
Compiler Techniques for Determining Data Distribution and Generating

Communication Sets on Distributed�Memory Multicomputers�

PeiZong Lee and Wen�Yao Chen
Institute of Information Science� Academia Sinica

Taipei� Taiwan� R�O�C�

Internet� leepe�iis�sinica�edu�tw
TEL� ���	
��
����
��
FAX� ���	
��
�������

Abstract

This paper is concerned with designing e�cient algorithms for determining data distribution
and generating communication sets on distributed memory multicomputers� First� we propose a
dynamic programming algorithm to automatically determine data distribution at compiling time�
This approach is di�erent from previous research works� which only allow programmers explicitly
to specify the data distribution using language extensions� The proposed algorithm also can deter�
mine whether data redistribution is necessary between two consecutive DO�loop program fragments�
Second� we propose closed forms to represent communication sets among processing elements for
executing doall statements� when data arrays are distributed in a block�cyclic fashion� Our re�
sult contributes towards automatic compilation of sequential programs to message�passing version
programs running on distributed memory parallel computers� Our methods also can be included
in current compilers and used when programmers fail to provide any data distribution directives�
Experimental studies on a nCUBE�� multicomputer are also presented�

Keywords� communication set� component alignment� data distribution� distributed memory com�

puter� doall statement� dynamic programming algorithm for data distribution� parallelizing compiler�

��� A preliminary version of this technical report is accepted to be presented at the ��th IEEE

Hawaii International Conference on System Sciences� Maui� Hawaii� January ���� �		��

�This work was partially supported by the NSC under Grant NSC ��������E��������	

�

� Introduction

Arrays distribution and communication sets generation are two problems we must solve when dealing

with the compilation of DO�loop program fragments for distributed memory multicomputers� For

instance� in High Performance Fortran
HPF�� programmers have obligations to provide TEMPLATE�

ALIGN� and DISTRIBUTE directives to specify data distribution ���
� Then� based on these directives�

compilers can generate all communication instructions� In this paper� however� we try to determine

data distribution automatically by compilers in contrast with previous research works� which previ�

ously only allowed programmers explicitly to specify the data distribution using language extensions�

We show systematic methods for determining data distributions and for generating communication

sets for each processing element
PE�� Thus� the proposed algorithms can be included in compilers

for automatically transforming sequential DO�loop program fragments into parallel version programs

with message�passing communication primitives� For instance� our methods can be included in HPF

compilers and used when programmers fail to provide any data distribution directives�

In the following� we state the problems we will address in this paper� First� given a DO�loop

program or a sequence of DO�loop programs� we are interested in how to align data arrays� so that

data communication incurred due to the resulting data distribution will be minimized� Conventionally�

this problem can be solved by using a component alignment algorithm to determine a static data

distribution scheme for the whole program ��
 ���
� In contrast to giving a static solution� we will present

a dynamic programming algorithm to determine whether data redistribution is necessary between two

consecutive DO�loop program fragments�

Second� after determining data alignments among data arrays� we are interested in how to distribute

data arrays among PEs� In order to do this� compilers must include an analytical model� which can

formulate communication time and computation time� In addition� this analytical model can help to

determine grain and granularity of execution space� it also can help to determine whether data arrays

are distributed among PEs by a block fashion� or a cyclic fashion� or a block�cyclic fashion�

Third� after determining data distribution among PEs� we focus our attentions on generating

communication sets among PEs� Previous research works have provided closed forms of generating

communication sets for the special cases when an array�s distribution is either in a block fashion or

in a cyclic fashion ���
 ���
� Recently� a lot of research works are concentrated on the more general

�

cases when an array�s distribution is in a block�cyclic fashion ��
 ��
 ��
 ��
 ���
 ���
 ���
� Furthermore�

methods to generate aggregate communication operations based on pattern matching techniques are

also proposed ��	
� We are interested in integrating previous research works and in formulating a

complete set of closed forms of generating communication sets for each PE�

The rest of this paper is organized as follows� In Section �� we introduce some background of

compiling sequential programs on distributed memory multicomputers� In Section �� we present algo�

rithms to determine data distribution at compiling time� In Section �� we derive formulas to represent

communication sets for doall statements with arbitrary block sizes� In Section �� we propose closed

forms to represent communication sets for doall statements with restricted block sizes� Finally� some

concluding remarks are given in Section ��

� Background

��� Nomenclature

The following closed forms
regular sections� will be used in this paper�

� �a � e�
 represents the set of consecutive integers from a to e�� For instance� �� � ���
 �

f�� �� �� � � � � ���g�

� �a � e� � s�
 is in behalf of the set of integers from a with a stride
period� s� until to a maximum

integer which is not greater than e�� For example� �� � ��� � ��
 � f�� ��� ��g�

� ��a � e�
 � e� � s�
 speci�es the set f�a � e�
� �a � e�
 � s�� �a � e�
 � �s�� � � �� until not greater

than e�g� Thus� ��� � ��
 � ��� � ��
 � f�� �� �� � � � � ��� ��� ��� ��� � � � � ��� ��� ��� ��� � � � � ���g�

� ��a � e� � s�
 � e� � s�
 means the set f�a � e� � s�
� �a � e� � s�
 � s�� �a � e� � s�
 � �s�� � � ��

until not greater than e�g� Thus� ��� � �� � ��
 � ��� � ��
 � f�� ��� ��� ��� ��� ��� ��� 	�� ���g�

� ���a � e�
 � e� � s�
 � e� � s�
 stands for the set f��a � e�
 � e� � s�
� ��a � e�
 � e� � s�
 � s��

��a � e�
 � e� � s�
 � �s�� � � �� until not greater than e�g� Thus� ��� � �
 � �� � ��
 � ��� � ��
 �

f�� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� 	�� 	�� 	�� ���� ���g�

� ���a � e� � s�
 � e� � s�
 � e� � s�
 illustrates the set f��a � e� � s�
 � e� � s�
� ��a � e� � s�
 �

e� � s�
 � s�� ��a � e� � s�
 � e� � s�
 � �s�� � � �� until not greater than e�g� For instance� ��� �

�

� � �
 � �� � ��
 � ��� � ��
 � f�� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� 	�� 	�� ���g�

Suppose that arrayA
�a� � a�
� is indexed from a� to a� and there are in totalN PEs numbered from

� toN��� Then� if we adopt cyclic
b� distribution� the set A
��a��p�b � a��p�b�b��
 � a� � N �b
�

is stored in PE p
PEp�� We will say that array A is distributed by a cyclic fashion if b � �� by a block

fashion if b � d
a� � a� � ���Ne� and by a block�cyclic fashion if � � b � d
a� � a� � ���Ne�

��� Distributed Memory Multicomputers

In this paper� we are concerned with distributed memory systems� The abstract target machine we

adopt is a q�D grid of N� � N� � � � � � Nq PEs� where D stands for dimensional� A PE on the q�D

grid is represented by the tuple
p�� p�� � � � � pq�� where � � pi � Ni� � for � � i � q� Such a topology

can be easily embedded into almost all distributed memory machines� including massively con�gured

parallel computers� For example� the q�D grid can be embedded into a hypercube computer using a

binary re�ected Gray code�

The parallel program generated from a sequential program for a grid corresponds to the SPMD

Single Program Multiple Data� model� in which each PE executes the same program but operates on

distinct data items �	
� More precisely� in general� a source program has sequential parts
which must

be executed sequentially� and concurrent parts
which can be executed concurrently�� Each PE will

execute the sequential parts individually� while all PEs will execute the concurrent parts altogether by

using message passing communication primitives� In practice� scalar variables and small data arrays

used in the program are replicated on all PEs in order to reduce communication costs� while large

data arrays are partitioned and distributed among PEs� In this paper� we adopt a global name space

for representing large data arrays among PEs� Therefore� our machine model can be regarded as a

distributed shared memory model ���
 ���
 ���
�

��� Compiling Sequential Programs on Distributed Memory Machines

When dealing with the compilation of a sequential program on a distributed memory computer� we

must decide on a suitable data distribution for each data array� so that a computation load balance

can be achieved� in addition� overhead due to communication can be minimized� We also must provide

e�cient algorithms for generating communication sets� so that performance gained due to parallel

�

computing will not be degraded by software overhead� Previously� researchers have shown that after

applying loop transformation techniques such as loop interchange� loop reversal� and loop skewing� a

sequential Do�loop program fragment can be transformed into an equivalent program fragment either

with doall loops in all levels� or with an outmost doserial loop in which all its inner loops are doall

loops ���
� Doall loops guarantee that statements in di�erent iterations
loop bodies� can be executed

independently even in di�erent PEs� Therefore� we can group di�erent sets of iterations into PEs� and

execute each set of iterations in di�erent PEs independently�

Figure � and Figure � show three programs�
a� a sequential program for solving a linear system

AX � B�
b� its corresponding doall loop program� and
c� its corresponding SPMD program in which

data arrays are distributed by cyclic
b�� Readers can �nd that there is a one�to�one correspondence

between statements in the original sequential program
which have been rewritten after performing loop

transformations� and its corresponding doall�version program� For this reason� without any confusion�

in the sequel we will frequently apply compiler techniques directly on the sequential programs� As to

compile a doall loop version program to a SPMD program� it is straightforward if data distributions

for all arrays
or matrices� are determined�

X(i) = Y(i) / A(i, i)

Y(j) = Y(j) - A(j, i) * X(i)
enddo enddo

X(i) = Y(i) / A(i, i)

Y(j) = Y(j) - A(j, i) * X(i)
enddo enddo

Y(i) = B(i)

B(j) = B(j) - A(j, i) * Y(i)
enddo enddo

Y(i) = B(i)

B(j) = B(j) - A(j, i) * Y(i)
enddo enddo

A(i, j) = A(i, j) - A(i, k) * A(k, j)
enddo enddo enddo

A(i, j) = A(i, j) - A(i, k) * A(k, j)
enddo enddo enddo

UX = Y. *}{*

LY = B. *}{*

A(i, k) = A(i, k) / A(k, k) A(i, k) = A(i, k) / A(k, k)

Solving a linear system AX = B based on the LU decomposition. *}{*

REAL A(m, m), B(m), X(m), Y(m) REAL A(m, m), B(m), X(m), Y(m)(a) (b)
A = LU. *}{*do k = 0, m - 1

do i = k + 1, m - 1

do j = k + 1, m - 1

do i = 0, m - 1

do j = i + 1, m - 1

do i = m - 1, 0, -1

doserial k = 0, m - 1
doall i = k + 1, m - 1

doall j = k + 1, m - 1

doserial i = 0, m - 1

doall j = i + 1, m - 1

doserial i = m - 1, 0, -1

do j = 0, i - 1 doall j = 0, i - 1

Figure �� Solving a linear system AX � B based on the LU decomposition�
a� the original sequential
program�
b� the corresponding doall loop version program�

�

{*

define my$p = who_am_i() {* return myself processor ID *}1
2
3
4

Matrix A is distributed by cyclic(b) along its rows; Arrays X, Y, and B are distributed by cyclic(b);
A working matrix T1 and a working array T2 are replicated in all processors. *}

{* A = LU. *} else

endif

if (my$p > pivot$p)

else

endif

enddo enddo enddo enddo enddo

{* UX = Y. *}

X(i) = Y(i) / A(i, i)

Y(j) = Y(j) - A(j, i) * X(i)
enddo enddo

else

endif

else

if (my$p < pivot$p)

endif

enddo enddo enddo enddo enddo

start$k = k$ + pivot$p * b
end$k = start$k + b - 1
if (my$p = pivot$p)

do k = startk, endk
do i = k + 1, end$k

A(i, k) = A(i, k) / A(k, k)
do j = k + 1, m - 1

A(i, j) = A(i, j) - A(i, k) * A(k, j)
enddo enddo enddo
broadcast(A([start$k : end$k], [start$k : m-1]))

else

endif

if (my$p > pivot$p)
start$i = k$ + my$p * b

else

endif

do k = startk, endk
do i = i$, i$ + b - 1

do j = k + 1, m - 1

enddo enddo enddo enddo enddo enddo

{*

if (my$p = pivot$p)
do i = starti, endi

Y(i) = B(i)
do j = i + 1, end$i

B(j) = B(j) - A(j, i) * Y(i)
enddo enddo

LY = B. *}

end$i = start$i + b - 1
start$i = i$ + pivot$p * b

start$j = i$ + my$p * b

do i = starti, endi
do j = j$, j$ + b - 1

if (my$p = pivot$p)

start$i = i$ + pivot$p * b
end$i = start$i + b - 1

do i = end$i, start$i, -1

do i = end$i, start$i, -1

do j = start$i, i - 1

end$j = i$ + my$p * b

do j = j$, j$ + b - 1

receive(pivot$p, T2([0 : b-1]))

B(j) = B(j) - A(j, i) * T2(i-start$i)

receive(pivot$p, T2([0 : b-1]))

broadcast(X([start$i : end$i]))

Y(j) = Y(j) - A(j, i) * T2(i-start$i)

broadcast(Y([start$i : end$i]))

receive(pivot$p, T1([0 : b-1], [start$k : m-1]))

A(i, k) = A(i, k) / T1(k-start$k, k)

A(i, j) = A(i, j) - A(i, k) * T1(k-start$k, j)

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

22
23
24
25

27
28
29
30
31
32

34
35
36
37
38
39
40
41
42
43
44

46
47

50
49

51
52

54
55
56
57

59
60
61
62
63
64
65
66
67
68
69
70

79
80

71

74
75
76

81

72

77

82

5

21

26

33

45

48

53

58

73

78

Hand compiled output SPMD program using the global name space for N processors.

REAL A([[my$p * b : my$p * b + b - 1] : m - 1 : N * b], [0 : m - 1]), T1([0 : b - 1], [0 : m - 1])
REAL X([[my$p * b : my$p * b + b - 1] : m - 1 : N * b]), Y([[my$p * b : my$p * b + b - 1] : m - 1 : N * b])
REAL B([[my$p * b : my$p * b + b - 1] : m - 1 : N * b]), T2([0 : b - 1])

do k$ = 0, m - 1, N * b
do pivot$p = 0, N - 1

start$i = k$ + (my$p + N) * b

do i$ = start$i, m - 1, N * b

do i$ = 0, m - 1, N * b
do pivot$p = 0, N - 1

start$j = i$ + (my$p + N) * b

do j$ = start$j, m - 1, N * b

do i$ = m - N * b, 0, -(N * b)
do pivot$p = N - 1, 0, -1

end$j = i$ + (my$p - N) * b

do j$ = my$p * b, end$j, N * b

(c)

Figure ��
c� The corresponding hand compiled output SPMD program�

� Determining Data Distribution at Compiling Time

In this section� we show how to use a component alignment algorithm to determine data distribution�

This method is also adopted by other researchers ��� �� ��� ��
� Because we will generalize previous

methods to deal with a wider class of problems� in the following� we describe this method in a great

detail�

We �rst analyze the relationship between left�hand�side and right�hand�side array subscript refer�

ence patterns in the original sequential program� Based on pattern matching techniques� in Table ��

we specify communication primitives used in the SPMD program when right�hand�side objects are sent

�

to the owner of the left�hand�side objects�

case LHS RHS communication primitive cost on hypercube

� c� c� Transfer
m� O
m�
� i i� c Shift
m� O
m�
� f�
i� f�
i� �need additional analysis �need additional analysis
� i c OneToManyMulticast
m� seq� O
m � lognum
seq��
� c i Reduction
m� seq� O
m � lognum
seq��
� i unknown Gather
m� seq� O
m � num
seq��
� unknown i Scatter
m� seq� O
m � num
seq��
� i or f�
i� j or f�
j� ManyToManyMulticast
m� seq� O
m � num
seq��

Table �� Communication primitives used in the SPMD program when left�hand�side and right�hand�
side array subscripts have some speci�c patterns� i and j are loop indexing variables� c� c�� and c�
are constants at compile time� �unknown� means that the value is unknown at compile time� f�
i�
and f�
i� are two a�ne functions of the form s� � i� c� and s� � i � c�� respectively� f�
i� and f�
j�
are two functions of i and j� respectively� The parameter m denotes the message size in words� seq
is a sequence of identi�ers representing the processors in various dimensions over which the collective
communication primitive is carried out� The function num applied to such a sequence simply returns
the total number of processors involved�

Readers can �nd that Case � is a special case of Case �� In Section � and Section �� we will show how

to use closed forms to represent communication sets of Case �� Thus� we can generate communication

sets of Case � e�ciently� Therefore� in the following� we will say that two array subscripts have an

a�nity relation if these two subscripts are a�ne functions of the same
single� index variable of a

Do�loop� As to the costs of Case � through Case �� they are considerably higher than those of Case �

through Case ��

��� Determining Alignments of Arrays� Dimensions

Given a program� we �rst construct a component a�nity graph from the source program� It is a

directed� and weighted graph� whose nodes represent dimensions
components� of arrays and whose

edges specify a�nity relations between nodes� Two dimensions of arrays are said to have an a�nity

relation if two subscripts of these two dimensions are a�ne functions of the same
single� index variable

of a Do�loop as shown in the Case � of Table �� Edges are de�ned in two ways� First� if subscripts of

dimensions of the array
or matrix� in the left�hand�side of ��� have a�nity relations to the subscripts

of dimensions of the array
s� in the right�hand�side of ���� then there are edges between corresponding

pairs of dimensions� Second� if two right�hand�side arrays
or matrices� are the corresponding two

�

operands of a binary operator� and some pairs of subscripts of dimensions of these two arrays have

a�nity relations� and in addition� none of subscripts in these two arrays have a�nity relations to those

of the left�hand�side array
or matrix�� then there are edges between corresponding pairs of dimensions

of these two arrays�

The weight with an edge is equal to the communication cost and is necessary if two dimensions

of arrays are distributed along di�erent dimensions of the processor grid� The direction of an edge

speci�es the direction of the data communication according to the �owner computes� rule� Table �

de�nes approximate communication costs if the corresponding two dimensions of arrays of an edge in

the component a�nity graph are distributed along di�erent dimensions of the processor grid� Since in

this paper we assume that the abstract target grid is a ��D grid of N � N��N� PEs� we only consider

the following four cases depending on array�s dimensionalities on both the tail of an edge and the head

of that edge� As usual� we assume that the problem size is m�

edge edge
case head tail approximate communication cost

C� ��D ��D N� � OneToManyMulticast
 m
N�

� fN� PEsg� or

m � Transfer
��

C� ��D ��D N� � OneToManyMulticast
 m
N�

� fN PEsg�

C� ��D ��D ManyToManyMulticast
m
�

N � fN PEsg� or

N � OneToManyMulticast
m
�

N � fN� PEsg�

C� ��D ��D ManyToManyMulticast
m
�

N � fN PEsg� or
m� � Transfer
��

Table �� The communication cost required if the corresponding two dimensions of arrays of an edge in
the component a�nity graph are distributed along di�erent dimensions of the processor grid� These
costs depend on array�s dimensionalities on both the tail of the edge and the head of that edge�

The component alignment problem is de�ned as partitioning the node set of the component a�nity

graph into q disjointed subsets
q is the dimension of the abstract target grid and q may be larger than

the dimension of the physical target grid� so that the total weight of edges across nodes in di�erent

subsets is minimized� with the restriction that no two nodes corresponding to the same array are in

the same subset� These q disjointed subsets will be use to determine data distributions for all data

arrays�

Note that� the component a�nity graph de�ned in this paper is slightly di�erent from the one

�

introduced by Li and Chen ���
� First� their component a�nity graph is undirected� Second� in their

model� they only showed the de�nition of an a�nity relation for some speci�c cases� For example� if a

left�hand�side subscript and a right�hand�side subscript have an a�nity relation� then the left�hand�side

subscript must be an index variable of a Do�loop and the right�hand�side subscript must be an a�ne

function of the form i�c� where i is the index variable and c is an integer� Third� in their graph� there

are only edges between left�hand�side objects and right�hand�side objects� This is because their model

follows the restricted owner computes rule� Therefore� the computation of assignment statements can

be performed only after all right�hand�side objects are sent to the owner PEs of the left�hand�side

objects� The owner computes paradigm simpli�es code generation considerably� However� it does

not provide an adequate solution when the right�hand side of assignment statements contain complex

expressions� and whose operands must be sent to the owner of the left�hand�side objects�

For example� if two operands of a binary operator are aligned� it is better to compute this binary

operator �rst and then send one intermediate result to the owner of the left�hand�side object� than to

send these two operands independently to the owner of the left�hand�side object and then perform the

computation due to this binary operator� For this purpose� we found that it is necessary to specify the

direction of the data communication according to a relaxed owner computes rule based on the costs

de�ned in Table �� More precisely� right�hand�side objects are sent to the owner of the left�hand�side

objects as the conventional owner computes rule� objects of lower dimensional arrays are sent to the

owner of the higher dimensional arrays in order to reduce the communication cost� if these objects are

the corresponding operands of binary operators�

Note that� although the component alignment problem is NP�complete� Li and Chen have proposed

an e�cient heuristic algorithm based on applying the optimal matching procedure to a bipartite graph

constructed from the nodes corresponding to components
dimensions� of two data arrays ���
� In this

paper� when dealing with component alignment problems� we adopt Li and Chen�s heuristic algorithm

by regarding our directed component a�nity graphs as undirected ones� The direction of edges�

however� are used in a code�generation phase and will be used to determine the direction of the data

communication according to the owner computes rule� For completeness� in Figure �� we only present

a very brief version of the component alignment algorithm� however� interested readers can refer to

the original paper for the details about this method ���
�

	

Heuristic component alignment algorithm�

Step �� Construct a component a�nity graph from the source program�

Step �� choose a
high�dimensional� array with a highest dimensionality� thus this array has the
maximum number of nodes in the graph� and let its corresponding nodes in the graph become
the initial basic set�

Step �� while the remaining graph is not empty� do

Step ��� choose an array with a highest dimensionality from the remaining graph�

Step ��� apply the optimal matching procedure to a bipartite graph constructed from the
basic set and the nodes corresponding to components
dimensions� of the new selected
array�

Step ��� combine the matched nodes with the basic set as a new basic set�

Figure �� Heuristic component alignment algorithm�

We now return to our example of the linear system� Figure � shows the component a�nity graph

and the suggested component alignment of the sample program mentioned in Figure �� Suppose that

our target machine is a linear processor array with N PEs� For the purpose of parallelism� based on

the suggested component alignment� matrix A will be distributed by cyclic
b� along its rows� arrays

B� X � and Y will also be distributed by cyclic
b�� The data distribution functions of A� B� X � and Y

are listed in below�

fA
i� j� �
b
i

b
c mod N�� fB
i� � fX
i� � fY
i� �
b

i

b
c mod N��

Note that� the data distribution function fX
i� � p means that the entry i of the one�dimensional

data array X � X
i�� is stored in PEp� The data distribution function fA
i� j� � p means that the entry

i� j� of the two�dimensional data matrix A� A
i� j�� is stored in PEp� In the next subsection� we will

show how to decide the block size b�

��� Determining the Granularity of Data Distribution

There are two oracles to help decide the block size b� The load balance oracle suggests using cyclic

cyclic
��� distribution if the iteration space is a pyramid
such as the iteration space of the LU

decomposition�� a triangle
such as the iteration space of two triangular linear systems�� or any other

��

X A1

A2

B

Y

C1 C3

C3

C1C1

C1

Figure �� Component a�nity graph and the suggested component alignment of the sample program
which solves a linear system based on the LU decomposition�

non�rectangular space� The communication oracle emphasizes not to divide the block size too small�

otherwise it will incur a high communication overhead and a high indexing overhead� These two

oracles� unfortunately� are inconsistent�

We can� however� formulate the total execution time from the SPMD program which includes

both the computation time and the communication time� For each arithmetical operation or logical

operation� we assume that the computation time is tf � for each saxpy operation which executes a

multiplication then follows an addition� we assume that the computation time is tx� for each message

passing operation� we assume that the communication cost is ts � k � tc� where ts is the start�up time

for sending a message� tc is the communication time of transferring a word� and k is the message size

in words� Table � shows the parameters tf � tx� ts� and tc on a ���node nCUBE�� computer�

parameter tf tx ts tc

mean
in �sec� ���� ���� ������ ����
variance
in �sec� ���� ���� ��	� ����

Table �� Parameters used in describing the execution time on the nCUBE�� computer�

We now continue our sample example of the linear system� Suppose that the time of executing the

LU decomposition is TLU � the time of executing two triangular linear systems is T�TLS� and the total

execution time is T � Then� from the SPMD program in Figure �� we can formulate T � TLU � and T�TLS

as follows�

T � TLU � T�TLS

TLU �

m��N�b�X
i���

NX
i���

n
	 � tf �

bX
i���

bX
i��i���

�
tf �
m�

i� � �� �N � b�
i� � �� � b� i�� � �� � tx

�

��

�
m��N�b�X
i��i�

bX
i���

bX
i���

�
tf �
m�

i� � �� �N � b�
i� � �� � b� i	� � �� � tx

�

�
logN � �� � b �
ts �
m�

i� � �� �N � b�
i� � �� � b�� � tc�
o

T�TLS � � �
m��N�b�X
i���

NX
i���

n
	 � tf �

bX
i���

�
tf �
b� i�� � tx

�
�

m��N�b�X
i��i�

bX
i���

bX
i���

tx

�
logN � �� �
ts � b � tc�
o

The symbolic manipulations of the above formulas can be solved using a computer algebra system

like �Derive� ���
� The total execution time is a function of the problem size m� the number of PEs

N � and the block size b� When the problem size m and the number of PEs N are �xed� the optimal

execution time can be obtained by requiring �T
�b � �� or by substituting all possible b into the formula�

Table � shows TLU � T�TLS� and T for various block size b ranging from � to ��� and for various numbers

of PEs N ranging from � to ��� when the problem size m is ����� We also list the real execution time

on a ���node nCUBE�� computer for a comparison�

It is interesting to point out that both the optimal execution time of the LU decomposition and

the whole program is achieved when the block size is �� however� the optimal execution time of two

triangular linear systems is achieved when the block size is � or ��� We will discuss other details of

choosing a block size b again in Section ��

��� Determining Whether Data Redistribution is Necessary

It is feasible to assume that the optimal data distributions for each single Do�loop may be di�erent

among one another in a sequence of Do�loops which perform computation�intensive scienti�c applica�

tions� For instance� when computing a ��D FFT for a data matrix� we usually calculate a ��D FFT for

each row �rst� and then we evaluate a ��D FFT for each column� If we adopt a �xed data distribution

throughout the computation on a linear processor array� it will incur certain communication overhead

due to requiring several �bit�reverse shu�e�exchange� and �butter�y�pattern� data communications�

However� if we perform a transpose operation for the matrix between calculating ��D FFTs for all rows

and ��D FFTs for all columns� then no communication operations are required during evaluating each

��D FFT� In e�ect� we found that under load balance constraints� the communication overhead due

to mismatch arrays� component alignments is much higher than the communication overhead due to

��

block size �PE 	 � �PE 	
 �PE 	 � �PE 	 �
 �PE 	 ��

TLU ������ ����
�
�

��
 �

��� ��
�� ������� ����� ��
���� ���� ������
� T�TLS ���
 �
��
� ���� ����
� ���� ���

� ���� ������ ���� ���
��

T ������ ��������

��� �
����� ��
�� ������� ��
�� �����
� ���� ������
TLU ���
�� ��������

��� �
����� ����� �����
� ��
�� ������� ���� ��
���

� T�TLS ���� �
���� ��

 ���
�� ���� ������ ���� ���

� ���
 ������
T �����
 ����
���

��� �
����� ����� ������� ����� ���
��� �
�� ����
�
TLU ������ ������
�

��� �
����� �
��� ������� ����
 ������� ���� �������

 T�TLS ��
� �
���� ��
� ������ ���
 ������ ���
 ������ ��
� ������
T ������ ������
�
���� �

��
� �

�� ��
���� ����
 ������� ����� �������
TLU ������ ������
�
���� �
����� ��
�� ������� ��
�
 ���
��� ����� �������

� T�TLS ��
� ������ ���
 ������ ���� ����
� ���� ����
� ��
� ���

�
T �����
 ����
�
�
���� �
����� ����� ������� ����� �����
� ����
 ���
���
TLU ��
��� ���
��
� ����� ������� ����� ������� ����� ������� ����
 ��
����

�
 T�TLS ��
� �
��
� ���
 ������ ���� ������ ���� ����
� ��

 ���

�
T ��

�� ���

�
� ��
�
 ������� ����
 ���
��� ����
 ���
��� �
��� ��
��
�
TLU ������ ��
����� �
��� ��
��
�
���� �

���� ��
�� ���
��� ��
�� �����
�

�� T�TLS ��
� �
���� ��
� ���
�� ���� ���
�� ��

 ������ ���� ������
T ������ ��
�
��� ����� ��

���
�
�
 �

��
� ����
 ������� ����
 �����
�
TLU �

��� �������� �

�
 ���
��� ����
 ��
���� ����� ��
��
� not

 T�TLS ��
� �
���� ��
� ������ ���
 ������ ���� ���

� implement
T �

��� ������
� �

�� ������� �
��� ��
���� ����
 �������

Table �� The simulation time in units of seconds for solving a linear system A�
����
��X�
�� � B�
��

based on the LU decomposition and two triangular linear systems� The data that are not in parentheses
are obtained by running a ���node nCUBE�� computer� the data in parentheses are based on an
analytical model�

select a di�erent block size b� In the following� we introduce a simple dynamic programming algorithm

to determine whether the data redistribution is necessary�

Suppose that a program contains s Do�loops� L�� L�� � � �� Ls in sequence� Let Mi�j be the cost of

computing the sequence of Do�loops Li� Li��� � � �� Li�j�� using the component�alignment algorithm�

and Pi�j be the distribution scheme� for � � i � s and � � j � s � i� �� De�ne Ti�j to be the cost of

computing the sequence of Do�loops L�� L�� � � �� Li�j�� with the restriction that it uses the distribution

scheme Pi�j to compute Do�loops Li� Li��� � � �� Li�j��� Thus� the �nal data distribution scheme after

computing Ti�j is Pi�j � Initially� T��j is equal to M��j � cost
Pi�k� k � Pi� j� returns the communication

cost of changing data layouts from Pi�k� k to Pi� j �

Heuristic algorithm for determining whether data redistribution is necessary�

A dynamic programming algorithm for computing the cost of data distribution schema of executing a

sequence of s Do�loops on distributed memory computers is presented�

��

Input� Mi�j � Pi�j � and T��i
� M��i�� where � � i � s and � � j � s� i� ��

Output� The cost of executing s Do�loops on distributed memory computers�

�� for i �� � to s do

�� for j �� � to s� i� � do

�� Ti�j �� MIN��k�ifTi�k� k �Mi� j � cost
Pi�k� k � Pi� j�g �

�� end for end for

�� Minimum Cost �� MIN��k�sfTs�k��� kg �

The above algorithm can be regarded as �nding a�single�source shortest paths in a weighted graph�

In this weighted graph� there are two virtual nodes and s�s���
� physical nodes� The two virtual nodes

include one source and one sink� s�s���
� physical nodes ni�j are numbered by i and j� where � � i � s

and � � j � s � i � �� Nodes� weight� edges� and edges� weight of this graph are de�ned as follows�

�� The weight of two virtual nodes each is zero�
�� The weight of node ni�j is Mi�j �
�� The source

has s edges connected to nodes n��j � and the weight of these edges each is zero� for � � j � s�

respectively�
�� The sink� which also has s edges� is connected by nodes ni��s�i���� and the weight of

these edges each is also zero� for � � i � s� respectively� And�
�� node ni�j has s �
i� j� � � edges

connected to nodes n�i�j��k � and the weight of these edges each is cost
Pi�j � P�i�j�� k�� for
i � j� � s

and � � k � s �
i� j� � �� respectively� Then� the above algorithm is equivalent to �nding shortest

paths from the source to the sink such that the sum of nodes� weight and edges� weight in each of these

paths are minimal� Fig� � shows the corresponding single�source shortest paths problem for s � ��

source

n11

n12

n21 n31 n41 n51

n13

n32

n42

n22

n23

n24

n33

n15 sink

n14

Figure �� The corresponding single�source shortest paths problem for s � ��

The data distribution scheme obtained from the above algorithm is at least as good as any static

data distribution scheme� because the cost of any static data distribution scheme is equal to T��s� We

��

now brie�y describe how to improve this dynamic programming algorithm� It is clear that Mi� ��i��� �

Mi� �i � for � � �i � s� i��� We can show that if Mi� ��i��� is larger than Mi� � plus M�i���� ��i����� and

plus a threshold value which is equal to three times of the maximal communication cost between any

two distribution schema� for some � where � � � � �i � �� then it is better to use three distribution

schema Pi� � � P�i���� ��i������ and P�i��i���� �j��i��� to compute the sequence of Do�loops Li� Li��� � � ��

Li�j��� than to use only one distribution scheme Pi� j � for �i � � � j � s � i � �� Therefore� we

need not compute Mi� j � Based on this observation� we can show that Ti� ��i��� 	 T�i���� ��i����� and

Ti� j 	 T�i��i���� �j��i���� Therefore� we need not compute Ti� j � for �i � � � j � s � i� ��

Let �i be the minimum integer such that Mi� ��i��� 	 Mi� � �M�i���� ��i������
a threshold value��

for some � where � � � � �i � s � i � �� Note that� for the boundary cases when �i � s � i � �

or � � s � i � �� we de�ne dummy values Mi� s�i��� Ms��� �� and M�i���� �s�i������ so that the

above assumption is satis�ed� Let � be the maximal value among �i� for � � i � s� For example�

� � max��i�sf�ig� Then the above dynamic programming algorithm can be improved as follows�

��� for i �� � to s do

��� for j �� � to �i do

��� Ti�j �� MIN��k�minfi� ���gfTi�k� k �Mi� j � cost
Pi�k� k � Pi� j�� if k � �i�kg �

��� end for end for

��� Minimum Cost �� MIN��k��fTs�k��� k� if k � �s�k��g �

The time complexity of this improved dynamic programming algorithm is O

Ps

i�� �i������ which

is bounded by O
s���� In addition� before applying this algorithm� we need to compute at most

�� � �� � � � �� �s � s reasonable�size component alignment problems for the consecutive Do�loops Li�

Li��� � � �� Li�j��� where � � i � s and � � j � �i � �� The total number of component alignment

problems computed is thus no more than s
� � ���

� Generating Communication Sets for Doall Statements

Single�loop doall statements have the same power as one�dimensional array statements� For instance�

the following table shows the equivalence relation between single�loop doall statements and one�

dimensional array statements� where g is a function of array C�

��

doall statements array statements

doall i 	 �� bu��l�
s�

c
A�l� � i � s�� 	 g�C�l� � i � s��� A�l� � u� � s�� 	 g�C�l� � u� � s���

doall i 	 l� u� s A�l� � l � s� � l� � l � s� � bu�l
s
c � s � s� � s � s�� 	

A�l� � i � s�� 	 g�C�l� � i � s��� g�C�l� � l � s� � l� � l � s� � bu�l
s
c � s � s� � s � s���

In this section� we are interested in generating all necessary communication sets in each PE when

a single�loop doall statement is executed by distributed memory machines� In the sequel� we will use

doall statements to represent single�loop doall statements� In the following� we state the problem we

want to solve in this section�

Problem� In a distributed�shared�memory machine� processors are numbered from � to N � ��
Arrays A
�a� � a�
� and C
�c� � c�
� are distributed in cyclic
b�� and cyclic
b��� respectively� Then�
we want to compute necessary communication sets in each processor due to execute the following
doall statement� where s� 	 �� s� 	 �� and g is a function�

doall i � �� bu��l�s�
c

A
l� � i � s�� � g
C
l�� i � s����

The case when s� or s� is negative can be treated analogously� This problem has been studied

before� Koelbel and Mehrotra pioneeredly provided closed�form representations for the special cases

when l� � �� s� � �� a� � c� � �� a� � c� � m � �� and arrays are distributed in block or cyclic

distributions ���� ��
� The following researchers concerned with block�cyclic
cyclic
b�� distributions�

Although they only formulated �send sets� and �receive sets�� none of them got closed�form repre�

sentations� Stichnoth et al� pointed out that a cyclic
bi� distribution can be regarded as a union of

bi cyclic
��
cyclic� distributions� Since there exists closed forms to represent communication sets for

cyclic distributions� communication sets for block�cyclic distributions can thus be represented by a

union of b� � b� closed forms ���
� Gupta et al� proposed closed forms for representing communication

sets for arrays that are distributed using block or cyclic distributions� These closed forms are then

used with a virtual processor approach to give a solution for arrays with block�cyclic distributions ��
�

The above two approaches did not discover periodic patterns in communication sets�

Chatterjee et al� enumerated the local memory access sequence of communication sets based on a

�nite�state machine ��
� Kennedy et al� also presented algorithms� which were based on a �nite�state

machine and an integer lattice method� for computing the local memory access sequence ��
 ���
 ���
�

They also noticed that the data access patterns in the communication sets appeared periodically� They

��

calculated communication sets based on a scanning technique similar to the merge sort for computing

the intersection of two reference patterns corresponding to the left�hand�side and the right�hand�side

array subscripts ��
� Their methods� however� would incur certain runtime overheads due to indirect

addressing of data� Independently� Benkner et al� also proposed a similar technique and implemented

in their Prepare HPF compiler ��
�

Next� for the special case when the parameters a� � c�� a� � c�� l� � l� � �� and s� � s� � �� the

mentioned problem is reduced to a data redistribution problem� Research on this data redistribution

problem also have been reported ��
 ���
 ���
 ���
 ���
�

��� The Structure of Generated Code

We now analyze the problem� We will say that fk
i� � lk � i � sk and the inverse functions f��k
lk �

i � sk� � i� for k � � or �� Figure � shows a detailed outline of implementing a doall statement in each

PE which is a generalization based on formulas presented in ���
�

Step � of Figure � generates an iteration set which speci�es iterations to be performed on PEp�

and two processor sets which represent PEs that PEp will send data to or receive data from� Step

� calculates communication sets and sends them to other PEs� Step � performs computations for

iterations which access only local data� Step � receives data message from other PEs and executes

computations for iterations which access local data and some message bu�ers� Note that� exec
p�

in substep ��� is only formulated for deriving other communication sets and processor sets� Since

exec
p� �
S
q�recv pe�q�iter
p� q� and iter
p� q� � f���
recvC
p� q��� we can combine substep ��� and

three substeps in Step � into a receive�execute loop� Therefore� in practice� iteration sets exec
p� and

iter
p� q� need not to be calculated� It is also interesting to point out that in order to gain e�ciency by

allowing overlapped execution� we have arranged communication and computation tasks interleavedly�

��� The Derivation of Communication Sets

In this subsection� we derive communication sets and processor sets with arbitrary block sizes b� and

b�� Without loss of generality� we assume that
a� � a� � �� is a multiple of Nb� and
c� � c� � ��

is a multiple of Nb�� The data distribution function for array A is fA
j� �
b j�a�b�
c mod N�� thus�

localA
p� � ��a� � pb� � a� � pb� � b� � �
 � a� � Nb�
� The data distribution function for array C

��

Code on processing element p �PEp	�

�� Generate iteration sets and processor sets�
��� exec
p� � f���
localA
p�	 �l� � u� � s�
�� which speci�es iterations to be performed on PEp�

where localA
p� � ��a� � p � b� � a� � p � b� � b� � �
 � a� � N � b�
�
��� send pe
p� � fq j q
� p and PEp will send some data to PEqg�
��� recv pe
p� � fq j q
� p and PEp will receive some data from PEqg�

�� forall q � send pe
p�� do
��� sendC
p� q� � localC
p� 	 f�
exec
q��� which represents elements sent from PEp to PEq�

where localC
p� � ��c� � p � b� � c� � p � b� � b� � �
 � c� � N � b�
�
��� send message containing sendC
p� q� to PEq�

�� perform computations for iterations in iter
p� p�� where iter
p� p� � f���
localC
p� 	 �l� � u� �
s�
� 	 exec
p� � f���
sendC
p� p��� which stands for iterations on PEp that access only local
data� where u� � l� � b
u� � l���s�c � s��

� forall q � recv pe
p�� do

�� receive message containing recvC
p� q� from PEq� where recvC
p� q� � sendC
q� p�� which

speaks for elements sent from PEq to PEp�

�� iter
p� q� � f���
localC
q� 	 �l� � u� � s�
� 	 exec
p� � f���
recvC
p� q��� which indicates

iterations on PEp that access local data and some message bu�ers whose contents are received
from PEq�

�� execute computations for iterations in iter
p� q��

Figure �� Implementing a doall statement on a distributed�shared�memory machine�

is fC
j
�� �
b j

��c�
b�

c mod N�� thus� localC
p� � ��c� � pb� � c� � pb� � b� � �
 � c� � Nb�
� We also

assume that
u� � l�� is a multiple of s� and u� � l� �

u� � l���s�� � s��

The function nxt
x� y� z� we use here� is the smallest integer greater than x and is congruent to y

modulo z� that is� nxt
x� y� z� � x �
y � x� mod z� In Table �� we introduce some notations which

will be used later�

Let jpf and jpl be the �rst j and the last j such that �botl
A� p� j� � topl
A� p� j�
	 �l� � u� � s�

�
�

respectively� and kpf and kpl be the �rst k and the last k such that �botl
C� p� k� � topl
C� p� k�
	 �l� �

u� � s�

�
� respectively� Figure � shows an algorithm for computing jpf and jpl� kpf and kpl also

can be computed similarly� The value jstart � d
l� � a� � pb� � b� � ���
Nb��e is the �rst j such that

topl
A� p� j�� l�� The value jfinal � b
u� � a� � pb���
Nb��c is the last j such that botl
A� p� j�� u��

If s� � b�� then jstart � jpf and jfinal � jpl� If s� 	 b�� we need to check other details�

��

botl
A� p� j� � a� � pb� � jNb�

topl
A� p� j� � a� � pb� � b� � � � jNb�

bota
A� p� j� � nxt
maxfbotl
A� p� j�� l�g� l�� s��

topa
A� p� j� � nxt
minftopl
A� p� j�� u�g � s� � �� l�� s��

bote
A� p� j� �
bota
A� p� j�� l���s�

tope
A� p� j� �
topa
A� p� j�� l���s�

botf
A� p� j� � bote
A� p� j�s�� l�

topf
A� p� j� � tope
A� p� j�s�� l�

botl
C� p� k� � c� � pb� � kNb�

topl
C� p� k� � c� � pb� � b� � � � kNb�

bota
C� p� k� � nxt
maxfbotl
C� p� k�� l�g� l�� s��

topa
C� p� k� � nxt
minftopl
C� p� k�� u�g � s� � �� l�� s��

bote
C� p� k� �
bota
C� p� k�� l���s�

tope
C� p� k� �
topa
C� p� k�� l���s�

botf
C� p� k� � bote
C� p� k�s�� l�

topf
C� p� k� � tope
C� p� k�s�� l��

Table �� Notations which will be used in deriving sets�

We now return to the derivation� Because exec
p� will be used for deriving other communication

sets and processor sets� we formulate it �rst� We have the following relations�

localA
p� �
Sa��a���

Nb�
��

j�
 �botl
A� p� j� � topl
A� p� j�

exec
p� � f���
localA
p�	 �l� � u� � s�
�

� f���

�Sjpl
j�jpf

�bota
A� p� j� � topa
A� p� j� � s�

�

�
Sjpl
j�jpf

�bote
A� p� j� � tope
A� p� j�
�

Note that� in the expression �bote
A� p� j� � tope
A� p� j�
� it may occur that bote
A� p� j�	 tope
A� p� j�

when s� 	 b�� Throughout this paper� if � 	 �� then �� � �
 is empty� Next� according to the

order of appearance in Figure �� after deriving exec
p�� we should present processor sets send pe
p�

and recv pe
p�� However� since exact solutions of these two sets are tedious� we prefer to present

communication sets sendC
p� q� and recvC
p� q� �rst� We now introduce a set f�
exec
q��� which will

�	

jstart � d
l� � a� � pb� � b� � ���
Nb��e� if
j 	 jfinal� then
jfinal � b
u� � a� � pb���
Nb��c� exec
p� �
�
if
s� � b�� then else � jpf � jfinal �
jpf � jstart� j � jfinal�
jpl � jfinal� while
j � jpf� do

else � s� 	 b� � if
bota
A� p� j�� topa
A� p� j��
j � jstart� jpl � j�
while
j � jfinal� do break�
if
bota
A� p� j�� topa
A� p� j�� else

jpf � j� j � j � ��
break� endif

else endwhile
j � j � �� endif

endif endif
endwhile

Figure �� An algorithm for computing jpf and jpl�

be used in deriving sendC
p� q��

f�
exec
q�� �
Sjql
j�jqf

f�
�bote
A� q� j� � tope
A� q� j�
�

�
Sjql
j�jqf

�bote
A� q� j�s�� l� � tope
A� q� j�s�� l� � s�

�
Sjql
j�jqf

�botf
A� q� j� � topf
A� q� j� � s�
�

We now de�ne the periodic coe�cients of the communication set sendC
p� q�� which is equal to

localC
p� 	 f�
exec
q��� Let periods be the period of the reference pattern of array C in sendC
p� q�

whose value is a multiple of Nb�� periodCsb be the number of blocks of local elements of array C whose

reference pattern in sendC
p� q� appears periodically� and periodAsb be the number of blocks of local

elements of array A� whose reference pattern of local elements of array C in sendC
p� q�
based on

f�
exec
q��� appears periodically� Then� we have the following equations�

periods � lcm
Nb��
lcm
Nb�� s���s�� � s��

periodCsb � periods�
Nb��

periodAsb �
periods � s���
Nb�s���

We now study the intersection of localC
p�	 f�
exec
q��� which is equal to
�Skpl

k�kpf
�botl
C� p� k� �

topl
C� p� k�

�
	
�Sjql

j�jqf
�botf
A� q� j� � topf
A� q� j� � s�

�
� We found that if d b�s� e � d �N���b���

s�
e� then

��

each referenced block of array A in PEq
�botf
A� q� j� � topf
A� q� j� � s�
� will intersect to at most one

local block of array C in PEp
�botl
C� p� k� � topl
C� p� k�
�� Similarly� if d b�s� e � d �N���b���
s�

e� then each

local block of array C in PEp will also intersect to at most one referenced block of array A in PEq�

Property � When N � �� at least one of the following two conditions is true�
a� d b�s� e � d �N���b���
s�

e

and
b� d b�s� e � d �N���b���
s�

e�

Proof � First� we want to show that if
a� fails then
b� must be true� If
a� fails� then d b�s� e 	

d �N���b���
s�

e� We have d �N���b���
s�

e � d b�s� e 	 d �N���b���
s�

e � d b�s� e� Therefore� d
b�
s�
e � d �N���b���

s�
e�

Similarly� we can show that if
b� fails then
a� must be true�

Property � Let L and R be the left boundary and the right boundary of ��a � a� b� �
 � e � Nb
	 �� �

� � �
� respectively� Suppose that d������ e � d �N���b��
� e� Then�

��a � a� b� �
 � e � Nb
	 �� � � � �
 � �L � R � �
�

where

L �

�
�� if � � ��a � a� b� �
 � e � Nb

nxt
nxt
maxfa� �g� a� Nb�� �� ��� otherwise�

R �

�
�� if � � ��a � a� b� �
 � e � Nb

nxt
nxt
minfe� �g� a� Nb��Nb� b� �� �� ��� otherwise�

Proof � Let L� and R� be the left boundary and the right boundary of ��a � a� b� �
 � e � Nb
	 �� � �
�

respectively� Then�

L� �

�
�� if � � ��a � a� b� �
 � e � Nb

nxt
maxfa� �g� a� Nb�� otherwise�

R� �

�
�� if � � ��a � a� b� �
 � e � Nb

nxt
minfe� �g� a� Nb��Nb� b� �� otherwise�

Since d������ e � d �N���b��
� e� �� � � � �
 will intersect to at most one local block of ��a � a�b��
 � e � Nb
�

Thus� ��a � a� b� �
 � e � Nb
	 �� � � � �
 � �nxt
L�� �� �� � nxt
R� � � � �� �� �� � �
 � �L � R � �
�

Based on Properties � and �� we can show that sendC
p� q� can be represented by a union of a

variable number of closed forms� First� if d b�s� e � d �N���b���
s�

e� sendC
p� q� can be represented as follows�

sendC
p� q� � localC
p� 	 f�
exec
q��

��

� ��c� � pb� � c� � pb� � b� � �
 � c� � Nb�
 	
�Sjql

j�jqf
�botf
A� q� j� � topf
A� q� j� � s�

�
�

Sjql
j�jqf

�
��c� � pb� � c� � pb� � b� � �
 � c� � Nb�
 	 �botf
A� q� j� � topf
A� q� j� � s�

�
�

Sjql
j�jqf

�L
j� � R
j� � s�

� �L
jqf� � R
jqf� � s�
�
�Sminfjql�jqf�period

A
sb
g

j�jqf��
��L
j� � R
j� � s�
 � u� � periods

�
�

where

L
j� �

�
botf
A� q� j�� if botf
A� q� j� � localC
p�
nxt
nxt
maxfc� � pb�� botf
A� q� j�g� c�� pb�� Nb��� l�� s��� otherwise�

R
j� �

�
topf
A� q� j�� if topf
A� q� j�� localC
p�
nxt
nxt
minfc�� topf
A� q� j�g� c�� pb�� Nb���Nb�� b� � s�� l�� s��� otherwise�

Second� if d b�s� e � d �N���b���
s�

e� sendC
p� q� can be represented as follows�

sendC
p� q� � f�
exec
q��	 localC
p�

� f�f
��
�

�
f�f

��
�
f�
exec
q��	 localC
p��

�
� f�f

��
�

�
��a� � qb� � a� � qb� � b� � �
 � a� � Nb�
 	

�Skpl
k�kpf

�botf
C� p� k� � topf
C� p� k� � s�

��

�
Skpl
k�kpf

f�f
��
�

�
��a� � qb� � a� � qb� � b� � �
 � a� � Nb�
 	 �botf
C� p� k� � topf
C� p� k� � s�

�
�

Skpl
k�kpf

�f�f
��
�
L
k�� � f�f

��
�
R
k�� � s�

� �f�f
��
�
L
kpf�� � f�f

��
�
R
kpf�� � s�
 ��Sminfkpl�kpf�period

C
sb
g

k�kpf��
��f�f

��
�
L
k�� � f�f

��
�
R
k�� � s�
 � u� � periods

�
�

where

L
k� �

�
botf
C� p� k�� if botf
C� p� k�� localA
q�
nxt
nxt
maxfa� � qb�� botf
C� p� k�g� a�� qb�� Nb��� l�� s��� otherwise�

R
k� �

�
topf
C� p� k�� if topf
C� p� k� � localA
q�
nxt
nxt
minfa�� topf
C� p� k�g� a�� qb�� Nb���Nb� � b� � s�� l�� s��� otherwise�

Next� we handle recvC
p� q�� Because recvC
p� q� is equal to sendC
q� p�� recvC
p� q� also can be

represented by a union of a variable number of closed forms� Although recvC
p� q� speci�es a set

of indices of array C� in practice� we prefer that recvC
p� q� can be represented based on indices of

array A� For instance� the loop body of the doall statement A
f�
i�� � g
C
f�
i��� is equivalent to

A
f�
i�� � g
C
f�
f
��
�
f�
i������ Thus� the doall statement can be executed e�ciently after receiving

data messages from other PEs once we fetch elements of array A� Therefore� our goal is to generate the

��

set corresponding to indices of array A� which is equal to f�
f
��
�
recvC
p� q���� because recvC
p� q� �

f�f
��
�
f�f

��
�
recvC
p� q���� Since the derivation of recvC
p� q� is similar to that of sendC
p� q�� we omit

all of the middle steps� and only present the �nal formulas�

First� if d b�s� e � d �N���b���
s�

e� recvC
p� q� can be represented as follows�

recvC
p� q� � f�f
��
�
f�f

��
�
recvC
p� q��� � f�f

��
�
f�f

��
�
sendC
q� p���

� f�f
��
�

�
�f�f

��
�
L
jpf�� � f�f

��
�
R
jpf�� � s�
��Sminfjpl�jpf�period

A
sb
g

j�jpf��
��f�f

��
�
L
j�� � f�f

��
�
R
j�� � s�
 � u� � periods � s��s�

��
�

where

L
j� �

�
botf
A� p� j�� if botf
A� p� j� � localC
q�
nxt
nxt
maxfc� � qb�� botf
A� p� j�g� c�� qb�� Nb��� l�� s��� otherwise�

R
j� �

�
topf
A� p� j�� if topf
A� p� j�� localC
q�
nxt
nxt
minfc�� topf
A� p� j�g� c�� qb�� Nb���Nb�� b� � s�� l�� s��� otherwise�

Second� if d b�s� e � d
�N���b���

s�
e� recvC
p� q� can be represented as follows�

recvC
p� q� � f�f
��
�
f�f

��
�
recvC
p� q��� � f�f

��
�
f�f

��
�
sendC
q� p���

� f�f
��
�

�
�L
kqf� � R
kqf� � s�
 ��Sminfkql�kqf�period

C
sb
g

k�kqf��
��L
k� � R
k� � s�
 � u� � periods � s��s�

��
�

where

L
k� �

�
botf
C� q� k�� if botf
C� q� k�� localA
p�
nxt
nxt
maxfa� � pb�� botf
C� q� k�g� a�� pb�� Nb��� l�� s��� otherwise�

R
k� �

�
topf
C� q� k�� if topf
C� q� k� � localA
p�
nxt
nxt
minfa�� topf
C� q� k�g� a�� pb�� Nb���Nb� � b� � s�� l�� s��� otherwise�

We now formulate send pe
p� and recv pe
p�� It is possible to derive exact solutions for send pe
p�

and recv pe
p�� However� the computation cost is very expensive in a general case� This is because to

test whether q is in send pe
p� or whether q is in recv pe
p� is equivalent to test whether sendC
p� q�
�

or whether sendC
q� p�
�
� respectively� Because of this reason� we consider inexact solutions for

send pe
p� and recv pe
p�� We now introduce a property� which will be used to derive send pe
p� and

recv pe
p��

��

Property � Suppose that array A is distributed by cyclic
b��� fA
i�� which speci�es the PE that stores

A
i�� is the data distribution function of array A� x and y are two indices of array A� where x � y�

Then� we have

fA
�x � y
� �

����
���

�� � N � �
� if y � x� � 	
N � �� � b��

�fA
x� � fA
y�
� if y � x� � �
N � �� � b� and fA
x� � fA
y��

�� � fA
y�
� �fA
x� � N � �
� if y � x� � �
N � �� � b� and fA
x� 	 fA
y��

Property � also holds for array C with its corresponding distribution by cyclic
b�� and its data distri�

bution function fC � We now process send pe
p�� which is equal to fA
f�
f
��
�
localC
p�	�l� � u� � s�
����

send pe
p� � fA
f�
f
��
�
localC
p� 	 �l� � u� � s�
���

�
Skpl
k�kpf

fA
f�
�bote
C� p� k� � tope
C� p� k�
��

�
Sminfkpl�kpf�period

C
sb
g

k�kpf
fA
�botf
C� p� k� � topf
C� p� k� � s�
�

Sminfkpl�kpf�period

C
sb
g

k�kpf
fA
�botf
C� p� k� � topf
C� p� k�
��

Note that� the above formula is an equation only when s� � b�� Next� we are concerned with recv pe
p��

which is equal to fC
f�
exec
p����

recv pe
p� � fC
f�
exec
p���

�
Sjpl
j�jpf

fC
f�
�bote
A� p� j� � tope
A� p� j�
��

�
Sminfjpl�jpf�period

A
sb
g

j�jpf
fC
�botf
A� p� j� � topf
A� p� j� � s�
�

Sminfjpl�jpf�period

A
sb
g

j�jpf
fC
�botf
A� p� j� � topf
A� p� j�
��

Note that� the above formula is an equation also only when s� � b��

� Using Closed Forms to Represent Communication Sets

In the last section� we derived communication sets and processor sets with arbitrary block sizes b� and

b�� These sets� however� cannot be represented by a constant number of closed forms� For instance�

each of these sets only can be represented by a union of
periodAsb � �� or
periodCsb � �� closed forms�

Since the number of boundary indices of these closed forms which we need to calculate is proportional to

the corresponding periodAsb or period
C
sb� the computation overhead becomes serious if the corresponding

periodAsb or period
C
sb is large� In this section� we return to analyze the block sizes of b� and b�� Our goal

��

is to choose reasonable block sizes b� and b�� so that processor sets and communication sets can be

represented by a constant number of closed forms� In the sequel� we will use closed forms to represent

a constant number of closed forms�

	�� Determining Suitable Block Sizes b� and b�

Consider the target doall statement again� We �rst present an ideal case� Suppose that we assign

the entry A
j� to PE p �
b j�l�s��h
c mod N� and the entry C
j�� to PE p� �
b j

��l�
s��h

c mod N�� Then� for

i � f�� �� � � � � h � �g� A
l� � i � s�� and C
l� � i � s�� are in PE �� for i � fh� h � �� � � � � � � h � �g�

A
l�� i�s�� and C
l�� i�s�� are in PE �� and so on� In addition� there is no communication overhead

to perform the target doall statement� In this ideal case� we notice that b� � s� � h and b� � s� � h�

We now consider the general case� Suppose that the data distribution functions for arrays A and

C are fA
j� �
b j�offset�b�
c mod N� and fC
j

�� �
b j
��offset�

b�
c mod N�� respectively� We found that�

even if we don�t care about the values of offset� and offset� � if b��s� is a factor of b��s�� or b��s� is

a multiple of b��s�� then the communication sets can be represented by closed forms� However� if the

condition fails� it will incur computation and communication overheads due to random access patterns

whose costs are relatively very expensive� Table � summarizes certain conditions where processor sets

and communication sets have closed forms�

conditions send peC�p� recv peC�p� sendC�p� q� recvC�p� q�

arbitrary b� and b�
b��s� is a factor of b��s�

p p p
b��s� is a multiple of b��s�

p p p
all�closed�forms condition�

p p p p

Table �� Conditions when processor sets and communication sets have closed forms� All�closed�forms
condition is when b��s� is a factor of b��s� and
b� � s���
b� � s�� is a factor or a multiple of N � or
when b��s� is a multiple of b��s� and
b� � s���
b� � s�� is a factor or a multiple of N �

If these sets can be represented by closed forms� then they can be implemented e�ciently� Other�

wise� we only can use ad hoc methods to enumerate these sets or use indirectly memory access methods

to get their corresponding data� The latter case� of course� will incur certain computation overhead�

Therefore� our goal is to determine suitable block sizes such that the more sets can be represented by

closed forms the better� In the following� we show examples to illustrate the �avor of choosing block

��

sizes� We assume that the iteration space of a doall statement is large enough such that each PE has

to execute roughly the same amount of iterations�

Example �� Suppose that the loop bodies of two consecutive doall statements are

A
l� � i � s�� � A
l� � i � s�� � C
l� � i � s�� and

A
l� � i � s�� � A
l� � i � s���D
l� � i � s���

In this case� we choose b� � s� � h� b� � s� � h� and b� � s� � h� where block sizes b�� b�� and b� are for

arrays A� C� and D� respectively� Then all sets� send peC
p�� recv peC
p�� sendC
p� q�� and recvC
p� q�

for the �rst doall statement� as well as send peD
p�� recv peD
p�� sendD
p� q�� and recvD
p� q� for the

second doall statement all have closed forms�

Example �� Suppose that the loop bodies of two consecutive doall statements are

A
l� � i � s�� � A
l� � i � s�� �C
l� � i � s�� and

C
l� � i � s�� � C
l� � i � s�� �D
l� � i � s���

First� we may naively choose b� � s� �h� b� � lcm
s�� s���h� and b� � s� �h� Then� except recv peC
p�

for the �rst doall statement and send peD
p� for the second doall statement� all other sets have closed

forms� Second� we can choose b� � s� �
s� � h� gcd
s�� s���� b� �
s� � s� � h� gcd
s�� s���� and

b� � s� �
s� � h� gcd
s�� s���� Then all sets for the above two doall statements have closed forms� Of

course� the second choice is better than the �rst choice�

Example �� Suppose that the loop bodies of two consecutive doall statements are

A
l� � i � s�� � A
l� � i � s��� C
l� � i � s�� and

A
l� � i � s�� � A
l� � i � s�� �D
l� � i � s���

First� we may naively choose b� � lcm
s�� s���h� b� � s� �h� and b� � s� �h� Then� except send peC
p�

for the �rst doall statement and send peD
p� for the second doall statement� all other sets have closed

forms� Second� we can choose b� �
s� � s� � h� gcd
s�� s���� b� � s� �
s� � h� gcd
s�� s���� and

b� � s� �
s� � h� gcd
s�� s���� Then all sets for the above two doall statements have closed forms�

Certainly� the second choice is better than the �rst choice�

In the following� we derive processor sets and communication sets for three cases in Table ��

��

	�� The Case When b� � s� � h� and b� � s� � h� � h�

In this case� b��s� is a factor of b��s�� Therefore� send peC
p�� sendC
p� q�� and recvC
p� q� have closed

forms� First� we process send pe
p�� which is equal to fA
f�
f
��
�
localC
p� 	 �l� � u� � s�
���� Since

periods � Nb� and periodCsb � periods�
Nb�� � �� it is enough to analyze the set of PEs which use

elements of array C within a block of size b�� We found that if h� � N � then every PE will use some

elements of array C within a block of size b�� If h� � N � then the left boundary element and the

right boundary element of array C within a block of size b� are referred by fA
botf
C� p� kpl�� and

fA
topf
C� p� kpf��� respectively� Note that� if nxt
botl
C� p� kpf�� l�� s�� � l�� then fA
botf
C� p� kpf��

maybe is not equal to fA
botf
C� p� kpl��� Based on Property �� we have the following closed form�

send pe
p� �

���������������
��������������

�� � N � �
� if u� � l� � � � Nb� and h� � N �

�fA
botf
C� p� kpl�� � fA
topf
C� p� kpf��
�
if u� � l� � � � Nb�� h� � N� and fA
botf
C� p� kpl�� � fA
topf
C� p� kpf���

�� � fA
topf
C� p� kpf��
� �fA
botf
C� p� kpl�� � N � �
�
if u� � l� � � � Nb�� h� � N� and fA
botf
C� p� kpl�� 	 fA
topf
C� p� kpf���

fA
�botf
C� p� kpf� � topf
C� p� kpf�
�� fA
�botf
C� p� kpl� � topf
C� p� kpl�
��
if u� � l� � � � Nb��

Second� we formulate recv pe
p�� which is equal to fC
f�
exec
p���� We start from exec
p� and

check the elements of array C that these iterations will refer to� Recall that exec
p� �
Sjpl
j�jpf

�bote
A� p�

j� � tope
A� p� j�
� Then� f�
exec
p�� �
Sjpl
j�jpf

�botf
A� p� j� � topf
A� p� j� � s�
� which represents the

elements of array C that are referred by iterations executed in PEp� and fC
f�
exec
p��� indicates

the set of PEs that store these elements of array C� Since periodAsb �
periods � s���
Nb�s�� � h��

recv pe
p� can be represented by a union of at most h� � � closed forms�

recv pe
p� �

�����������������
����������������

�� � N � �
� if u� � l� � � � Nb� and h� � N �Sjpf�h���
j�jpf

fC
�botf
A� p� j� � topf
A� p� j�
��

if u� � l� � � � Nb�� h� � N� and nxt
botl
A� p� jpf�� l�� s�� � l���Sjpf�h���
j�jpf

fC
�botf
A� p� j� � topf
A� p� j�
�
�
�

fC
�botf
A� p� jpf � h�� � nxt
l� � periods � s�� l�� s��
��
if u� � l� � � � Nb�� h� � N� and nxt
botl
A� p� jpf�� l�� s�� � l��Sjpl

j�jpf
fC
�botf
A� p� j� � topf
A� p� j�
�� if u� � l� � � � Nb��

Note that� in the above formula� the set fC
�botf
A� p� j� � topf
A� p� j�
� consists of only one or two

PEs� In addition� all these PEs are distinct� However� in spite of these facts� recv pe
p� still cannot

be represented by a constant number of closed forms independent of h��

��

Third� we deal with sendC
p� q�� which is equal to localC
p�	 f�
exec
q��� This set will be repre�

sented by a union of three closed forms� sheadC
p� q�� sbody
�
C
p� q�� and sbody�C
p� q�� Before deriving

sendC
p� q�� we show an example to explain where these three closed forms come from�

Example
� Suppose that the number of processors is �� the loop body of a doall statement is

A
�� � �i� � g
C
� � i��� where g is a function� and u� � ���� Then� l� � ��� s� � �� l� � �� s� � ��

and u� � ��	� If we let h� � � and h� � ��� then b� � s� � h� � � and b� � s� � h� � h� � ���

Figure � shows elements of array C in PE
 and the corresponding PEs which will refer to these

elements� Among them� sendC
�� �� � sheadC
�� ���sbody�C
�� ���sbody
�
C
�� ��� where sheadC
�� �� �

�� � � � �
 � ���� � �� � �
 � �� � �
� sbody�C
�� �� � ���� � �� � �
 � ��	 � ��
� and sbody�C
�� �� � ���	� �

	� � �
 � ��	 � �
 � ��	 � ��
� sendC
�� �� � sheadC
�� ��� sbody�C
�� ��� where sheadC
�� �� � �� � � �

�
 � ��	 � �� � �
 � �� � �
 and sbody�C
�� �� � ����	 � 	� � �
 � ��	 � �
 � ��	 � ��
� Note that� sheadC
�� ��

is on purpose written by a union of two closed forms� as we will derive a uni�ed formula to represent

shead
p� q�� Next� sbody�C
�� �� �
�

 4 5 6 7 8 9 10 11 21 2 0 12 13 14 15 16 17 18 19 20

 1

 1

 1

 1

 2

 2

 2

 2

 2

 2

 2

 2 3

 3

 3

 3

 3

 3

 3

 3

 3 0

 0

 0

 0

 0

 0

 0

 0

 1

 1

 1

 1

 1

 1

 1

 1

 2

 2

 2

 0

 0

 0

 0

 2 2

 2

 2

 2

 3 3

 3 3

 3

 3 3

 0

 0

 0

 0

 0

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 2 2

 2 2

 2 2

 2 2

 2

 3 3

 3 3

 3 3

 3 3

 0

 0

 0

 0

 1

 88 89 90 91 92 93 94 95 96 97 98 99 100 102 103 104 105

176 177 178 179

101

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

360 361 362 363 364 365 366 367 368 369 370 371

 3

372 373

264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

352 353 354 355 356 357 358 359

106 107 108 109

2 sbody (0,2)
C

sbody (0,1) 21
C

sbody (0,1)

 2 0 3 3 3 3 0 0 1 1 2 2

shead (0,1)
C

shead (0,2)C

 95

 1 the processor which will access C(95)
array index of array C

C

Figure �� Elements of array C in PE
� where array C is distributed by cyclic
��� over four processors�
In addition� sendC
�� q� � sheadC
�� q�� sbody�C
�� q�� sbody�C
�� q�� for � � q � ��

We notice that sheadC
p� q� is not empty if nxt
botl
C� p� kpf�� l�� s�� � l�� sbody
�
C
p� q� includes

some elements if botl
C� p� k� is in between botf
A� q� j� � � and topf
A� q� j� for some j and k� and

sbody�C
p� q� will be evaluated without any conditions� In addition� the period of f�
exec
q�� is

��

lcm
Nb�� s���s�� � s� � Ns�h� and periods � Nb�� Let k
�

pf � kpf � � if nxt
botl
C� p� kpf�� l�� s��

� l�� k
�

pf � kpf otherwise� Then� we have

sheadC
p� q� �

������
�����

�botf
A� q� jqf� � minftopf
A� q� jqf�� topa
C� p� kpf�g � s�
 �
��botf
A� q� jqf � �� � topf
A� q� jqf � �� � s�
 � topa
C� p� kpf� � Ns�h�
�

if nxt
botl
C� p� kpf�� l�� s�� � l��

� otherwise�

sbody�C
p� q� �

���������
��������

��bota
C� p� k
�

pf� � nxt
bota
C� p� k
�

pf�� topf
A� q� jqf�� Ns�h�� � s�
 � u� � Nb�
�

if botf
A� q� jqf� � bota
C� p� k
�

pf� � topf
A� q� jqf� or

nxt
bota
C� p� k
�

pf�� topf
A� q� jqf�� Ns�h��� s�
h� � �� � bota
C� p� k
�

pf�

� minfnxt
bota
C� p� k
�

pf�� topf
A� q� jqf�� Ns�h��� topf
A� q� jql�g�

� otherwise�

sbody�C
p� q� � ���nxt
bota
C� p� k
�

pf�� botf
A� q� jqf � ��� Ns�h�� �

nxt
bota
C� p� k
�

pf�� botf
A� q� jqf � ��� Ns�h�� � s�
h� � �� � s�
 �

topa
C� p� k
�

pf� � Ns�h�
 � u� � Nb�
�

sendC
p� q� � sheadC
p� q�� sbody�C
p� q�� sbody�C
p� q��

Fourth� we are concerned with recvC
p� q�� which is equal to sendC
q� p�� Hence� recvC
p� q� also can

be represented by a union of three closed forms� As indicated in Section �� we prefer that recvC
p� q� can

be represented based on indices of array A� In addition� there is a one�to�one correspondence between

rheadC
p� q�� rbody
�
C
p� q�� rbody

�
C
p� q� and f�f

��
�

�
f�
f

��
�
rheadC
p� q��� � f�
f

��
�
rbody�C
p� q��� �

f�
f
��
�
rbody�C
p� q���

�
� Let k

�

qf � kqf �� if nxt
botl
C� q� kqf�� l�� s�� � l�� k
�

qf � kqf otherwise� Then�

recvC
p� q� can be represented as follows�

rheadC
p� q� �

�������
������

f�f
��
�

�
�bota
A� p� jpf� � minftopa
A� p� jpf�� topf
C� q� kqf�g � s�
 �

��bota
A� p� jpf � �� � topa
A� p� jpf � �� � s�
 � topf
C� q� kqf� � Nb�

�
�

if nxt
botl
C� q� kqf�� l�� s�� � l��

� otherwise�

rbody�C
p� q� �

������������
�����������

f�f
��
�

�
��botf
C� q� k

�
qf� � nxt
botf
C� q� k

�
qf�� topa
A� p� jpf�� Nb�� � s�
 �

u� � Nb�h�

�
�

if botf
A� p� jpf� � bota
C� q� k
�

qf� � topf
A� p� jpf� or

nxt
bota
C� q� k
�

qf�� topf
A� p� jpf�� Ns�h��� s�
h� � �� � bota
C� q� k
�

qf�

� minfnxt
bota
C� q� k
�

qf�� topf
A� p� jpf�� Ns�h��� topf
A� p� jpl�g�

� otherwise�

rbody�C
p� q� � f�f
��
�

�
���nxt
botf
C� q� k

�
qf�� bota
A� p� jpf � ��� Nb�� �

nxt
botf
C� q� k
�
qf�� bota
A� p� jpf � ��� Nb�� � s�
h� � �� � s�
 �

topf
C� q� k
�
qf� � Nb�
 � u� � Nb�h�

�
�

�	

recvC
p� q� � rheadC
p� q�� rbody�C
p� q�� rbody�C
p� q��

In the following� we show an example to explain how to relate indices of array A to recvC
p� q��

Example �� We continue Example �� Figure 	 shows elements of array A in PE� through PE��

and the corresponding PEs that store elements of array C� which will be used to modify elements

of array A� Among them� f�
f
��
�
recvC
�� ���� � f�
f

��
�
rheadC
�� ���� � f�
f

��
�
rbody�C
�� ���� �

f�
f
��
�
rbody�C
�� ����� where f�
f

��
�
rheadC
�� ���� � ��� � �� � �
 � ���� � �	 � �
 � �	 � ��
�

f�
f
��
�
rbody�C
�� ���� � ����� � ��� � �
 � ��� � ���
� and f�
f

��
�
rbody�C
�� ���� � ����	� � �		 � �
 �

��� � ��
 � ��� � ���
� f�
f
��
�
recvC
�� ���� � f�
f

��
�
rheadC
�� ���� � f�
f

��
�
rbody�C
�� ����� where

f�
f
��
�
rheadC
�� ���� � ��� � �� � �
 � ���� � �� � �
 � �	 � ��
 and f�
f

��
�
rbody�C
�� ���� � ������ � ��� �

�
 � ��� � ��
 � ��� � ���
�

	�� The Case When b� � s� � h� � h� and b� � s� � h�

This case has a symmetrical scene as the case in the last subsection because b��s� is a multiple of b��s��

Therefore� recv peC
p�� sendC
p� q�� and recvC
p� q� have closed forms� First� we process send pe
p��

which is equal to fA
f�
f
��
�
localC
p� 	 �l� � u� � s�
���� Since periodCsb � periods�
Nb�� � h��

send pe
p� can be represented by a union of at most h� � � closed forms�

send pe
p� �

�����������������
����������������

�� � N � �
� if u� � l� � � � Nb� and h� � N �Skpf�h���
k�kpf

fA
�botf
C� p� k� � topf
C� p� k�
��

if u� � l� � � � Nb�� h� � N� and nxt
botl
C� p� kpf�� l�� s�� � l��Skpf�h���
k�kpf

fA
�botf
C� p� k� � topf
C� p� k�
� �

fA
�botf
C� p� kpf � h�� � f�

nxt
l� � periods � s�� l�� s��� l���s��
��
if u� � l� � � � Nb�� h� � N� and nxt
botl
C� p� kpf�� l�� s�� � l��Skpl

k�kpf
fA
�botf
C� p� k� � topf
C� p� k�
�� if u� � l� � � � Nb��

Note that� send pe
p� cannot be represented by a constant number of closed forms independent of h��

Second� we formulate recv pe
p�� which is equal to fC
f�
exec
p���� Since periodAsb �
periods �

s���
Nb�s�� � �� it is enough to analyze the set of PEs� which store elements of array C that will be

��

 3 3 3 3 3

 0 3 0 0 0 0

 1 1 1 1 1 1

 0 0 0 0 0 0

 1 1 1 1 2 1

 2 2 2 3 3 3

 3 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 3 3 3 3 3 3

 3 3 3 3 3

 2 2 2 2 2 2

 2 2 2 2 2 2

 1 1 1 1 1 1 1

 0 0 0 0 0 0

 3 0

 1 1 1 1 1 1

 0 0 0 0

 3 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 1

 0 0 0 0 0 0

 3

 3

f (f (rbody (1,0)))21 C
2-1

-1-1

array index of array A221

 0 the processor which stores C(f (f (221)))1

 0 0 0 0

1 C
1

2
-1

f (f (rbody (1,0)))

740 741 742 743 744 745 746 747 748 749 750 751

2

165164 166 167 168 169 170 171 172 173 174 175

180 181 182 183 184 185 186 187 188 189 190 191

196 197 198 199

213212 214 215 216 217 218 219 220 221 222 223

372 373 378 379 380 382379

356 357 358 359 360 361 362 363 364 365 366 367356 357 358 359 360 361 362 363 364 365 366 367

340 341 342 343 344 345 346 347 348 349 350 351340 341 342 344 345 346 347 348 349 350

377376375374 383

388 389 390 392 393 394 395 396 397 398 399

228 229 230 231 232 233 234 235 236 237 238 239

244 245 246 247 248 249 250 251 252 253 254 255

260 261 262 263 264 265 266 267 268 269 270 271

276 277 278 279 280 281 282 283 284 285 286 287

292 293 294 295 296 297 298 299 300 301 302 303

308 309 310 311 312 313 314 315 316 317 318 319

324 325 326 327 328 329 330 331 332 333 334 335324 325 326 327 328 329 330 331 335332

381

391

200 201 202 203 204 205 206 207

 5 6 7 8 9 10 11 12 13 14 15

 21 22 23 24 25 26 27 28 29 30 31

 37 38 39 40 41 42 43 44 45 46 47

 0 0 0

 0 0 0 0 0 0

 5 6 7 9 10 11 12 13 14 15

 21 22 23 24 25 26 27 28 29 30 31

 37 38 39 40 41 42 43 44 45 46 47

 0 0 0

 0 0 0 0 0 0

 4

 20

 36

 4

 20

 36
f (f (rhead (1,0)))1 2

-1

2 C

-1
1f (f (rhead (2,0)))

C
 0 0 0 0 0 0

 8

p=1 p=2 p=3

Figure 	� Elements of array A in PE� through PE�� where array A is distributed by cyclic
�� over
four processors� In addition� f�
f

��
�
recvC
p� ���� � f�
f

��
�
rheadC
p� ���� � f�
f

��
�
rbody�C
p� ���� �

f�
f
��
�
rbody�C
p� ����� for � � p � ��

accessed by elements of array A within a block of size b��

recv pe
p� �

���������������
��������������

�� � N � �
� if u� � l� � � � Nb� and h� � N �

�fC
botf
A� p� jpl�� � fC
topf
A� p� jpf��
�
if u� � l� � � � Nb�� h� � N� and fC
botf
A� p� jpl�� � fC
topf
A� p� jpf���

�� � fC
topf
A� p� jpf��
 � �fC
botf
A� p� jpl�� � N � �
�
if u� � l� � � � Nb�� h� � N� and fC
botf
A� p� jpl�� 	 fC
topf
A� p� jpf���

fC
�botf
A� p� jpf� � topf
A� p� jpf�
�� fC
�botf
A� p� jpl� � topf
A� p� jpl�
��
if u� � l� � � � Nb��

Third� we deal with sendC
p� q�� which is equal to localC
p� 	 f�
exec
q��� This set can be repre�

sented by a union of three closed forms� sheadC
p� q�� sbody
�
C
p� q�� and sbody

�
C
p� q�� Let j

�

qf � jqf ��

��

if nxt
botl
A� q� jqf�� l�� s�� � l�� j
�

qf � jqf otherwise�

sheadC
p� q� �

������
�����

�bota
C� p� kpf� � minftopa
C� p� kpf�� topf
A� q� jqf�g � s�
 �
��bota
C� p� kpf � �� � topa
C� p� kpf � �� � s�
 � topf
A� q� jqf� � Nb�
�

if nxt
botl
A� q� jqf�� l�� s�� � l��

� otherwise�

sbody�C
p� q� �

���������
��������

��botf
A� q� j
�

qf� � nxt
botf
A� q� j
�

qf�� topa
C� p� kpf�� Nb�� � s�
 � u� � Nb�h�
�

if bota
C� p� kpf� � botf
A� q� j
�

qf� � topa
C� p� kpf� or

nxt
botf
A� q� j
�

qf�� topa
C� p� kpf�� Nb��� s�
h� � �� � botf
A� q� j
�

qf�

� minfnxt
botf
A� q� j
�

qf�� topa
C� p� kpf�� Nb��� topa
C� p� kpl�g�

� otherwise�

sbody�C
p� q� � ���nxt
botf
A� q� j
�

qf�� bota
C� p� kpf � ��� Nb�� �

nxt
botf
A� q� j
�

qf�� bota
C� p� kpf � ��� Nb�� � s�
h� � �� � s�
 �

topf
A� q� j
�

qf� � Nb�
 � u� � Nb�h�
�

sendC
p� q� � sheadC
p� q�� sbody�C
p� q�� sbody�C
p� q��

Fourth� we manage recvC
p� q�� which is equal to sendC
q� p�� Hence� it also can be represented by

a union of three closed forms� As stated before� we prefer that recvC
p� q� can be represented based

on indices of array A� Let j
�

pf � jpf � � if nxt
botl
A� p� jpf�� l�� s�� � l�� j
�

pf � jpf otherwise� Then�

we have

rheadC
p� q� �

�������
������

f�f
��
�

�
�botf
C� q� kqf� � minftopf
C� q� kqf�� topa
A� p� jpf�g � s�
 �

��botf
C� q� kqf � �� � topf
C� q� kqf � �� � s�
 � topa
A� p� jpf� � Ns�h�

�
�

if nxt
botl
A� p� jpf�� l�� s�� � l��

� otherwise�

rbody�C
p� q� �

������������
�����������

f�f
��
�

�
��bota
A� p� j

�

pf� � nxt
bota
A� p� j
�

pf�� topf
C� q� kqf�� Ns�h�� � s�
 �

u� � Nb�

�
�

if bota
C� q� kqf� � botf
A� p� j
�

pf��� topa
C� q� kqf� or

nxt
botf
A� p� j
�

pf�� topa
C� q� kqf�� Nb��� s�
h� � �� � botf
A� p� j
�

pf�

� minfnxt
botf
A� p� j
�

pf�� topa
C� q� kqf�� Nb��� topa
C� q� kql�g�

� otherwise�

rbody�C
p� q� � f�f
��
�

�
���nxt
bota
A� p� j

�

pf�� botf
C� q� kqf � ��� Ns�h�� �

nxt
bota
A� p� j
�

pf�� botf
C� q� kqf � ��� Ns�h�� � s�
h� � �� � s�
 �

topa
A� p� j
�
pf� � Ns�h�
 � u� � Nb�

�
�

recvC
p� q� � rheadC
p� q�� rbody�C
p� q�� rbody�C
p� q��

��

	�� The Case When Both send pe
p� and recv pe
p� Have Closed Forms

When b��s� is a factor of b��s� and
b� � s���
b� � s�� is a factor or a multiple of N � or when b��s�

is a multiple of b��s� and
b� � s���
b� � s�� is a factor or a multiple of N � then both send pe
p� and

recv pe
p� have closed forms�

In the �rst case� let b� � s� � h�� b� � s� � h� � h�� and h� is either a factor of N or a multiple

of N � In this case� send pe
p� can be represented by closed forms as presented in Section ���� In the

following� we show that recv pe
p� also can be represented by closed forms�

recv pe
p� �

��������������
�������������

�� � N � �
� if u� � l� � � � Nb� and h� � N �

�fC
botf
A� p� jpf�� �
fC
botf
A� p� jpf�� � minfN � ��
jpl � jpf�N�h�g � N�h�
 mod N�

if h� � N and fC
botf
A� p� j�� � fC
topf
A� p� j��� for all jpf � j � jpf � ��

��fC
topf
A� p� jpf��� � � fC
topf
A� p� jpf��
 �
fC
topf
A� p� jpf�� � minfN � ��
jpl� jpf �N�h�g � N�h�
 mod N�

if h� � N and fC
botf
A� p� j��
� fC
topf
A� p� j��� for some jpf � j � jpf � ��

Note that� the above closed form has two exceptions� First� when fC
botf
A� p� jpf�� � fC
topf
A� p�

jpf��� then
fC
topf
A� p� jpf��� �� mod N is not in recv pe
p�� Second� when u� � l� � � � Nb� and

fC
botf
A� p� jpl�� � fC
topf
A� p� jpl��� then
fC
topf
A� p� jpf�� �
jpl � jpf�N�h�� mod N is not in

recv pe
p��

In the second case� let b� � s� � h� � h�� b� � s� � h�� and h� is either a factor of N or a multiple

of N � In this case� recv pe
p� can be represented by closed forms as presented in Section ���� In the

following� we show that send pe
p� also can be represented by closed forms�

send pe
p� �

��������������
�������������

�� � N � �
� if u� � l� � � � Nb� and h� � N �

�fA
botf
C� p� kpf�� �
fA
botf
C� p� kpf�� � minfN � ��
kpl � kpf�N�h�g � N�h�
 mod N�

if h� � N and fA
botf
C� p� k�� � fA
topf
C� p� k��� for all kpf � k � kpf � ��

��fA
topf
C� p� kpf��� � � fA
topf
C� p� kpf��
 �
fA
topf
C� p� kpf�� � minfN � ��
kpl� kpf�N�h� � N�h�
 mod N�

if h� � N and fA
botf
C� p� k��
� fA
topf
C� p� k��� for some kpf � k � kpf � ��

Note that� the above closed form also has two exceptions� First� when fA
botf
C� p� kpf�� � fA
topf
C�

p� kpf��� then
fA
topf
C� p� kpf��� �� mod N is not in send pe
p�� Second� when u� � l� � � � Nb�

and fA
botf
C� p� kpl�� � fA
topf
C� p� kpl��� then
fA
topf
C� p� kpf���
kpl�kpf�N�h�� mod N is not

in send pe
p��

��

	�	 Experimental Studies

In this subsection� we present two experimental studies on a nCUBE�� computer� For each experimental

study� the execution time required by each processor to execute the node program was measured and

the maximum �nish time was reported� The �rst experimental study calculates a saxpy operation on

two data arrays� the second experimental study performs a data redistribution operation on a speci�c

data array� In e�ect� the data redistribution operation can be seen as a special case of the saxpy

operation�

Example �� Consider the following saxpy operation�

doall i � �� ����	

A
�		�� � � i� � A
�		� � � � i� � saxpy con � C
� � � � i��

where saxpy con is a �oating�point constant� In addition� array A is distributed by a cyclic
b��

distribution� array C is distributed by a cyclic
b�� distribution� Table � lists experimental results of

implementing this saxpy operation with various block sizes b� and b�� Experimental results can be

distilled as follows�

�� The execution time of computing the cases when b� � s� � h and b� � s� � h � h� is close to that

of the cases when b� � s� � h � h
� and b� � s� � h�

�� When h� is less than the number of PEs� then the execution time becomes better when h� is close

to �� This is because� in these cases� each block of array C in PEp
�botl
C� p� k� � topl
C� p� k�
�

will intersect to at most one referenced block of arrayA in PEq
�botf
A� q� j� � topf
A� q� j� � s�
��

and vice versa� Therefore� certain optimization can be taken by using two�nested closed forms to

represent sendC
p� q� and recvC
p� q� instead of using the mentioned formulas which use three�

nested closed forms to represent the above two sets� sendC
p� q� and recvC
p� q�� In addition�

each PE needs to send data messages to at most
h� � �� PEs� Therefore� the communication

time reduces when h� becomes smaller�

�� When h� is larger than or equal to the number of PEs� then the execution time improves when

block sizes b� and b� are increasingly larger� This may illustrate that our algorithm favors the

��

b� �
 �� ���
�� �
��
��� �����

b�

� PE �	�
� �	��� �	�

 �	��
 �	��� �	��� �	��� �	���

� � PE �	��� �	��� �	�
� �	��� �	��� �	��
 �	��
 �	��

� PE �	��� �	��
 �	�
� �	��� �	��
 �	��� �	��� �	���

�� PE �	��� �	��� �	�
� �	��� �	��
 �	��� �	��� �	�
�

� PE �	��� �	��� �	��� �	��� �	��� �	��� �	��� �	���

� � PE �	��
 �	�
� �	��� �	�
� �	��� �	��
 �	��
 �	���

� PE �	��� �	��� �	��� �	��� �	��
 �	��� �	��� �	���

�� PE �	��� �	��� �	��� �	��� �	�

 �	�
� �	�
� �	���

� PE �	�
� �	��� �	��
 �	��� �	�
� �	��
 �	��� �	��

�� � PE �	�
� �	��� �	�
� �	�

 �	�
� �	��
 �	��
 �	��

� PE �	�
� �	��� �	��� �	��
 �	��� �	�

 �	�

 �	�
�

�� PE �	�
� �	��� �	��� �	��
 �	��� �	��
 �	��� �	���

� PE �	��� �	��� �	�
� �	��
 �	��
 �	��
 �	��
 �	���

��� � PE �	��� �	�
� �	��
 �	��
 �	��� �	�

 �	�

 �	�

� PE �	��� �	��
 �	��
 �	��� �	��� �	�
� �	�
� �	�
�

�� PE �	��� �	��
 �	��
 �	��� �	��� �	��� �	��� �	���

� PE �	��
 �	��
 �	��
 �	��
 �	�

 �	��� �	��� �	���

��� � PE �	��
 �	�
� �	��� �	��� �	��� �	�

 �	�

 �	�

� PE �	��� �	��� �	��
 �	��� �	�
� �	��� �	�
� �	�
�

�� PE �	��� �	�

 �	��� �	��� �	��
 �	��� �	��� �	���

� PE �	��
 �	��� �	��� �	��� �	��
 �	��
 �	��� �	��

���� � PE �	��
 �	��� �	�
� �	��� �	��
 �	��� �	��� �	�
�

� PE �	��� �	��
 �	��� �	�

 �	��� �	�
� �	��� �	���

�� PE �	��� �	�
� �	��
 �	��
 �	��� �	��� �	��� �	���

� PE �	��� �	��� �	��� �	��� �	��� �	��� �	�

 �	���

���� � PE �	��� �	��� �	�

 �	��
 �	��� �	��� �	��� �	���

� PE �	��� �	��� �	��� �	�
� �	�

 �	��� �	�
� �	���

�� PE �	��� �	�
� �	��� �	��� �	��� �	��� �	��
 �	���

� PE �	��
 �	��� �	��� �	��� �	��
 �	��� �	��� �	�
�

����� � PE �	��� �	��� �	�
� �	��� �	��� �	��
 �	��� �	��

� PE �	��� �	��� �	��� �	�

 �	�

 �	��� �	��� �	�
�

�� PE �	�
� �	��� �	��� �	��
 �	��� �	��� �	��� �	���

Table �� Execution time
second� of computing the saxpy operation in Example � using � PEs� �
PEs� � PEs� and �� PEs� respectively� Array A is distributed by a cyclic
b�� distribution� array C is
distributed by a cyclic
b�� distribution�

cases when block sizes are large� because in these cases� the indexing overhead for packing data

messages is not signi�cant�

�� All cases except three show scalable improvements when the number of PEs grows� Three

exception cases are when the number of PEs is ��� b� � ����� and b� � � or b� � �� and b� � �

and b� � ������ This is because in these extreme block to cyclic cases or cyclic to block cases�

the indexing overhead for packing data messages is signi�cant� in addition� the communication

overhead also becomes worse when the number of PEs grows because of involving certain all�to�all

communications�

��

�� Because the iteration space is linear and each PE executes roughly the same number of iterations�

there is no load unbalance problem� Therefore� according to the communication oracle� it is

preferable to choose large block sizes b� and b�� From Figure ��� which is drawn based on Table

�� we can summarize that it is preferable to choose block sizes b� � �� and b� � �� for this saxpy

operation�

#PE = 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

3 9 63 315 945 3780 7560 15120
b1

time (sec)

b2

#PE = 4

0
0.1
0.2
0.3
0.4
0.5

3 9 63 315 945 3780 7560 15120

b1

time (sec)

2 6
42 210
630 2520
5040 10080

#PE = 8

0
0.1
0.2
0.3

3 9 63 315 945 3780 7560 15120
 b1

time (sec) #PE = 16

0
0.1
0.2
0.3

3 9 63 315 945 3780 7560 15120
b1

time (sec)

Figure ��� Execution time
second� of performing the saxpy operation in Example � using � PEs� �
PEs� � PEs� and �� PEs� respectively� Array A is distributed by a cyclic
b�� distribution� array C is
distributed by a cyclic
b�� distribution�

Example
� Consider the following data redistribution operation�

doall i � �� ���	�	

A
i� � OLD A
i��

where array A is distributed by a cyclic
b�� distribution� array OLD A is distributed by a cyclic
b��

distribution� Table � lists experimental results of implementing this data redistribution operation with

various block sizes b� and b�� Experimental results show that the behavior of the execution time of

this data redistribution operation is similar to that of the saxpy operation� From Figure ��� which

��

is drawn based on Table �� we can summarize that it is preferable to choose block sizes b� � �� and

b� � �� for this data redistribution operation�

b� �
 �� ���
�� �
��
��� �����

b�

� PE �	��� �	��� �	�
� �	��� �	��� �	��� �	��� �	���

� � PE �	��� �	��
 �	��� �	��
 �	��� �	��� �	��� �	��

� PE �	��� �	��� �	�
� �	��� �	��� �	��� �	��
 �	��

�� PE �	��� �	�
� �	��� �	�

 �	��
 �	��� �	��� �	���

� PE �	��� �	��� �	
�� �	�
� �	��� �	��� �	��� �	���

 � PE �	��� �	��� �	��� �	��� �	��� �	��� �	��� �	���

� PE �	��� �	��� �	��� �	��� �	��� �	��� �	��� �	���

�� PE �	�
� �	��� �	��� �	��� �	��� �	��� �	��� �	���

� PE �	�

 �	
�� �	��� �	
�� �	
�� �	
�� �	
�� �	
��

�� � PE �	�
� �	��
 �	��� �	��� �	��
 �	��
 �	��� �	���

� PE �	��� �	��� �	��� �	��� �	�
� �	��
 �	��
 �	��

�� PE �	��
 �	��� �	��� �	�
� �	�

 �	��� �	��� �	���

� PE �	��� �	�
� �	
�� �	��� �	�
� �	�
� �	�
� �	�
�

��� � PE �	��� �	��� �	�
� �	��� �	��� �	��� �	��� �	��

� PE �	��� �	��� �	��� �	��� �	��� �	��� �	��� �	���

�� PE �	�
� �	��� �	�
� �	��� �	��
 �	�
� �	�
� �	�

� PE �	��� �	�
� �	
�� �	�
� �	��� �	��� �	��� �	���

�� � PE �	��� �	��� �	�
� �	��� �	��� �	��� �	��� �	���

� PE �	��� �	��� �	�
� �	��� �	��� �	�
� �	�
� �	���

�� PE �	�
� �	��� �	�

 �	�

 �	��� �	��� �	�
� �	�
�

� PE �	��� �	��� �	
�� �	�

 �	��� �	��� �	��� �	�

�
�� � PE �	��� �	��� �	�
� �	��
 �	��� �	��� �	��
 �	���

� PE �	��� �	��� �	�
� �	��� �	��� �	��� �	��� �	�
�

�� PE �	��
 �	��� �	��� �	�
� �	�
� �	��� �	�
� �	���

� PE �	��� �	��� �	
�� �	
�� �	�
� �	�

 �	��� �	��

��� � PE �	��� �	��� �	�
� �	��� �	��� �	��� �	��� �	���

� PE �	��� �	��� �	�
� �	��� �	��� �	��� �	��� �	��

�� PE �	��
 �	��� �	��� �	�

 �	�
� �	��� �	��� �	��

� PE �	��
 �	��
 �	
�� �	
�� �	�
� �	��� �	�
� �	���

����� � PE �	��� �	��� �	�
� �	��� �	��
 �	��� �	��� �	���

� PE �	��� �	��� �	�
� �	��� �	��� �	��� �	��� �	���

�� PE �	��
 �	��� �	��� �	�
� �	�
� �	�
� �	��� �	���

Table �� Execution time
second� of performing the data redistribution operation in Example � using
� PEs� � PEs� � PEs� and �� PEs� respectively� Array A is distributed by a cyclic
b�� distribution�
array OLD A is distributed by a cyclic
b�� distribution�

In the above two experimental studies� we assumed that the problem variables and the number of

PEs were given at run time� Therefore� each node had to compute all boundary indices of closed forms

at run time� In practice� for many applications� problem variables and the number of PEs are known

at compiling time� Then� boundary indices of closed forms can be computed in advance at compiling

time� and the resulting execution time can thus be even better as expectation�

��

#PE = 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

3 9 63 315 945 3780 7560 15120

b1

time (sec)

b2

#PE = 4

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

3 9 63 315 945 3780 7560 15120
b1

time (sec)

3 9
63 315
945 3780
7560 15120

#PE = 8

0
0.1
0.2
0.3
0.4

3 9 63 315 945 3780 7560 15120

 b1

time (sec)
#PE = 16

0
0.1
0.2
0.3

3 9 63 315 945 3780 7560 15120
b1

time (sec)

Figure ��� Execution time
second� of performing the data redistribution operation in Example � using
� PEs� � PEs� � PEs� and �� PEs� respectively� Array A is distributed by a cyclic
b�� distribution�
array OLD A is distributed by a cyclic
b�� distribution�

� Conclusions

We have presented in this paper several techniques for determining data distribution and generating

communication sets on distributed memory multicomputers� In Section �� we proposed a cost model

which emphasized that the total execution time should include both the computation time and the

communication time� This cost model was then used to determine the granularity of data distri�

bution� We also extended Li and Chen�s component alignment algorithm and developed a dynamic

programming algorithm for heuristically determining whether data redistribution was necessary�

In Section � and Section �� we derived formulas to represent communication sets of executing

single�loop doall statements� In Section �� we found that there were no simple formulas to represent

communication sets when data arrays were distributed arbitrarily� However� in Section �� we found that

��

there existed closed forms to represent communication sets if data arrays were distributed according

to certain restrictions� Experimental studies also showed that the indexing overhead of the proposed

closed forms was not signi�cant and the approach scaled well as the number of PEs increased�

References

��� S� Benkner� P� Brezany� and H� Zima� Processing array statements and procedure interfaces in the PRE�
PARE high performance Fortran compiler� In Lecture Notes in Computer Science ���� pages ��
�����
�����

��� B� Chapman� T� Fahringer� and H� Zima� Automatic support for data distribution on distributed memory
multiprocessor systems� In Lecture Notes in Computer Science ���� Sixth International Workshop on

Languages and Compilers for Parallel Computing� pages ��
����� Portland� Oregon� Aug� �����

��� S� Chatterjee� J� R� Gilbert� F� J� E� Long� R� Schreiber� and S� H� Teng� Generating local addresses and
communication sets for data�parallel programs� Journal of Parallel and Distributed Computing� �
�����
�
�����

�
� M� Gupta and P� Banerjee� Compile�time estimation of communication costs on multicomputers� In Proc�

International Parallel Processing Symposium� pages
���
��� Beverly Hills� CA� Mar� �����

��� M� Gupta and P� Banerjee� Demonstration of automatic data partitioning techniques for parallelizing
compilers on multicomputers� IEEE Trans� Parallel Distributed Syst�� ������������� Mar� �����

�
� S� K� S� Gupta� S� D� Kaushik� S� Mufti� S� Sharma� C� H� Huang� and P� Sadayappan� On the genera�
tion of e�cient data communication for distributed�memory machines� In Proc� International Computer

Symposium� pages ��
����� Taichung� Taiwan� Dec� �����

��� S� K� S� Gupta� S� D� Kaushik� S� Mufti� S� Sharma� C� H� Huang� and P� Sadayappan� On compiling
array expressions for e�cient execution on distributed�memory machines� In Proc� International Conf� on

Parallel Processing� pages II��������� St� Charles� IL� Aug� �����

��� S� Hiranandani� K� Kennedy� J� Mellor�Crummey� and A� Sethi� Compilation techniques for block�cyclic
distributions� In Proc� of ACM International Conf� on Supercomputing� pages ����
��� Manchester� U�K��
July ���
�

��� S� Hiranandani� K� Kennedy� and C�W� Tseng� Compiling Fortran D for MIMD distributed�memory ma�
chines� Communications of the ACM� ������

���� Aug� �����

���� E� T� Kalns and L� M� Ni� Processor mapping techniques toward e�cient data redistribution� IEEE Trans�

Parallel Distributed Syst�� ����� to appear�

���� S� D� Kaushik� C� H� Huang� R� W� Johnson� and P� Sadayappan� An approach to communication�e�cient
data redistribution� In Proc� of ACM International Conf� on Supercomputing� pages �

����� Manchester�
U�K�� July ���
�

���� S� D� Kaushik� C� H� Huang� J� Ramanujam� and P� Sadayappan� Multi�phase array redistribution� Modeling
and evaluation� Technical Report OSU�CISRC����
���� Department of Computer and Information Science�
The Ohio State University� ���
�

���� K� Kennedy� N� Nedeljkovi�a� and A� Sethi� E�cient address generation for block�cyclic distributions� In
Proc� of ACM International Conf� on Supercomputing� pages ������
� Barcelona� Spain� July �����

��
� K� Kennedy� N� Nedeljkovi�a� and A� Sethi� A linear�time algorithm for computing the memory access
sequence in data�parallel programs� In Proc� ACM SIGPLAN Symp� on Principles and Practices of Parallel

Programming� Santa Barbara� CA� July �����

���� C� Koelbel� Compile�time generation of regular communications patterns� In Proc� of Supercomputing ��	�
pages �������� Nov� �����

�	

��
� C� Koelbel� D� Loveman� R� Schreiber� G� Steele� Jr�� and M� Zosel� The High Performance Fortran

Handbook� The MIT Press� Cambridge� MA� ���
�

���� C� Koelbel and P� Mehrotra� Compiling global name�space parallel loops for distributed execution� IEEE
Trans� Parallel Distributed Syst�� ��
��

��
��� Oct� �����

���� U� Kremer� J� Mellor�Crummey� K� Kennedy� and A� Carle� Automatic data layout for distributed�memory
machines in the D programming environment� In Automatic Parallelization
 New Approaches to Code

Generation� Data Distribution� and Performance Prediction� pages ��
����� Vieweg Advanced Studies in
Computer Science� Verlag Vieweg� Wiesbaden� Germany� �����

���� J� Li and M� Chen� Compiling communication�e�cient problems for massively parallel machines� IEEE

Trans� Parallel Distributed Syst�� ������
����
� July �����

���� J� Li and M� Chen� The data alignment phase in compiling programs for distributed�memory machines�
Journal of Parallel and Distributed Computing� ����������� �����

���� K� Li and P� Hudak� Memory coherence in shared virtual memory systems� ACM Trans� on Computer

Systems� ��
���������� �����

���� J� M� Stichnoth� D� O�Hallaron� and T� R� Gross� Generating communication for array statements� Design�
implementation� and evaluation� Journal of Parallel and Distributed Computing� ����������� ���
�

���� R� Thakur� A� Choudhary� and G� Fox� Runtime array redistribution in HPF program� In Proc� of Scalable

High Performance Computing Conference� pages ������
� May ���
�

��
� Ellis Wade Jr� and Ed Lodi� A Tutorial Introduction to Derive� Brooks�Cole Publishing Company� Paci�c
Grove� California� �����

���� M� E� Wolf and M� S� Lam� A loop transformation theory and an algorithm to maximize parallelism� IEEE
Trans� Parallel Distributed Syst�� ��
��
���
��� Oct� �����

��

