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Abstract

A new edge–based approach for efficient image registration is proposed.  The proposed approach

applies wavelet transform to extract a number of feature points as the basis for registration.  Each selected

feature point is an edge point whose edge response is the maximum within a neighborhood.  By using a

line–fitting model, all the edge directions of the feature points are estimated from the edge outputs of a

transformed image.  In order to estimate the orientation difference between two partially overlapping

images, a so–called ‘‘angle histogram’’  is calculated.   From the angle histogram, the rotation angle which

can be used to compensate for the difference between two target images can be decided by seeking the

angle that corresponds to the maximum peak in the histogram.  Based on the rotation angle, an initial

matching can be performed.  During the real matching process, we check each candidate pair in advance to

see if it can possibly become a correct matching pair.  Due to this checking, many unnecessary calculations

involving cross–correlations can be screened in advance.  Therefore, the search time for obtaining correct

matching pairs is reduced significantly.  Finally, based on the set of correctly matched feature point pairs,

the transformation between two partially overlapping images can be decided.  The proposed method can

tolerate roughly about 10% scaling variation and does not restrict the position and orientation of images.

Further, since all the selected feature points are edge points, the restriction can significantly reduce the

search space and, meanwhile, speed up the matching process.  Compared with conventional algorithms,

the proposed scheme is a great improvement in efficiency as well as reliability for the image registration

problem.
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List of Symbols

Symbol Explanation
f1 and f2 the input images.

W1
2jf and W2

2jf the 2–D wavelet transforms for an image f(x,y).

M2jf the modulus of W1
2jf and W2

2jf.

Rn  the edge correlation.

Np a neighborhood used to determine a feature point P.

Cf1,f2
 the cross–correlation metric.

Cf1,f2
the modified cross–correlation metric.

�i the local mean of an image fi.

�i the local variance of an image fi.

�e a neighborhood of a feature point P used to 

estimate its orientation.
FPf1

 and FPf2
two sets of feature points extracted from f1 and f2.

Nf1
the number of elements in FPf1

.

Nf2
the number of elements in FPf2

.

MP a set of possible matching pairs.

Nm the number of elements in MP.

Mc
p the set of all correct matching pairs.

Nc the number of elements in Mc
p.

A(u) the orientation of an edge (or feature ) point u.

�i,j the orientation difference between two feature

points pi and qj.

� the orientation difference between f1 and f2.

f
^

1  the image f1 after rotating with the angle �.

�
^

the orientation difference between f
^

1 and f2.

H(�)  the angle histogram used to estimate the angle �.
s a scaling parameter.

T a translation vector.
R a rotation matrix.

s^, T
^
, and R

^
the corrections for s, T, and R, respectively.
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I. Introduction

Image registration is an important technique for a great variety of applications such as aerial image

analysis [1], [2], [3], stereo vision [4], [5], automated cartography [6], motion analysis[7], [8], and the

recovery of the 3–D characteristics of a scene [9].  There are two tasks which need to be handled during an

image registration process.  They are feature selection and correspondence establishment.  Typically, fea-

ture points can be selected by manual or automatic methods [1], [6],  [10].  However, automatic selection of

feature points is always preferable.  As to the correspondence problem, algorithms for determining corre-

spondences between feature points can be classified into two categories: feature–based and area–based

methods.  The former is used to extract common features such as curvatures, moments, areas, or line seg-

ments to perform accurate registration [12], [14], [15].  Since most of the proposed features do not depend

on the gray–level characteristics, the feature–based method has been shown to be more suitable for the

problems of multi–sensor image registration.  For example, Li et al. [12] proposed a contour–based ap-

proach to register images from multiple sensors.  The success of their method depends on the assumption

that  the common structures of images must be preserved well.  Therefore, their method is efficient but

works well only on cases where the contour information is well preserved.  On the other hand, the area–

based method usually adopts a window of points to determine a matched location using the correlation

technique [1], [3] .   The most commonly used measure is normalized cross–correlation.  This method is

more robust than the feature–based method in some situations.  However, if the orientation difference be-

tween the two images is large, the value of cross–correlation will be greatly influenced and the correspon-

dences between feature points, thus, hard to derive.  Therefore, De Castro and Morandi [13] proposed an

elegant method, called phase correlation, to overcome this problem.  However, when the overlapping area

between images is small, their method becomes unreliable.  In order to solve the problem, it is necessary to

develop a method to estimate the rotation parameter in advance.  In [3], Zheng and Chellappa proposed a

method for determining the rotation parameter.  They used a Lambertian model to model an image.  Under

the assumption that the illumination source is stationary, they use a shape–from–shading technique to esti-

mate the illuminant directions of  images.  By taking the difference between the illuminant directions, the

rotation angle between images is obtained.  After obtaining the rotation angle, one of the two images is then

rotated such that the orientation difference between the two images becomes very small.  By adopting the

method proposed by Manjunath et al. [11], a number of feature points are extracted from the image pair.

Then, these feature points are matched by using an area–based method in a hierarchical image structure.  In

Zheng–Chellappa’s approach, the technique for estimating the rotation angle works well for most cases.
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However,  if a scene includes many buildings and objects, the method will fail due to the fact that the illu-

mination conditions in one image may not be equivalent to those in the other.  In general, the estimation of a

rotation angle in their approach is rough.  Further, their approach requires a Gabor function decomposition

in the feature extraction process.  This decomposition is computationally intensive.  Another drawback of

their approach is that when false matches emerge, their method can not handle them.

In this paper, we propose a new method to tackle the above mentioned problems.  The domain of the

images under consideration is aerial images; however the proposed method is also suitable for other types

of images.  The proposed method is based on the following assumptions.  First, since the distance between

the camera on an aircraft and the target objects on the ground is very far, it is reasonable to assume that the

images are taken by cameras whose optical axes are parallel.  Further, the variations of the intensity charac-

teristics between images are assumed to be small.  The proposed approach applies wavelet transform to

extract a number of feature points as the basis for registration.  Each selected feature point is an edge point

whose edge response is the maximum within a neighborhood.  By using a line–fitting model, all the edge

directions of the edge points are estimated from the edge outputs of a transformed image.  In order to esti-

mate the orientation difference between the images, a so–called ‘‘angle histogram’’  is calculated .   From

the angle histogram, the rotation angle which can be used to compensate for the difference between the two

target images can be decided by seeking the angle that corresponds to the maximum peak in the histogram.

Based on the rotation angle, an initial matching can be performed.  During the real matching process, we

check each candidate pair in advance to see if  it can possibly become a correct matching pair.  Due to this

checking, many unnecessary calculations involving cross–correlations can be screened in advance.  There-

fore, the search time for obtaining correct matching pairs is reduced significantly.  Once all the correct

matching pairs are found, they are then used to derive the correct registration parameters.  In this work, we

apply an iterative scheme to make the registration result more reliable.  Since only three or fewer iterations

are needed, and only a few feature points are  involved in the matching process, the whole procedure can be

accomplished very efficiently.   Furthermore, the proposed method can tolerate approximately 10% scal-

ing variation and does not have to restrict the position and orientation of images.  Compared with conven-

tional algorithms, the proposed scheme offers great improvement in efficiency as well as reliability for the

image registration problem.

The rest  of this paper is organized as follows.  In the next section, we discuss how feature point

extraction is performed using wavelet transforms.  The procedure for finding correct matching pairs be-
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tween two partially overlapping images is described in detail in Section III.  Based on the correct matching

pairs found by the method described in Section III, the procedure for deriving correct transformations be-

tween two target images is reported in Section IV.  Section V summarizes the whole matching algorithm,

and experimental results are reported in Section VI.  Finally, a conclusion will be presented in Section VII.

��� ������� 	
��� �������
� ����� ������� ������
���

In this section, we shall describe in detail the process for applying wavelet transforms in the detec-

tion of feature points.  Wavelet transform (WT) [27] for multiresolution local analysis on signals has been

proved to be very effective.  It has been successfully applied to many image analysis tasks such as edge

detection [21], [33], corner detection [22], texture classification[23], object recognition [24], image seg-

mentation [25], and shape recovery [26].  In this section, we shall introduce how this technique is applied to

the problem of scene registration.

First of all, let S(x,y) be a 2–D smoothing function.  Two wavelets, �1(x, y) and�2(x, y), are the par-

tial derivatives of the smoothing function S(x,y) in the x and y directions, respectively, where

�1(x, y) �
�S(x, y)
�x

  and �2(x, y) �
�S(x, y)
�y

. 

The above smoothing function S(x,y) and its corresponding wavelets are the same with the ones in Mallat’s

paper [21].  Let �1
2j(x, y) � 1

4j�
1( x

2j ,
y
2j) and �2

2j(x, y) � 1
4j�

2( x
2j ,

y
2j).   At each scale, 2j,  the 2–D wavelet

transform of a function f (x, y) in L2(R2) can be decomposed into two independent directions as follows:

W1
2jf (x, y) � f * �1

2j(x, y), 

and

W2
2jf (x, y) � f * �2

2j(x, y).

Basically, these two components are equivalent to the gradients of f(x,y) smoothed by S(x,y) at scale 2j in

the x and y directions.  At a specific scale s � 2j, the modulus of the gradient vector of f(x,y) can be calcu-

lated [21]:

M2jf (x, y) � |W1
2jf (x, y)|2� |W2

2jf (x, y)|2� . (1)

If  the local maxima of  M2jf (x, y)  are located and thresholded with a preset value, then all the edge points of

f(x,y) at scale 2j can be detected.  Since we are interested in some specific feature points for scene registra-

tion,  additional constraints have to be introduced.  In general, noise is the main cause of false detection of

edge points.  In order to suppress the effect of noise, a criterion called edge correlation is introduced [31]:
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Rn(j, x, y) � �
n�1

i�0

M2j�if (x, y), (2)

where n is a positive integer indicating the number of scales involved in the multiplication, and j represents

the initial scale for edge correlation.  Fig. 1 illustrates an example of one dimensional Rn.  Fig. 1(b)–(d)

show the results after applying wavelet transform to  f(x) at scales j=1, 2, 3, respectively.   Fig. 1(e) shows

the result of R2(1, x) � |W21f (x)W22f (x)|.  From the example, it is apparent that R2 reveals a peak whenever

a true edge exists.  On the other hand, if a point at location x  is not a true edge, it is suppressed by the

multiplication process.  Therefore,  based on Rn(j, x, y), the noise in an image can be suppressed while the

true edges can be retained.   In this paper, the number of scales for multiplication is chosen to be 2.   This is

because if the number is larger, the edge delocalization problem of wavelet transforms will become more

serious.   In order to conserve the energy level, Rn(j, x, y) has to be normalized as follows:

Rn(j, x, y) � Rn(j, x, y)
MP(j)
RPn(j)
� , 

where MP(j) ��
x,y

|M2jf (x, y)|2 and RPn(j) �� |
x,y

Rn(j, x, y)|2.    In the feature point selection process, an

edge point is recognized as a candidate if  its corresponding normalized edge correlation R2(1, x, y) is larger

than its corresponding modulus value.  Basically, the above mentioned process is equivalent to detecting an

edge point whose edge response is the strongest within a local area.  In what follows, we summarize the

three conditions adopted in our approach which will be used to judge whether a point P(x,y) is a feature

point or not.

Condition 1: P(x, y) must be an edge point of the image f(x,y).  This means that P(x, y) is a local

maxima of M21f (x, y), and M21f (x, y)  > a threshold,

Condition 2: R2(1, x, y) � M21f (x, y),

Condition 3: M21f (x, y) � max
(x�,y�)	Np


M21f (x�, y�)�, (3)

where Np  is the neighborhood of P(x, y).

���� ������� �	

�� ������� ���
�

In the previous section, we have presented a systematic way to extract important features from two

partially overlapping images.  In this section, we shall show how to find a set of correct matching pairs

between the above images.  In what follows, the procedure will be elaborated in detail step by step.
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A. Defining a Matching Metric

In this subsection we shall define a metric and then use it to evaluate the similarity between any two

feature points. Let p=(px,py)t and q=(qx,qy)t be two feature points located, respectively, in f1(x, y) and

f2(x, y), where f1(x, y) and f2(x, y) are two partially overlapping images.  A cross–correlation which can

be used to measure the similarity degree between p and q is defined as follows [1], [3]:

Cf1,f2
(p; q)� 1

�1�2(2M� 1)2
�

x,y�M

x,y��M

[f1(x� px, y� py)� �1][f2(x� qx, y� qy)� �2], (4)

where �i and �i are the local mean and variance of fi(x, y), respectively; (2M� 1)2 represents the area of

matching window.  In general, the format of the similarity measure defined in Eq. (4) is very sensitive to

rotation.  Therefore, if the rotation effect is important in an application, Eq. (4) should be updated as fol-

lows:

Cf1
,f2

(p; q; �)� 1
�1�2(2M� 1)2

�
M

x^,y^��M

[f1(x� px, y� py)� �1][f2(x^� qx, y^� qy)� �2], (5)

where x� x^ cos �� y^ sin � and y� x^ sin �� y^ cos �.  If the angle � in Eq. (5) can be estimated in ad-

vance, then no matter how f1(x, y) or f2(x, y) are rotated, finding the correct matching between the two

images is always easier.

B. Estimating the Orientation of a Feature Point

In the previous subsection, we have mentioned that the orientation of a feature point is important for

deriving a correct metric.  In this subsection we shall discuss how the orientation of a feature point is esti-

mated.  In Section 2, we have mentioned that two sets of feature points are extracted, respectively, from two

partially overlapping images.   In order to perform accurate image registration between these two images,

the corresponding feature points between the two images have to be identified.  In Eq. (5), the fit measure

Cf1
,f2

 contains a rotation angle, �, which represents the orientation difference between two selected feature

points.  In order to solve �, we have to determine the orientation of each point in advance.  Basically, the

orientation of a feature point can be estimated by using the results of the wavelet transform described in

Section II, i.e., W1
2jf and W2

2jf.  A standard representation of the orientation of an edge–based feature point

at scale 2j can be expressed as follows [19], [21]:

Arg(W1
2jf (x, y)� iW2

2jf (x, y)).
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However, the above representation might be very sensitive to noise.  Therefore, we adopt a line–fitting

model to solve the noise problem.

Let p be a feature point and �e be its neighboring edge points with a (2Me� 1) � (2Me� 1)

neighborhood.  Since p is an edge point, there should exist an edge line passing through it.  By considering p

as a bridging point, an edge line passing through p can be determined by searching in all the directions from

p.  All the edge points on the edge line are then used as candidates for determining the orientation of the

edge line.  In the searching process, the edge connection constraint and the direction consistency constraint

have to be enforced.  Let �� � p1, p2, ���, pi � (xi, yi)
t, ���, pN

� be the set of selected edge points in �e for

determining the orientation of p, where pi is the successor of pi�1.  Let qk � (x~k, y~k)
t be an edge point

near pi and qk � �.  Since qk is not the successor of pi, the connection constraint is violated.  It means that

|x~k� xi| 	 2 or |y~k� yi| 	 2.  Conversely, if qk is not selected due to the direction consistency

constraint, it means that the direction difference between pi�1pi and piqk is larger than that of pi�1pi and

pipi�1.  For example, in Fig. 2, q1, q2 and l4 are not selected since the connection condition is not satisfied.

l3 cannot be chosen because it violates the direction consistency constraint.  As to the edge line segment l2,

it violates the basic requirement that a candidate edge line should pass through point p.  Of course, it is also

possible that there are more than one edge lines passing through  p.  Under the circumstances,  we adopt the

first line detected to estimate the orientation.  This policy is feasible because a check process will be

introduced later to eliminate the false matching pairs.  In what follows, we shall use a line–fitting model to

estimate the direction of an edge point.

Assume that a set of  N points � qi � (xi, yi)
t �

i�1,2,..,N
 is about to fit a straight line: yi � mxi � b.  In

order to evaluate the goodness of a match, a cost function is defined as follows [32]:

��

N

i�1

�yi � b� mxi

�2
i

�2

, (6)

where �i  represents the weight of a point (xi, yi)
t.   The best fit will be achieved whenever an estimation

(m,b) minimizes the cost function �.  In order to minimize �, we have

�
b
�� 2


N

i�1

yi � b� mxi

�2
i

� 0 (7)

and
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��
�m

�� 2�
N

i�1

(yi� b� mxi)xi

�2
i

� 0. (8)

Let �i � 1.   By solving Eq. (7) and (8), m is obtained as follows:

m �

N X Y��
N

i�1

xiyi

N X X��
N

i�1

x2
i

, (9)

where X � 1
N
�

N

i�1

xi and Y � 1
N
�

N

i�1

yi.  Since only the orientation is required in our scheme, the calculation

of  b is not necessary.  Further, in order to make the orientation of an edge range from 0 to 360 degrees,  both

sides of an edge have to be distinguished.  Basically, this problem can be solved by calculating the signs of

the extremes of W1
22f and W2

22f.  Fig. 3 shows an example demonstrating how the signs of the extremes of

W1
22f and W2

22f  can be used to uniquely decide the orientation of an edge.

C. Estimating the Orientation Difference between Two Overlapping Images

From the detected feature points as well as their corresponding orientations, it is not difficult to de-

termine the matching pairs between two overlapping images.  In what follows, we shall describe how  the

above mentioned information is used to estimate the orientation difference between two overlapping

images. Let  FPf1
� �pi � (pi

x, pi
y)t �

i�1,2,���, Nf1

 and FPf2
� �qj � (qj

x, qj
y)

t �
j�1,2,���, Nf2

be two sets of fea-

ture points extracted from two partially overlapping images, f1 and f2, respectively.  Nf1
 and  Nf2

, respec-

tively, represent the number of elements in FPf1
 and FPf2

.  Let  A(u) be the angle of an edge (or feature)

point  u.   For a feature point pi in FPf1
 and a feature point qj in FPf2

, the orientation difference between pi

and qj can be calculated as follows:

�i,j � A(qj)� A(pi). (10)

Here,  �i,j ranges from 0� to 359�, and its value has to be  an integer.  In order to estimate the orientation

difference between f1 and f2,  �i,j and the similarity measure Cf1,f2
 are used.  A so–called ‘‘angle histo-

gram’’ H(�)  reports the distribution of the number of �pi 	 qj � pairs at angle � that satisfy the conditions

�i,j= � and Cf1,f2
(pi; qj; �i,j) 
 0 . 8.  Basically, from the angle histogram, the rotation angle can be decided

by seeking the angle that corresponds to the  maximum peak in the histogram.  If the orientation difference
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between f1 and f2 is �, then the highest peak in H(�) must be very close to  �.  Further,  it is possible to

modify H(�) so that a more accurate estimation can be obtained.  The modification is

 H(�) � �
2

i��2

H(�� i). (11)

Here, �+ i  may possibly exceed the limitation of 360�.  Under these circumstances, it has to be adjusted by

modulation.  Using H(�) and finding its maximum peak, a very accurate estimation for the orientation

difference between two partially overlapping images can be found.  For example, Fig. 4 (a) and (b) are two

partially overlapping Pentagon images.  The two images have a 90� orientation difference.   Fig. 4 (c) and

(d) show, respectively, the angle histogram H(�) and the modified angle histogram H(�).  In Fig. 4 (c), it is

found that the maximum peak is located at 87�.   For the modified histogram, the maximum peak is at 88�.

In comparison with some conventional methods which require derivation of the correlations of all feature

points in a window, the number of feature points used in the proposed method is very few.  Therefore, the

calculation of the similarity measure Cf1,f2
 between any �pi � qj � pair only requires very short computa-

tion time.

D. Finding the Matching Pairs

In the previous section, we have described how the orientation difference between f1(x, y)

and f2(x, y) is derived.  Now,  we are ready to find the matching feature point pairs between f1(x, y) and

f2(x, y).  The first step of the process is to rotate all the points in f1(x, y) to their new positions located in

f
^

1(x^, y^), where x^ � x cos �� y sin �, y^ �� x sin �� y cos �.  If an edge point  in f1  is rotated to a new

position in f
^

1, the angle � is also adjusted to suit the coordinates of f
^

1, i.e., �
^
	 �� �.  Here, � is the

orientation difference between f1 and f2 .  Let  E(u) denote the set of edge points within a (2Ms� 1)2

window of an image f, where u is the window’s center.  Given a feature point p^ i  in f
^

1(x, y), the matching

problem is used to find a proper point  q~ in E(qk) for every qk 
 FPf2
 such that  the pair �p^ i � q~� becomes a

matching pair.  A pair �p^ i � q~� is qualified as a matching pair if two conditions are satisfied:

Condition 1: C
f
^

1

,
f2

(p^ i; q~)� max
qk
FPf2

max
q~n
E(qk)

C
f
^

1

,
f2

(p^ i; q~n),

and
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Condition 2: C
f
^

1

,
f2

(p^ i; q~) � Tc where Tc � 0 . 75.

Condition 1 enforces finding an edge point  q~ � E(qk) and qk � FPf2
 such that the measure C

f
^

1,f2

  is maxi-

mized.  As for Condition 2,  it forces the value of C
f
^

1,f2

 of a matching pair to be larger than a threshold ( 0.75

in this case).  Further, by introducing another constraint, the orientation criterion, the searching speed can

be even faster.  As we know, f
^

1(x, y) is obtained by rotating f1(x, y) with an angle �; therefore, the orienta-

tion difference between f
^

1(x, y) and another image f2(x, y) is very small.  Hence, it is reasonable to

introduce another constraint which forces the orientation difference between f
^

1(x, y) and f2(x, y) to be less

than 5�, i.e., |A(p^ i)� A(q~)| � 5�.  Adding this criterion and using it together with the previous two

conditions will significantly speed up the search time.  In real implementation, the orientation constraint

will be tested first.  If the constraint is not satisfied, it is not necessary to test Condition 1 and Condition 2.

In this way, only a few pairs are needed to calculate the cross–correlation measure C
f
^

1,f2

, which is consid-

ered a time bottleneck of the whole process.

E. Eliminating the False Matching Pairs

A new method is proposed to eliminate the incorrectly matched pairs.  Li  et al.[12] proposed an

iterative scheme that could not remove false pairs completely and efficiently.  Here, we present a non–itera-

tive scheme based on the idea that the distance between two points in the same image will be preserved

when it undergoes a rigid transform.  Let MP � �pi � qi
	
i�1,2,..,Nm

 be a set of matching pairs, where Nm

represents the number of elements in MP, pi � (p i
x , p i

y )t is a point in f
^

1(x, y), and  qi � (q i
x , q i

y )t is a

point in f2(x, y).  If all the matching pairs in MP are correct, then the following equation should hold, i.e.,

pi � s qi
 T, for i=1, 2, ..., Nm, (12)

 where s and  T are, respectively, a scalar and a translation vector.  Since the orientation difference between

f
^

1(x, y) and f2(x, y) is very small, the rotation matrix is thus not part of Eq. (12).   Let �pi � qi
	 and

�pj � qj 	 be two correct matching pairs in  MP.  The scale s between f
^

1(x, y) and f2(x, y) can be estimated

as follows:

s � d2�d1,
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where d1 � (p i
x� p j

x )2 � (p i
y� p j

y )2�  and d2 � (q i
x� q j

x )2 � (q i
y� q j

y )2� .   Once the scale s is

known, the translation Ti between pi  and qi can be calculated by using Eq. (12).  Furthermore, the transla-

tion Tj between pj and qj can be obtained accordingly.  Since the pairs �pi � qi
� and �pj � qj � are correct

matching pairs,  the difference between Ti and Tj should be very small.  Therefore, by checking the dis-

tance between Ti and Tj, we can decide whether   �pi � qi
� and �pj � qj �  are consistent or not.

Next, we propose a non–iterative method based on the aforementioned consistency test to eliminate

those mistakenly matched pairs.  Let S(i) denote a counter of the number of times the �pi � qi
� pair is

consistent with other matching pairs.  Assume that �pj � qj � is a matching pair to be checked.  �pj � qj �

is considered to be consistent with �pi � qi
� if and only if the distance between their translation vectors, Ti

and Tj, is less than a threshold ( which is set to 5 in this paper ).  If the two pairs are consistent, S(i) is

increased by 1.   The process proceeds until all the matching pairs are compared.  Since there are Nm ele-

ments in  MP, the total number of consistency tests will be Nm(Nm � 1)�2.  After the consistency test, a

counter value S(i) will be associated with every matching pair �pi � qi
�, for i=1, 2, ..., Nm.  Since two

matching pairs can uniquely determine a set of registration parameters, the value 2 can be used as a thresh-

old to determine whether the pair �pi � qi
� can be accepted.  However, if �pi � qi

� is said to be a correct

match, to compensate for inaccuracies, we require that the value of S(i) be larger than 2.  Therefore,  if the

value of S(i) is less than or equal to 2, then its corresponding matching pair is considered mismatched and

should be eliminated.

��� ������	
 ��� ������ ���	���������	�

After eliminating all the false matching pairs, a set of correct matching pairs is left.  Assume that this

matching set is �ui � vi
�
i�1,2,..,Nc

, where Nc is the total number of correct matching pairs.  In general, the

2–D point sets �ui
� and �vi

� should satisfy the following relation:

vi � s R ui � T, for i=1, 2, ..., Nc, (13)

where s is a scalar, R � 	 cos �
^

sin �
^

� sin �
^

cos �
^
 represents a rotation matrix , T=(tx, ty)t is a translation vector,

ui � (u i
x , u i

y )t  is a point in f
^

1(x, y), vi � (v i
x , v i

y )t represents a point in f2(x, y), and �
^
 is the orientation
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difference between f
^

1(x, y) and f2(x, y).  In Section III.C, the initial orientation angle � between f1(x, y)

and f2(x, y) has been estimated by using the histogram H(�).  However,  � can only be considered a rough

guess.  In what follows, we shall take advantage of the set of correct matching pairs, �ui � vi
�
i�1,2,..,Nc

, to

fine tune the previous result.  Basically, the fine tuning, �
^
,  is conducted to derive the orientation difference

between f
^

1 and f2.  If �
^
 can be derived, a more accurate rotation angle, � � �

^
� �, between f1 and f2 can

be obtained.  Next, a method which can be used to derive s, �
^
, and T based on the correct matching pairs is

presented.

In order to derive s, R, and T based on the set of correct matching pairs �ui � vi
�
i�1,2,..,Nc

, we will

introduce an error function as follows:

���
Nc

i�1

� s R ui � T � vi �2. 

By minimizing �, a set of optimal solutions can be derived.  In [20], Umeyama proposed a good approach

to solving the above problem. Here, we will simply follow his methodology.   From 	�	T
� 0, one can ob-

tain

 T � v � s R u, (14)

 where u � 1
Nc
�
Nc

i�1

ui and v � 1
Nc
�
Nc

i�1

vi.  Substituting Eq. (14) into Eq. (13) and from 	�	s
� 0,  we have

s ��
Nc

i�1

v~t
i R u~ i
�Nc

i�1

u~ t
i u~ i, (15)

where u~ i � ui � u and v~i � vi � v.  Substituting Eq. (14) and (15) into Eq. (13) and reorganizing the

content of �, we obtain

���
Nc

i�1

u~ t
i v~i ��

�

�
Nc

i�1

v~t
i R u~ i�

�
�

2


�Nc

i�1

v~t
i v~i.

Here, minimizing � can be converted into maximizing the term

�
� ���

�
Nc

i�1

v~t
i R u~ i�

�
�

2

. (16)

Now,  the problem at hand is to solve R.  In [8], Arun et al. proposed a singular value decomposition (SVD)

method to solve R.  The procedure is illustrated as follows.
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Step 1: Calculate the 2� 2 matrix H ��
Nc

i�1

u~ i v~t
i.

Step 2: Find the SVD of H, i.e., H � U�Vt.

Step 3: R � VUt. (17)

The whole procedure for estimating the registration parameters can be summarized as follows.  First, the

rotation matrix R is found by solving Eq. (17).  Then, the fine tuning, �
^
, between f

^

1(x, y) and f2(x, y) can be

estimated from R.  Next, by solving Eq. (15), the scale s can be obtained.   Furthermore, by solving Eq. (14),

the translation vector  T is obtained.  Based on these parameters, accurate registration between images can

be achieved.

V. The Matching Algorithm

In Sections III and IV, we have described how a number of correct matching pairs between two

images is obtained and how they are used to derive the registration parameters s, R, and  T.   Based on

these parameters, accurate registration can be achieved.  However, if accuracy is a major concern in a sys-

tem, the current status may not satisfy the requirement.  In what follows, we propose using an iterative

scheme to refine the registration results.  The proposed scheme is a two–stage algorithm.  The purpose of

the first stage is to obtain the initial values of the registration parameters.  The method of achieving this goal

has been described in Sections III and IV.  In the second stage, an iterative procedure is proposed to repeat-

edly refine the registration parameters.  In what follows, we shall describe the details of the second stage as

well as the complete algorithm.

 In the first step of the second stage, with the assistance of the initial values of s, R, and T, the input

image f1(x, y) is transformed to f
^

1(x^, y^), and the relation between (x, y)t and (x^, y^)t is as follows:

 �xy� � 1
s �cos � � sin �

sin � cos ���x^ � tx
y^ � ty
�, (18)

where  �� �� �
^
,  � is obtained by applying the method described in Section III.C,  and �

^
 is obtained

from Eq. (17) .  Let Mc
p � �ui 	 vi



i�1,2,..,Nc

 denote the set of matching pairs obtained in the previous

stage, where Nc  is the number of elements in Mc
p, ui is a point in f1, and vi  is a point in f2.  For each point vi

in f2,  our goal is to find its exact corresponding point u^ i in f
^

1 such that the refined corrections for the
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parameters s, R, and T can be obtained. It is known that f
^

1 is obtained by transforming f1 with the initial

values of parameters s, R, and T; therefore, the location of  u^ i in f
^

1 should have a coordinate very similar to

vi  in f2.   Hence, for eachvi  in f2,  its corresponding point u^ i in f
^

1 can be found by searching the pixels

within a neighborhood centered at the coordinate vi  in f
^

1 such that the measure  C
f
^

1,f2

 is maximized and has

a value larger than a threshold, that is

 C
f
^

1,f2

(u^ i, vi) � max
u�Nvi

C
f
^

1,f2

(u, vi), and  C
f
^

1,f2

(u^ i, vi) � 0 . 75, (19)

where Nvi
  is the  neighborhood centered at the coordinatevi .  In most cases, Nc  is small ( < 10).  If  it is

larger, then the set Mc
p can be re–sampled so that it will be controlled properly.  In general, the use of only a

few feature points is sufficient to derive R, T, and s with high accuracy.  Therefore, the refining process can

be performed very quickly.  Let  M
^ c

p � �u^ i � vi
�
i�1,2,..,N

^
c
 denote the set of matching pairs obtained from

the refining process, where N
^

c is the number of elements in  M
^ c

p.   From the set  M
^ c

p, the refined corrections

s^, �
^
, t^x, and t^y for the parameters s, �, tx, and ty can be obtained by Eq. (14), (15), and (17),  respectively.

With s^, �
^
, t^x  and t^y,  more accurate values of s, �, tx and ty  can be derived. Since

vi � s^R(�
^
)u^ i� T

^
                                              

� s^R(�
^
)[sR(�)ui� T]� T

^
                       

� ss^R(�� �
^
)ui� [s^R(�

^
)T� T

^
],              

the values of s, �, tx and ty can be corrected based on the following equation [3]:

(s, �, tx, ty)t � (ss^, �� �
^
, s^ cos �

^
tx� s^ sin �

^
ty� t^x,	 s^ sin �

^
tx� s^ cos �

^
ty� t^y)t. (20)

Using the results of (20) as a new set of initial values in Eq. (18) and applying the refining process iterative-

ly, all the registration parameters can be updated continuously until satisfactory accuracy is achieved.  In

our study, we set the number of iterations to 3 and obtain very superb results.  The proposed two–stage

algorithm is illustrated as follows:

Stage A: A.1. Extract feature points from the input images f1 and f2.

A.2. Estimate the edge orientation using Eq. (9), and calculate the angle histogram

   H(�) with the measure Cf1,f2
.
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A.3. From the angle histogram H(�), estimate the rotation difference � .

A.4. Rotate f1(x, y) to f
^

1(x, y) with the angle �.

A.5. Based on f
^

1(x, y) and f2(x, y), perform an initial matching to obtain the initial 

   registration parameters s, �
^
, tx and ty .

A.6. Set  I=0 and �� �� �
^
;

Stage B: B.1. Apply an affine transformation with the parameters (s, �, tx, ty) to f1(x, y) and 

                               obtain f
^

1(x, y).

B.2. Based on f
^

1(x, y) and f2(x, y), perform a refined matching to obtain the matching set

   M
^ c

p.

B.3. From the set  M
^ c

p,  obtain the refined corrections (s^, �
^
, t^x, t^y) for the parameters

   (s, �, tx, ty) by using the method described in Section IV;

B.4. Update (s, �, tx, ty) with the corrections (s^, �
^
, t^x, t^y) by using Eq. (20).

B.5. I=I+1;

   If I� 2 then goto Step B.1;

   else stop.

VI. Experimental Results

In the experiments, a number of synthetic and real images were adopted as test images.  Among

them,  the synthetic images were used to verify whether the proposed theory is accurate and robust.  On the

other hand, the real images were used to examine how well this algorithm works.  All the synthetic images

were of size 420� 420.  The synthetic images included Pentagon images, texture images, building

images, and mountain images.  For each synthetic image pair, one image was generated with a synthetic

camera motion from the other image.  The parameters for each synthetic camera motion are listed in Table

1.  As to the real images, all the images were of size 512� 512.  They were the aerial images, rock images,

texture images, and building images.  The matching window parameter M used to calculate Cf1,f2
 was set to
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9.  In order to obtain the initial angle more efficiently, M was set to 7 in the calculation of Cf1,f2
.   The neigh-

borhood parameter Me used to select a number of edge points for line–fitting was set to 6.  The search space

parameter Ms for obtaining matching pairs was set to 5.  In what follows, we will describe the experimental

results in more detail.

Fig.5 shows a series of  images used to generate synthetic images for registration.  Each image in Fig.

5 generates two different synthetic image pairs with two different camera motions.  Therefore, there are

eight synthetic image pairs for testing.  All the synthetic camera motions are listed in Table 1.  Columns 2,

4, 6, and 8 show different registration parameters used to generate various synthetic image pairs.  The esti-

mated registration parameters (s, tx, ty, �) are, respectively, shown in columns 3, 5, 7, and 9.  The accuracy

of our algorithm can be verified by comparing the true registration parameters and the estimated ones.

Even though various kinds of images are handled, our algorithm still produces very accurate registration

results.  In order to demonstrate the power of our method for estimating the initial orientation difference

between images, the results of Zheng–Chellappa’s method [3] are also listed in Table 1 for comparison.  In

Table 1,  �1 denotes the initial rotation angle estimated from the angle histogram H(�), and �2 denotes the

initial rotation angle obtained from Zheng–Chellappa’s method.  From Table 1, it is easy to find that the

rotation angle, �1, estimated from H(�) is very close to the true rotation angle.  Even though there are sig-

nificant scene changes between images, our estimation method still produces very accurate results.  As to

Zheng–Chellappa’s approach, it works well for most cases.  However, the success of their method is based

on the assumption that the images are taken at a stationary illumination source.   If  the images have signifi-

cant scene changes, the illumination conditions will be changed, and the approach might fail.  Fig. 6 shows

two examples where Zheng–Chellappa’s method cannot work well.   (a) and (b) are the building image pair.

 (c) and (d) are the mountain image pair.  Their true rotation parameters, �’s,  are 75.0� and –75.0�, respec-

tively.  By applying Zheng–Chellappa’s method, the estimations, �2’s, for the initial rotation angles are

100.6� and –48.2�, respectively.   Clearly, in both cases, Zheng–Chellappa’s method produced poor es-

timations for the initial rotation angles.

An important application of image registration is in automatic aerial image analysis.  Fig. 7 shows an

example of aerial images of a rural area of Taiwan.  (a) and (b) show the input image pair, and (c) shows the

result after applying our registration algorithm.  The two images in (a) and (b) have significant changes in

rotation, translation, and scaling.  It is notable that the intensity differences between (a) and (b) are also

large.  In this experiment, the estimated transform parameters were s= 1.061, �=–41.205�, tx= –141.444,
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and ty=–239.9.   The correctness of the registration result  can be verified by checking the continuities of the

ridges between fields or mountains in Fig. 7(c).  The feature points obtained by applying wavelet trans-

forms are also shown in Fig. 7(a) and (b).  The number of feature points detected in each image is roughly

100 points.  This number is controlled by the size of the neighborhood Np  ( see Eq. (3)).  The larger  the size

of  Np  is, the fewer feature points are detected.  For most cases, the radius of neighborhood Np   is chosen to

be 15.  The white symbols, ‘‘X’’, indicate the positions where feature points are located.  Fig. 8 and 9 show

two other experiments on aerial images of Taiwan.  In Fig. 8, the estimated transform parameters are  s=

0.963, �=–6.052�, tx= –271.135, and ty=134.781; and in Fig. 9, the estimated transform parameters are  s=

0.967211, �=–1.08�, tx= –325.310, and ty=–63.532.   In both cases, our method produces very accurate

registration results.  On the other hand, in order to demonstrate how the registration results are improved by

the iterative processes, Table 2 lists the results of registration with the above three aerial images.

In order to demonstrate the power of our approach, we also apply our algorithm to some images

which have complicated textures.  In general, the features in a complicated texture image are difficult to

extract.  Fig. 10 shows an example of images with complicated rock textures.  (a) and (b) are the input

images, and (c) is the mosaic of  (a) and (b).  The estimated transform parameters are s= 1.04161,

�=–83.054�, tx= –65.089, and ty=–277.678.   Despite the fact that these images containing complicated

textures, our algorithm still produces accurate registration results.  Fig. 11 shows another example of

images with complicated grass and sand textures.   The estimated transform parameters are s= 0.947988,

�=–27.218�, tx= –345.254, and ty=–71.719.

Stereo vision and motion estimation are two other important applications in image registration.  In

both applications, the camera motion between consecutive frames is usually assumed to be small and

smooth.  If the camera motion is significant, it is difficult to track features and obtain their information.

Therefore, consecutive images must be registered in advance.  Previously, such an initial matching or reg-

istration is usually performed by manual methods.  However, our registration method can perform such an

initial matching automatically.  Fig. 12 gives an example of such an application.  (a) and (b) are the input

images.  (c) is the mosaic of (a) and (b).  The estimated transform parameters are s= 0.998617, �=22.849�,

tx= –117.748, and ty=43.7386.  With the help of the transform parameters, the camera motion can be com-

pensated for well.  In this way, the disparities of features between images can be easily found.  Using these

disparities, further surface recovery can be performed.



20

VII. Conclusions

In this paper, we have proposed a new edge–based approach to efficiently deal with the image regis-

tration problem.  The proposed method applies the wavelet transform technique to extract feature points

from a partially overlapping image pair.  By defining a similarity measure metric, the two sets of feature

points can be compared, and the correspondences between the feature points can be established.  Once the

set of correctly matched feature point pairs between two images are found, the registration parameters can

be derived accordingly.  The proposed method can tolerate approximately 10% scaling variation and does

not have to restrict the position and orientation of the input images.  Compared with conventional algo-

rithms, the proposed scheme is a great improvement in the sense of efficiency as well as reliability for the

image registration problem.
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Caption of Tables

Table 1:   The parameters of each synthetic camera motion and the registration results after applying our

automatic registration algorithm.

Table 2:   Three examples showing how registration parameters are improved by iterative processes.  Here,
the true registration parameters are not listed due to the true camera motions are unknown.

Readers can examine the final results from Figs. 7(c), 8(c) and 9(c).
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Captions of Figures

Figure 1:    Edge correlation of R2(1,x) on a 1–D signal function f(x).  (a) The original signal function f(x).
(b)–(d) The results of the wavelet transform of f(x) for j=1, 2, 3.  (e) The result of R2(1,x).

Figure 2:   An example illustrating some cases violating the connection constraint  and the direction

consistency constraint within the neightborhood of an edge point p.

Figure 3:   An example illustrating how the angle of an edge line is extended to a range from 0� to 360� by

using the extremes of W1
22f and W2

22f.   The edge angle in (a) is �, but the one in (b) is �� 180�

due to different signs of the extremes of W1
22f and W2

22f.

Figure 4:    Using the angle histogram to estimate the orientation difference between two partially overlap-
ping Pentagon images.   (a)  The original Pentagon image. (b) The Pentagon image rotated with

90�. (c) The angle histogram H(�).  (d) The modified angle histogram H(�).  From H(�), the

rotation angle � is located at 88�.

Figure 5:    A  set of  images used to generate synthetic images for registration.  (a) Pentagon image. (b)
 Texture image. (c) Building image. (d) Mountain image.

Figure 6:    Two examples with significant scene changes.  (a) and (b) are the building image pair.  (c) and

(d) are the mountain image pair.  For both image pairs, poor estimation for the initial rotation
angles are produced by adopting Zheng–Chellapa’s method.

Figure 7:    (a), (b) Two aerial images of rural areas of Taiwan; each small white St. Andrew cross indicates

an extracted feature point.  (c) The registration result of (a) and (b).  The estimated registration

parameters are s= 1.061, �= –41.205�, tx= –141.444, and ty=–239.9.

Figure 8:    (a), (b) Two aerial images of urban areas of Taiwan.  (c) The registration result of (a) and (b). 

 The estimated registration parameters are s= 0.963, �=–6.052�, tx= –271.135, and ty=134.781.

Figure 9:    (a), (b) Two additional aerial images of urban areas of Taiwan.  (c) The registration result of (a)

and (b).  The estimated registration parameters are s= 0.967211, �=–1.08�, tx= –325.310, and
ty=–63.532.

Figure 10:  Registration of rock images.  (a), (b) Two rock images.  (c) The registration result of (a) and (b).

The estimated registration parameters are s= 1.04161, �=–83.054�, tx= –65.089, and

ty=–277.678.

Figure 11:    Registration of texture images with grass and sand.  (a), (b) Two grass–sand images.  (c) Mosa-

ic of (a) and (b).  The estimated registration parameters are s= 0.947988, �=–27.218�, tx=
–345.254, and ty=–71.719.

Figure 12:    Estimation of camera motion.  (a), (b) Two building images.  (c) Mosaic of (a) and (b).  The

estimated transform parameters are s= 0.998617, �=22.849�, tx= –117.748, and ty=43.7386.
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List of Table

Test
  Images

Scale: s Translation:   t x Translation:  t y Rotation: �
� �  Images

True Estimated True Estimated True Estimated ���� Estimated �1 �2

Pentagon  Images (1) 0.9 0.9005 10.0 9.9865 10.0 10.101 30.0 30.08 27 66.2

Pentagon  Images (2) 1.1 1.0997 –20.0 –19.967 –20.0 –19.972 –45.0 –44.98 –45 –42.3

Texture  Images (1) 0.95 0.9509 5 4.984 30.0 29.937 80.0 79.948 82 87.03

Texture  Images (2) 1.10 1.1019 70 69.882 –10.0 –10.029 –75.0 –75.012 –76 –71.19

Building Images  (1) 1.10 1.1015 75.0 74.994 75.0 75.10 –60.0 –60.001 –59 –70.84

Building Images  (2) 0.90 0.8988 50.0 49.556 50.0 50.013 75.0 74.930 72 100.6

Mountain  Images  (1) 0.90 0.8993 –145 –145.06 110.0 109.974 85.0 84.977 83 76.4

Mountain  Images  (2) 1.10 1.0967 140 140.022 –65.0 –65.056 –75.0 –74.734 –72 –48.2

�1: the initial rotation angle obtained from the angle histogram H(�).

�2: the initial rotation angle obtained by Zheng–Chellappa’s method.

Table 1. The parameters of each synthetic camera motion and the registration results
             after applying our automatic registration algorithm.

Test
  Images

Iteration:
i

Scale:
 s

Translation: 
  t x

Translation:
t y

Rotation:
 �

Aerial i=0 1.0485 –143.397 –236.235 –42
Images I
(Fi  7 )

i=1 1.062 –142.571 –238.811 –41.673
(Fig. 7 ) i=2 1.0610 –141.444 –239.900 –41.205

Aerial i=0 0.9688 –268.047 135.901 –7
Images II
(Fi  8)

i=1 0.9653 –272.056 134.572 –6.756
(Fig. 8)

i=2 0.9629 –271.135 134.781 –6.052

Aerial i=0 0.9832 328.424 –67.298 1
Images II
(Fi  9 )

i=1 0.9646 325.345 –65.256 –0.752
(Fig. 9 )

i=2 0.9672 325.310 –63.532 –1.081

Table 2.  Three examples showing how registration parameters are improved by it-
erative processes.  Here, the true registration parameters are not listed due
to the true camera motions are unknown.  Readers can examine the final
results from Figs. 7(c), 8(c) and 9(c).
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List of Figures

(a) A signal f(x). (c) W22f (x)

(d) W23f (x)(b) W21f (x)

(e) R2(1, x)� |W21f (x) W22f (x)|

Figure 1. Edge correlation of R2(1,x) on a 1–D signal function f(x).  (a) The original

signal function f(x).  (b)–(d) The results of the wavelet transform of f(x) for j=1, 2, 3.

(e) The result of R2(1,x).

p

l1

l3

l2
l4

q1 q2

Figure 2.  An example illustrating some cases violating the connection constraint  and

the direction consistency constraint within the neightborhood of an edge point p.



27

(a) �� � (b) �� �� 180�

The extreme of W1
22f� 0 .

The extreme of W2
22f� 0 .

The extreme of W1
22f� 0 .

The extreme of W2
22f� 0 .

Figure 3.  An example illustrating how the angle of an edge line is extended to a range

from 0� to 360� by using the extremes of W1
22f and W2

22f.   The edge angle in (a) is �,

but the one in (b) is �� 180� due to different signs of the extremes of W1
22f and W2

22f.
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The Maximum Peak at 88� .

(d)

The Maximum Peak at 87� .

(c) H(�)H(�)

Figure 4.  Using the angle histogram to estimate the orientation difference between

two partially overlapping Pentagon images.   (a)  The original Pentagon image. (b)

The Pentagon image rotated with 90�. (c) The angle histogram H(�).  (d) The modi-

fied angle histogram H(�).  From H(�), the rotation angle � is located at 88�.
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(a) (b)

(c) (d)

Figure 5.  A  set of  images used to generate synthetic images for registration.  (a) Pentagon

image. (b) Texture image. (c) Building image. (d) Mountain image.
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(a) (b)

(c) (d)

Figure 6.  Two examples with significant scene changes.  (a) and (b) are the building
image pair.  (c) and (d) are the mountain image pair.  For both image pairs, poor estima-
tion for the initial rotation angles are produced by adopting Zheng–Chellapa’s method.
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(a) (b)

(c)

Figure 7.   (a), (b) Two aerial images of rural areas of Taiwan; each small white St. Andrew

cross indicates an extracted feature point.  (c) The registration result of (a) and (b).  The

estimated registration parameters are s= 1.061, �= –41.205�, tx= –141.444, and ty=–239.9.
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(a) (b)

(C)

Figure 8.   (a), (b) Two aerial images of urban areas of Taiwan.  (c) The registration result of

(a) and (b).  The estimated registration parameters are s= 0.963, �=–6.052�, tx= –271.135,
and ty=134.781.
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(a) (b)

(c)

Figure 9. (a), (b) Two additional aerial images of urban areas of Taiwan.  (c) The registra-

tion result of (a) and (b).  The estimated registration parameters are s= 0.967211,

�=–1.08�, tx= –325.310, and ty=–63.532.
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(a) (b)

(c)

Figure 10.  Registration of rock images.  (a), (b) Two rock images.  (c) The registration

result of (a) and (b).  The estimated registration parameters are s= 1.04161, �=–83.054�,

tx= –65.089, and ty=–277.678.
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(a) (b)

(c)

Figure 11. Registration of texture images with grass and sand.  (a), (b) Two grass–sand
images.  (c) Mosaic of (a) and (b).  The estimated registration parameters are s= 0.947988,
�=–27.218�, tx= –345.254, and ty=–71.719.
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(a) (b)

(c)

Figure 12.   Estimation of camera motion.  (a), (b) Two building images.  (c) Mosaic of (a)

and (b).  The estimated transform parameters are s= 0.998617, �=22.849�, tx= –117.748,

and ty=43.7386.


