motion cluster, check if

it can be promoted as a member in the following way:

If its motion similarity error with respect to the jth cluster is

smaller than Tolerance_Tight, then promote it to be a member;

otherwise, remove it from the candidate set of the jth cluster and

assign it to be an un-clustered feature, for the moment, which

may then become a candidate of an active common-motion

cluster in Step 2, or a member of a new cluster in Step 3.

Step 2: For each un-clustered 3D feature, check if it can be assigned as a candidate of an active

common-motion cluster in the following way:

If its motion similarity error with respect to the most similar-in-motion cluster

is less than Tolerance_Loose, then assign it to be a candidate of that most

similar-in-motion cluster; otherwise, keep it to be un-clustered.

Step 3: If #�S0� is greater than Nmin, then apply Algorithm 6 to S0 to find new common-motion

clusters (at this moment, with members only).

Step 4: For each active common-motion cluster j:

Step 4.1: If there is a cluster k having common 3D motion with cluster j for three con-

secutive cycles, then merge these two clusters.
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Step 4.2: If the number of its members is less than Nmin for three consecutive cycles,

then assign all its members and candidates to be un-clustered and delete this

cluster (i.e., this common-motion cluster disappears).

End of Cluster Maintenance

Notice that in Algorithm 8, Step 1.2 and Step 4.2 deal with the disappearance of an active

cluster; Step 3 accomplishes the appearance of new clusters; Step 4.1 deals with the merging of clus-

ters; and Step 1, together with Step 3, accomplishes the splitting of an active cluster.  In our algo-

rithm, only members contribute to the motion estimation of a common-motion cluster; candidates

are only assigned to a common-motion cluster for predicting their next 3D position and for the possi-

bility of becoming a member of that cluster in the next time instant.  Consider Figures 4 and 5.  Ini-

tially, all the 3D feature points are un-clustered.  In the initial clustering stage (i.e., Algorithm 5),

each 3D feature point is classified either as a member of a cluster (Step 1), or as a candidate of a

cluster (Step 2), or leave as un-clustered (Step 2).  In the cluster maintenance stage (i.e., Algorithm

8), a member can either remain in the same cluster (Step 1.1), or be merged into the un-clustered set

(Step 1.2 or Step 4.2); a candidate can either be promoted as a member (Step 1.2.2) or be merged

into the un-clustered set (Step 1.2.2 or Step 4.2); and an un-clustered feature can either be assigned

as a member of a new cluster (Step 3), or be assigned as a candidate of a cluster (Step 2), or remain as

an un-clustered feature (Step 2).  Before becoming a member of a common-motion cluster, a 3D

Figure 4.  State transition of a 3D feature in the initial clustering stage (Algorithm 5).
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Step 2
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Step 2

un-clustered
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Figure 5.  State transition of a 3D feature in one iteration of the clustering maintenance stage (Algorithm 8).
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feature has to first become a candidate of that cluster, unless it is one of the initiator of that cluster.  In

one iteration of the clustering maintenance algorithm, a member can become a candidate only

through both Step 1.2 and Step 2, i.e., it can not be demoted to be a candidate directly in one step.

This leaves the possibility of letting this member become a candidate of a more similar-in-motion

cluster than the present one.  Similarly, a candidate of a common-motion cluster can remain as a can-

didate only through Step 1.2.2 and Step 2, i.e., it has to be first assigned as un-clustered in Step 1.2.2,

and then become a candidate again in Step 2.  This also gives it a chance of becoming a candidate of a

more similar-in-motion cluster.

V.  MOTION PREDICTION BY KALMAN FILTERS

The motion clustering and estimation module described in section IV will give a new motion

estimate for each common-motion cluster based on the new observation of 3D features.  The motion

estimate can then be used as the new measurement for the Kalman filter which will be used to predict

the next motion of the common-motion cluster, as described in this section.  The predicted motion

will then be used to predict the 3D feature locations in the next time instant.  Using these 3D feature

predictions, 2D feature matching can be greatly simplified, and much better performance on track-
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ing can be achieved.  To describe the Kalman filters for motion prediction, we need to address some

of the modeling issues on motion kinematics.

V.1  The Motion Kinematic Model

Let P be a point on a rigid body.  Let p(t) and p(t� 1) be the 3D coordinates of P at time t

and time t� 1 with respect to the Viewer Reference Frame (VRF).  Then, we have the following

equation

p(t)� t Rt�1p(t� 1)� tTt�1
 , (6)

where tRt�1 is a 3� 3 orthogonal matrix specifying the 3D rotation from time t� 1 to time t  and

tTt�1 is a 3� 1 vector specifying the 3D translation from time t� 1 to time t.

A common approach to modeling the motion kinematics is to divide the 3D motion of a rigid

body into two parts: a rotation around an axis (called the rotation axis) and a translation of the rota-

tion axis[27].  Let Q0 be a fixed 3D point on the rotation axis, which will be referred to as the rotation

center.  Let b(t) and b(t� 1) be the 3D coordinates of Q0 at time t and time t� 1 with respect to the

VRF, then

b(t)� t Rt�1b(t� 1)� tTt�1
 . (7)

From equations (6) and (7), we have

p(t)� b(t)� t Rt�1[p(t� 1)� b(t� 1)] . (8)

The trajectory of the rotation center, b(t), can be described by the following recursive equation:

b(t)� b(t� 1)� v(t� 1) �t� 1
2

a(t� 1) (�t)2 , (9)

where v(t� 1) and a(t� 1) are the translational velocity and acceleration , respectively. The angu-

lar velocity of a 3D object at time t can be denoted by a 3� 1 rotation vector �(t) whose direction is

that of the rotation axis and whose norm is equal to the rotation angle.  Then,

�(t)� �(t� 1)� �(t� 1) �t . (10)



� �� �

where �(t� 1) and �(t� 1) are the angular velocity and acceleration, respectively.  In this paper,

we assume constant acceleration, i.e., a(t) � a(t� 1) and �(t) � �(t� 1).

V.2  3D Feature Prediction by Using Kalman Filters

In our system, Kalman filters are used to predict 3D motions of multiple rigid objects.  The

predicted 3D motions are then used to predict the 3D feature locations for simplifying 2D temporal

matching (or ”tracking”) in the next time instant.  Linear Kalman filters, instead of EKFs, can be

applied by formulating the problem in the following way.

The state vector st at time t is a 15� 1 vector defined as

st � [�(t)T, �(t)T, b(t)T, v(t)T, a(t)T]T, (11)

where �(t), �(t), b(t), v(t) and a(t) are 3� 1 vectors representing the angular velocity, the angular

acceleration, the position of the rotation center, the translational velocity and the translational accel-

eration, respectively, at time t.

Using the constant acceleration assumption and equations (9) and (10), the state equation can

be written as

st�1 � H st � nt , (12)

where the state transition matrix H is

H �
��
�
�
�

�

�

I3

0
0
0
0

(�t)I3

I3

0
0
0

0
0

I3

0
0

0
0

(�t)I3

I3

0

0
0

(�t)2

2 I3

(�t)I3

I3

��
�
�
�

	




, ����

and the random disturbance nt is white with covariance matrix Qt , i.e. ,

E[nt] � 0 and E[ntnt
T] � Qt . (14)

An important step in applying linear Kalman filtering to the motion prediction problem is to

use the motion estimates obtained by the motion clustering and estimation module, instead of direct-

ly using the observation of the 3D features.  Our goal is then to establish a linear relation between the
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motion estimates (i.e., measurements) and the system state, st.  Notice that the motion of the rotation

center, b(t), is independent of the angular velocity �(t) of the 3D object.  From equations (7) and (9),

we have

tTt�1 � (I3�
t Rt�1)b(t)� t Rt�1v(t)�t� 1

2
tRt�1a(t)(�t)2 (15)

by using v(t) � v(t� 1)� a(t� 1)�t and a(t) � a(t� 1).  Also, we can directly compute the

angular velocity t�t�1 from tRt�1 by using the Rodrigues formula [15].  Define the measurement

vector to be

x(t) ��
�
�

t�t�1
tTt�1
�
�
	

. ����

By using equation (15), the measurement equation can be written as

x(t) � Ft st� �t, (17)

where

Ft ��
�
�

I3

0
(�t)I3

0

0
I3�

tRt�1

0
(�t) t Rt�1

0

� 1
2

(�t)2 tRt�1
�
�
	

, ��	�

and the measurement noise �t is white with covariance matrix �t , i.e.,

E[�t] � 0 and E[�t�t
T] � �t . (19)

Figure 6 shows the block diagram of the module for 3D feature prediction by Kalman filter-

ing and its interface with the rest part of the system (also refer to Figure 3).  At time t, based on the

new stereo images (i.e., IL(t) and IR(t)) and the 3D feature predictions from the previous time instant

(i.e., { p~(t)}), the rest part of the system can generate a set of 3D feature observations at time t,{ p^(t)},

and then update their clustering (motion segmentation) and estimate the motion, t�t�1 and tTt�1,

for each ”rigid” body (”rigid” from the viewpoint of the observer based on recent observation).  The

Kalman filter can be divided into two parts: updating and prediction.  Before the updating, the Kal-

man gain matrix should be estimated by following equation:
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Kt � Pt | t�1 Ft
T (Ft Pt | t�1 Ft

T
� �t)�1, (20)

where Pt | t�1 is the predicted state covariance matrix which is extrapolated by the previous state

covariance Pt�1 :

Pt | t�1 � Ht�1Pt�1Ht�1
T
� Qt�1 . (21)

Then, the state vector st is updated by using the measurement x(t) :

s^t� s^t | t�1� Kt ( xt� Ft s^t | t�1), (22)

and the state covariance matrix Pt is updated by:

Pt� (I� Kt Ft) Pt | t�1 . (23)

The following equation can then be used to predict the state vector at time t� 1 based on the mea-

surement at time t :

s^t�1 | t � H s^t . (24)

p~(t)

IL(t)

IR(t)
t
�t�1

tTt�1

s^t| t�1

����� ������	


s^t

State Prediction

3D Feature
Prediction

p^(t)

p~(t)

s^t�1| t

Fig 6.  The block diagram of the module for 3D Feature Prediction by Kalman Filtering and
its interface with the rest part of the system shown in Figure 3.
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Once we have the prediction of the state at the next time instant, s^t�1| t , we can use equation

(8) to compute the prediction of 3D feature location at time t� 1:

p~(t� 1)� t�1 Rt [p
^

(t)� b(t)]� b(t� 1) . (25)

where b(t) is obtained from s^t , b(t� 1) is obtained from s^t�1| t , and t�1Rt can be computed from

t�1
�t in s^t�1| t (i.e., the �-components of s^t�1| t ) by using the Rodrigues formula [15].

VI. EXPERIMENTAL RESULTS

Fig. 7 shows the active binocular head used in the experiments described below.  The camera

parameters and the kinematic parameters of the binocular head were calibrated in advance [22][23],

and could be controlled to fixate on any given 3D points.  For our stereo vision system, the error for

3D point measurements, due to calibration inaccuracy and 2D feature detection error, is less than 2

millimeters in general.  Therefore, Tolerance_Tight is set to 2 millimeters, which is the uncertainty

of the 3D point measurement.  On the other hand, Tolerance_Loose is arbitrarily set to 5 millimeters

���� 	� 
�� 
����� �������
� ��
� ���� �� ��� �����������
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in order to allow some non-rigidity or slight mis-correspondence.  Nmodel_required is three because the

Arun method requires at least three point correspondences to compute the motion parameters, and

Nmin is arbitrarily set to ten because a rigid body should have at least ten features in our experiments.

In the following experiments, the window size for similarity test used in the template matching mod-

ule is 7�7 pixels, and the consistency_tolerance used for checking the mutually-supported consis-

tency was set to 2 pixels.  Because of the sensitivity problem for estimating angular acceleration, we

assume constant angular velocity in our system, i.e., the 3D object undergoes a constant 3D rotation

during a time interval and �(t)� �(t� 1).

This section presents the results of the tracking experiments on three motion sequences, each

of them having 30 stereo image pairs.  In the first image sequence, a cola can was moving from right

to left on a conveyor belt while the observer and the background objects were stationary.  In the se-

cond image sequence, the cola can was moved right to left as in the first image sequence, and the

binocular head was panning (0.2� per frame) from right to left while the background was stationary.

In the last image sequence, the background was still stationary, but the moving cola can was roughly

fixated by the active binocular head such that the cola can was approximately held at the center of the

image.  In all the above three image sequences, the cola can moved approximately 7 millimeters per

frame.  Figures 8, 10 and 12 show the initial stereo correspondences of each image sequence, respec-

tively.  The image size is 512 by 512 pixels, and the corner features are marked by 5x5 squares.  The

initial stereo correspondences obtained with our automatic matching algorithm are quite reliable,

which gives a good foundation for the subsequent tracking.  There are 56~73 features on the cola can

and 136~144 features on the background, depending on the image sequence, the time instant, and the

left or right image.

Figures 9, 11 and 13 show the trajectories of the tracked 3D features plotted on the last stereo

image pair, where the 2D image locations of the 3D feature points at each time instant were marked

with small crosses 5 pixels high.  Square marks indicate the 2D locations, in the last image, of those
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Figure 8.  (Image sequence 1)  Initial stereo correspondence pairs superimposed on the first left and right images.

Figure 9.  (Image sequence 1)  Trajectories of the tracked feature points superimposed on the last stereo image pair.
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Figure 10.  (Image sequence 2)  Initial stereo correspondence pairs superimposed on the first left and right images.

Figure 11.  (Image sequence 2)  Trajectories of the tracked feature points superimposed on the last stereo image pair.
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Figure 12.  (Image sequence 3)  Initial stereo correspondence pairs superimposed on the first left and right images.

Figure 13.  (Image sequence 3)  Trajectories of the tracked feature points superimposed on the last stereo image pair.
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feature points which were still in track after 30 image frames.  Objects having different 3D motions

were successfully clustered and segmented by using our algorithm.

VII. CONCLUSION

In order to record and analyze the dynamic scene automatically, an intelligent system should

be able to fixate its cameras on an interesting object by applying gage control so that the object re-

mains in the field of view.  This paper has presented a 3D feature-based tracker capable of tracking

multiple moving objects even when the stereo camera set is moving.  Therefore, it can be used to

control the binocular head (a robot manipulator for moving the cameras around) to fixate its cameras

on the object it is interested in.  This tracker is completely autonomous in the sense that it requires no

initial correspondence of any kinds, either temporal or stereo correspondence.  Any 3D rigid objects,

or any articulated objects such as robot manipulators, can be tracked with our tracker as long as there

are some corner features on each moving component.  We are currently extending it to also utilizing

3D line features.  We are also working on extending this system to track slightly non-rigid object by

adaptively adjusting the tolerance for testing motion similarity and by considering the spatial rela-

tionship between the 3D features.  If at some stage, the object is recognized (or hypothesized) to be a

known object with some parametric model, then techniques used by Koller, Daniilidis and Nagel

[16] can be applied in the 2D template matching module to enhance the performance of our tracker.

The performance of our 3D tracker is mainly based on the following factors: (i) A RANSAC-

based motion clustering and estimation algorithm using the rigid body consensus is proposed for

grouping features into common-motion clusters and estimating their 3D motion simultaneously.

This clustering method provides a systematic way for managing splitting, merging, new appearance

and disappearance of multiple moving rigid objects.  (ii) Linear Kalman filters are used to predict the

next movements of common-motion clusters, which can then be used to provide better prediction for

tracking 3D features (i.e., finding temporal correspondence).  (iii) Two parallel 2D temporal mod-

ules are utilized to make full use of the temporal information contained in the image sequence.  (iv)
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The constraint of mutually-supported consistency is introduced to eliminate incorrect stereo corre-

spondences.  (v) Calibration is done automatically and accurately to assure the accuracy of 3D infer-

ence.  (vi) In order to exploit parallelism to meet the real-time requirement, our system is integrated

with multi-agent architecture, which also makes it easiest to extend our system by adding extra

agents.  Preliminary experiments have shown that our tracking system does give good results and can

serve as a robust 3D feature tracker for our active binocular vision system.
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