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Abstract

This paper is concerned with designing e�cient algorithms for determining data distribution
and generating communication sets on distributed memory multicomputers� First� we propose a
dynamic programming algorithm to automatically determine data distribution at compiling time�
This approach is di�erent from previous research works� which only allow programmers explicitly
to specify the data distribution using language extensions� The proposed algorithm also can deter�
mine whether data redistribution is necessary between two consecutive DO�loop program fragments�
Second� we propose closed forms to represent communication sets among processing elements for
executing doall statements� when data arrays are distributed in a block�cyclic fashion� Our re�
sult contributes towards automatic compilation of sequential programs to message�passing version
programs running on distributed memory parallel computers� Our methods also can be included
in current compilers and used when programmers fail to provide any data distribution directives�
Experimental studies on a nCUBE�� multicomputer are also presented�
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� Introduction

Arrays distribution and communication sets generation are two problems we must solve when dealing

with the compilation of DO�loop program fragments for distributed memory multicomputers� For

instance� in High Performance Fortran 
HPF�� programmers have obligations to provide TEMPLATE�

ALIGN� and DISTRIBUTE directives to specify data distribution ���
� Then� based on these directives�

compilers can generate all communication instructions� In this paper� however� we try to determine

data distribution automatically by compilers in contrast with previous research works� which previ�

ously only allowed programmers explicitly to specify the data distribution using language extensions�

We show systematic methods for determining data distributions and for generating communication

sets for each processing element 
PE�� Thus� the proposed algorithms can be included in compilers

for automatically transforming sequential DO�loop program fragments into parallel version programs

with message�passing communication primitives� For instance� our methods can be included in HPF

compilers and used when programmers fail to provide any data distribution directives�

In the following� we state the problems we will address in this paper� First� given a DO�loop

program or a sequence of DO�loop programs� we are interested in how to align data arrays� so that

data communication incurred due to the resulting data distribution will be minimized� Conventionally�

this problem can be solved by using a component alignment algorithm to determine a static data

distribution scheme for the whole program ��
 ���
� In contrast to giving a static solution� we will present

a dynamic programming algorithm to determine whether data redistribution is necessary between two

consecutive DO�loop program fragments�

Second� after determining data alignments among data arrays� we are interested in how to distribute

data arrays among PEs� In order to do this� compilers must include an analytical model� which can

formulate communication time and computation time� In addition� this analytical model can help to

determine grain and granularity of execution space� it also can help to determine whether data arrays

are distributed among PEs by a block fashion� or a cyclic fashion� or a block�cyclic fashion�

Third� after determining data distribution among PEs� we focus our attentions on generating

communication sets among PEs� Previous research works have provided closed forms of generating

communication sets for the special cases when an array�s distribution is either in a block fashion or

in a cyclic fashion ���
 ���
� Recently� a lot of research works are concentrated on the more general
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cases when an array�s distribution is in a block�cyclic fashion ��
 ��
 ��
 ��
 ���
 ���
 ���
� Furthermore�

methods to generate aggregate communication operations based on pattern matching techniques are

also proposed ��	
� We are interested in integrating previous research works and in formulating a

complete set of closed forms of generating communication sets for each PE�

The rest of this paper is organized as follows� In Section �� we introduce some background of

compiling sequential programs on distributed memory multicomputers� In Section �� we present algo�

rithms to determine data distribution at compiling time� In Section �� we derive formulas to represent

communication sets for doall statements with arbitrary block sizes� In Section �� we propose closed

forms to represent communication sets for doall statements with restricted block sizes� Finally� some

concluding remarks are given in Section ��

� Background

��� Nomenclature

The following closed forms 
regular sections� will be used in this paper�

� �a � e�
 represents the set of consecutive integers from a to e�� For instance� �� � ���
 �

f�� �� �� � � � � ���g�

� �a � e� � s�
 is in behalf of the set of integers from a with a stride 
period� s� until to a maximum

integer which is not greater than e�� For example� �� � ��� � ��
 � f�� ��� ��g�

� ��a � e�
 � e� � s�
 speci�es the set f�a � e�
� �a � e�
 � s�� �a � e�
 � �s�� � � �� until not greater

than e�g� Thus� ��� � ��
 � ��� � ��
 � f�� �� �� � � � � ��� ��� ��� ��� � � � � ��� ��� ��� ��� � � � � ���g�

� ��a � e� � s�
 � e� � s�
 means the set f�a � e� � s�
� �a � e� � s�
 � s�� �a � e� � s�
 � �s�� � � ��

until not greater than e�g� Thus� ��� � �� � ��
 � ��� � ��
 � f�� ��� ��� ��� ��� ��� ��� 	�� ���g�

� ���a � e�
 � e� � s�
 � e� � s�
 stands for the set f��a � e�
 � e� � s�
� ��a � e�
 � e� � s�
 � s��

��a � e�
 � e� � s�
 � �s�� � � �� until not greater than e�g� Thus� ��� � �
 � �� � ��
 � ��� � ��
 �

f�� �� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� 	�� 	�� 	�� ���� ���g�

� ���a � e� � s�
 � e� � s�
 � e� � s�
 illustrates the set f��a � e� � s�
 � e� � s�
� ��a � e� � s�
 �

e� � s�
 � s�� ��a � e� � s�
 � e� � s�
 � �s�� � � �� until not greater than e�g� For instance� ��� �
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� � �
 � �� � ��
 � ��� � ��
 � f�� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� 	�� 	�� ���g�

Suppose that arrayA
�a� � a�
� is indexed from a� to a� and there are in totalN PEs numbered from

� toN��� Then� if we adopt cyclic
b� distribution� the set A
��a��p�b � a��p�b�b��
 � a� � N �b
�

is stored in PE p 
PEp�� We will say that array A is distributed by a cyclic fashion if b � �� by a block

fashion if b � d
a� � a� � ���Ne� and by a block�cyclic fashion if � � b � d
a� � a� � ���Ne�

��� Distributed Memory Multicomputers

In this paper� we are concerned with distributed memory systems� The abstract target machine we

adopt is a q�D grid of N� � N� � � � � � Nq PEs� where D stands for dimensional� A PE on the q�D

grid is represented by the tuple 
p�� p�� � � � � pq�� where � � pi � Ni� � for � � i � q� Such a topology

can be easily embedded into almost all distributed memory machines� including massively con�gured

parallel computers� For example� the q�D grid can be embedded into a hypercube computer using a

binary re�ected Gray code�

The parallel program generated from a sequential program for a grid corresponds to the SPMD


Single Program Multiple Data� model� in which each PE executes the same program but operates on

distinct data items �	
� More precisely� in general� a source program has sequential parts 
which must

be executed sequentially� and concurrent parts 
which can be executed concurrently�� Each PE will

execute the sequential parts individually� while all PEs will execute the concurrent parts altogether by

using message passing communication primitives� In practice� scalar variables and small data arrays

used in the program are replicated on all PEs in order to reduce communication costs� while large

data arrays are partitioned and distributed among PEs� In this paper� we adopt a global name space

for representing large data arrays among PEs� Therefore� our machine model can be regarded as a

distributed shared memory model ���
 ���
 ���
�

��� Compiling Sequential Programs on Distributed Memory Machines

When dealing with the compilation of a sequential program on a distributed memory computer� we

must decide on a suitable data distribution for each data array� so that a computation load balance

can be achieved� in addition� overhead due to communication can be minimized� We also must provide

e�cient algorithms for generating communication sets� so that performance gained due to parallel
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computing will not be degraded by software overhead� Previously� researchers have shown that after

applying loop transformation techniques such as loop interchange� loop reversal� and loop skewing� a

sequential Do�loop program fragment can be transformed into an equivalent program fragment either

with doall loops in all levels� or with an outmost doserial loop in which all its inner loops are doall

loops ���
� Doall loops guarantee that statements in di�erent iterations 
loop bodies� can be executed

independently even in di�erent PEs� Therefore� we can group di�erent sets of iterations into PEs� and

execute each set of iterations in di�erent PEs independently�

Figure � and Figure � show three programs� 
a� a sequential program for solving a linear system

AX � B� 
b� its corresponding doall loop program� and 
c� its corresponding SPMD program in which

data arrays are distributed by cyclic
b�� Readers can �nd that there is a one�to�one correspondence

between statements in the original sequential program 
which have been rewritten after performing loop

transformations� and its corresponding doall�version program� For this reason� without any confusion�

in the sequel we will frequently apply compiler techniques directly on the sequential programs� As to

compile a doall loop version program to a SPMD program� it is straightforward if data distributions

for all arrays 
or matrices� are determined�

X(i) = Y(i) / A(i, i)

Y(j) = Y(j) - A(j, i) * X(i)
enddo  enddo

X(i) = Y(i) / A(i, i)

Y(j) = Y(j) - A(j, i) * X(i)
enddo  enddo

Y(i) = B(i)

B(j) = B(j) - A(j, i) * Y(i)
enddo  enddo

Y(i) = B(i)

B(j) = B(j) - A(j, i) * Y(i)
enddo  enddo

A(i, j) = A(i, j) - A(i, k) * A(k, j)
enddo  enddo  enddo

A(i, j) = A(i, j) - A(i, k) * A(k, j)
enddo  enddo  enddo

UX = Y.  *}{*

LY = B.  *}{*

A(i, k) = A(i, k) / A(k, k) A(i, k) = A(i, k) / A(k, k)

Solving a linear system AX = B based on the LU decomposition.  *}{*

REAL  A(m, m), B(m), X(m), Y(m) REAL  A(m, m), B(m), X(m), Y(m)(a) (b)
A = LU.  *}{*do k = 0, m - 1

do i = k + 1, m - 1

do j = k + 1, m - 1

do i = 0, m - 1

do j = i + 1, m - 1

do i = m - 1, 0, -1

doserial k = 0, m - 1
doall i = k + 1, m - 1

doall j = k + 1, m - 1

doserial i = 0, m - 1

doall j = i + 1, m - 1

doserial i = m - 1, 0, -1

do j = 0, i - 1 doall j = 0, i - 1

Figure �� Solving a linear system AX � B based on the LU decomposition� 
a� the original sequential
program� 
b� the corresponding doall loop version program�
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{*

# define my$p = who_am_i()   {*  return myself processor ID  *}1
2
3
4

Matrix A is distributed by cyclic(b) along its rows;  Arrays X, Y, and B are distributed by cyclic(b);
A working matrix T1 and a working array T2 are replicated in all processors.  *}

{* A = LU.  *} else

endif

if (my$p > pivot$p)

else

endif

enddo enddo enddo enddo enddo

{* UX = Y.  *}

X(i) = Y(i) / A(i, i)

Y(j) = Y(j) - A(j, i) * X(i)
enddo  enddo

else

endif

else

if (my$p < pivot$p)

endif

enddo enddo enddo enddo enddo

start$k = k$ + pivot$p * b
end$k = start$k + b - 1
if (my$p = pivot$p)

do k = start$k, end$k
do i = k + 1, end$k

A(i, k) = A(i, k) / A(k, k)
do j = k + 1, m - 1

A(i, j) = A(i, j) - A(i, k) * A(k, j)
enddo enddo enddo
broadcast( A( [start$k : end$k], [start$k : m-1] ) )

else 

endif

if (my$p > pivot$p)
start$i = k$ + my$p * b

else

endif

do k = start$k, end$k
do i = i$, i$ + b - 1

do j = k + 1, m - 1

enddo  enddo  enddo  enddo  enddo enddo

{*

if (my$p = pivot$p)
do i = start$i, end$i

Y(i) = B(i)
do j = i + 1, end$i

B(j) = B(j) - A(j, i) * Y(i)
enddo  enddo

LY = B.  *}

end$i = start$i + b - 1
start$i = i$ + pivot$p * b

start$j = i$ + my$p * b

do i = start$i, end$i
do j = j$, j$ + b - 1

if (my$p = pivot$p)

start$i = i$ + pivot$p * b
end$i = start$i + b - 1

do i = end$i, start$i, -1

do i = end$i, start$i, -1

do j = start$i, i - 1

end$j = i$ + my$p * b

do j = j$, j$ + b - 1

receive( pivot$p, T2( [0 : b-1] ) )

B(j) = B(j) - A(j, i) * T2(i-start$i)

receive( pivot$p, T2( [0 : b-1] ) )

broadcast( X( [start$i : end$i] ) )

Y(j) = Y(j) - A(j, i) * T2(i-start$i)

broadcast( Y( [start$i : end$i] ) )

receive( pivot$p, T1( [0 : b-1], [start$k : m-1] ) )

A(i, k) = A(i, k) / T1(k-start$k, k)

A(i, j) = A(i, j) - A(i, k) * T1(k-start$k, j)
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Hand compiled output SPMD program using the global name space for N processors.

REAL  A( [[my$p * b : my$p * b + b - 1] : m - 1 : N * b], [0 : m - 1] ),  T1( [0 : b - 1], [0 : m - 1] )
REAL  X( [[my$p * b : my$p * b + b - 1] : m - 1 : N * b] ),  Y( [[my$p * b : my$p * b + b - 1] : m - 1 : N * b] )
REAL  B( [[my$p * b : my$p * b + b - 1] : m - 1 : N * b] ),  T2( [0 : b - 1] )

do k$ = 0, m - 1, N * b
do pivot$p = 0, N - 1

start$i = k$ + (my$p + N) * b

do i$ = start$i, m - 1, N * b

do i$ = 0, m - 1, N * b
do pivot$p = 0, N - 1

start$j = i$ + (my$p + N) * b

do j$ = start$j, m - 1, N * b

do i$ = m - N * b, 0, -(N * b)
do pivot$p = N - 1, 0, -1

end$j = i$ + (my$p - N) * b

do j$ = my$p * b, end$j, N * b

(c)

Figure �� 
c� The corresponding hand compiled output SPMD program�

� Determining Data Distribution at Compiling Time

In this section� we show how to use a component alignment algorithm to determine data distribution�

This method is also adopted by other researchers ��� �� ��� ��
� Because we will generalize previous

methods to deal with a wider class of problems� in the following� we describe this method in a great

detail�

We �rst analyze the relationship between left�hand�side and right�hand�side array subscript refer�

ence patterns in the original sequential program� Based on pattern matching techniques� in Table ��

we specify communication primitives used in the SPMD program when right�hand�side objects are sent
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to the owner of the left�hand�side objects�

case LHS RHS communication primitive cost on hypercube

� c� c� Transfer
m� O
m�
� i i� c Shift
m� O
m�
� f�
i� f�
i� �need additional analysis �need additional analysis
� i c OneToManyMulticast
m� seq� O
m � lognum
seq��
� c i Reduction
m� seq� O
m � lognum
seq��
� i unknown Gather
m� seq� O
m � num
seq��
� unknown i Scatter
m� seq� O
m � num
seq��
� i or f�
i� j or f�
j� ManyToManyMulticast
m� seq� O
m � num
seq��

Table �� Communication primitives used in the SPMD program when left�hand�side and right�hand�
side array subscripts have some speci�c patterns� i and j are loop indexing variables� c� c�� and c�
are constants at compile time� �unknown� means that the value is unknown at compile time� f�
i�
and f�
i� are two a�ne functions of the form s� � i� c� and s� � i � c�� respectively� f�
i� and f�
j�
are two functions of i and j� respectively� The parameter m denotes the message size in words� seq
is a sequence of identi�ers representing the processors in various dimensions over which the collective
communication primitive is carried out� The function num applied to such a sequence simply returns
the total number of processors involved�

Readers can �nd that Case � is a special case of Case �� In Section � and Section �� we will show how

to use closed forms to represent communication sets of Case �� Thus� we can generate communication

sets of Case � e�ciently� Therefore� in the following� we will say that two array subscripts have an

a�nity relation if these two subscripts are a�ne functions of the same 
single� index variable of a

Do�loop� As to the costs of Case � through Case �� they are considerably higher than those of Case �

through Case ��

��� Determining Alignments of Arrays� Dimensions

Given a program� we �rst construct a component a�nity graph from the source program� It is a

directed� and weighted graph� whose nodes represent dimensions 
components� of arrays and whose

edges specify a�nity relations between nodes� Two dimensions of arrays are said to have an a�nity

relation if two subscripts of these two dimensions are a�ne functions of the same 
single� index variable

of a Do�loop as shown in the Case � of Table �� Edges are de�ned in two ways� First� if subscripts of

dimensions of the array 
or matrix� in the left�hand�side of ��� have a�nity relations to the subscripts

of dimensions of the array
s� in the right�hand�side of ���� then there are edges between corresponding

pairs of dimensions� Second� if two right�hand�side arrays 
or matrices� are the corresponding two
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operands of a binary operator� and some pairs of subscripts of dimensions of these two arrays have

a�nity relations� and in addition� none of subscripts in these two arrays have a�nity relations to those

of the left�hand�side array 
or matrix�� then there are edges between corresponding pairs of dimensions

of these two arrays�

The weight with an edge is equal to the communication cost and is necessary if two dimensions

of arrays are distributed along di�erent dimensions of the processor grid� The direction of an edge

speci�es the direction of the data communication according to the �owner computes� rule� Table �

de�nes approximate communication costs if the corresponding two dimensions of arrays of an edge in

the component a�nity graph are distributed along di�erent dimensions of the processor grid� Since in

this paper we assume that the abstract target grid is a ��D grid of N � N��N� PEs� we only consider

the following four cases depending on array�s dimensionalities on both the tail of an edge and the head

of that edge� As usual� we assume that the problem size is m�

edge edge
case head tail approximate communication cost

C� ��D ��D N� � OneToManyMulticast
 m
N�

� fN� PEsg� or

m � Transfer
��

C� ��D ��D N� � OneToManyMulticast
 m
N�

� fN PEsg�

C� ��D ��D ManyToManyMulticast
m
�

N � fN PEsg� or

N � OneToManyMulticast
m
�

N � fN� PEsg�

C� ��D ��D ManyToManyMulticast
m
�

N � fN PEsg� or
m� � Transfer
��

Table �� The communication cost required if the corresponding two dimensions of arrays of an edge in
the component a�nity graph are distributed along di�erent dimensions of the processor grid� These
costs depend on array�s dimensionalities on both the tail of the edge and the head of that edge�

The component alignment problem is de�ned as partitioning the node set of the component a�nity

graph into q disjointed subsets 
q is the dimension of the abstract target grid and q may be larger than

the dimension of the physical target grid� so that the total weight of edges across nodes in di�erent

subsets is minimized� with the restriction that no two nodes corresponding to the same array are in

the same subset� These q disjointed subsets will be use to determine data distributions for all data

arrays�

Note that� the component a�nity graph de�ned in this paper is slightly di�erent from the one
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introduced by Li and Chen ���
� First� their component a�nity graph is undirected� Second� in their

model� they only showed the de�nition of an a�nity relation for some speci�c cases� For example� if a

left�hand�side subscript and a right�hand�side subscript have an a�nity relation� then the left�hand�side

subscript must be an index variable of a Do�loop and the right�hand�side subscript must be an a�ne

function of the form i�c� where i is the index variable and c is an integer� Third� in their graph� there

are only edges between left�hand�side objects and right�hand�side objects� This is because their model

follows the restricted owner computes rule� Therefore� the computation of assignment statements can

be performed only after all right�hand�side objects are sent to the owner PEs of the left�hand�side

objects� The owner computes paradigm simpli�es code generation considerably� However� it does

not provide an adequate solution when the right�hand side of assignment statements contain complex

expressions� and whose operands must be sent to the owner of the left�hand�side objects�

For example� if two operands of a binary operator are aligned� it is better to compute this binary

operator �rst and then send one intermediate result to the owner of the left�hand�side object� than to

send these two operands independently to the owner of the left�hand�side object and then perform the

computation due to this binary operator� For this purpose� we found that it is necessary to specify the

direction of the data communication according to a relaxed owner computes rule based on the costs

de�ned in Table �� More precisely� right�hand�side objects are sent to the owner of the left�hand�side

objects as the conventional owner computes rule� objects of lower dimensional arrays are sent to the

owner of the higher dimensional arrays in order to reduce the communication cost� if these objects are

the corresponding operands of binary operators�

Note that� although the component alignment problem is NP�complete� Li and Chen have proposed

an e�cient heuristic algorithm based on applying the optimal matching procedure to a bipartite graph

constructed from the nodes corresponding to components 
dimensions� of two data arrays ���
� In this

paper� when dealing with component alignment problems� we adopt Li and Chen�s heuristic algorithm

by regarding our directed component a�nity graphs as undirected ones� The direction of edges�

however� are used in a code�generation phase and will be used to determine the direction of the data

communication according to the owner computes rule� For completeness� in Figure �� we only present

a very brief version of the component alignment algorithm� however� interested readers can refer to

the original paper for the details about this method ���
�

	



Heuristic component alignment algorithm�

Step �� Construct a component a�nity graph from the source program�

Step �� choose a 
high�dimensional� array with a highest dimensionality� thus this array has the
maximum number of nodes in the graph� and let its corresponding nodes in the graph become
the initial basic set�

Step �� while the remaining graph is not empty� do

Step ��� choose an array with a highest dimensionality from the remaining graph�

Step ��� apply the optimal matching procedure to a bipartite graph constructed from the
basic set and the nodes corresponding to components 
dimensions� of the new selected
array�

Step ��� combine the matched nodes with the basic set as a new basic set�

Figure �� Heuristic component alignment algorithm�

We now return to our example of the linear system� Figure � shows the component a�nity graph

and the suggested component alignment of the sample program mentioned in Figure �� Suppose that

our target machine is a linear processor array with N PEs� For the purpose of parallelism� based on

the suggested component alignment� matrix A will be distributed by cyclic
b� along its rows� arrays

B� X � and Y will also be distributed by cyclic
b�� The data distribution functions of A� B� X � and Y

are listed in below�

fA
i� j� � 
b
i

b
c mod N�� fB
i� � fX
i� � fY 
i� � 
b

i

b
c mod N��

Note that� the data distribution function fX
i� � p means that the entry i of the one�dimensional

data array X � X
i�� is stored in PEp� The data distribution function fA
i� j� � p means that the entry


i� j� of the two�dimensional data matrix A� A
i� j�� is stored in PEp� In the next subsection� we will

show how to decide the block size b�

��� Determining the Granularity of Data Distribution

There are two oracles to help decide the block size b� The load balance oracle suggests using cyclic


cyclic
��� distribution if the iteration space is a pyramid 
such as the iteration space of the LU

decomposition�� a triangle 
such as the iteration space of two triangular linear systems�� or any other

��
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Figure �� Component a�nity graph and the suggested component alignment of the sample program
which solves a linear system based on the LU decomposition�

non�rectangular space� The communication oracle emphasizes not to divide the block size too small�

otherwise it will incur a high communication overhead and a high indexing overhead� These two

oracles� unfortunately� are inconsistent�

We can� however� formulate the total execution time from the SPMD program which includes

both the computation time and the communication time� For each arithmetical operation or logical

operation� we assume that the computation time is tf � for each saxpy operation which executes a

multiplication then follows an addition� we assume that the computation time is tx� for each message

passing operation� we assume that the communication cost is ts � k � tc� where ts is the start�up time

for sending a message� tc is the communication time of transferring a word� and k is the message size

in words� Table � shows the parameters tf � tx� ts� and tc on a ���node nCUBE�� computer�

parameter tf tx ts tc

mean 
in �sec� ���� ���� ������ ����
variance 
in �sec� ���� ���� ��	� ����

Table �� Parameters used in describing the execution time on the nCUBE�� computer�

We now continue our sample example of the linear system� Suppose that the time of executing the

LU decomposition is TLU � the time of executing two triangular linear systems is T�TLS� and the total

execution time is T � Then� from the SPMD program in Figure �� we can formulate T � TLU � and T�TLS

as follows�

T � TLU � T�TLS

TLU �

m��N�b�X
i���

NX
i���

n
	 � tf �

bX
i���

bX
i��i���

�
tf � 
m� 

i� � �� �N � b� 
i� � �� � b� i�� � �� � tx

�

��



�
m��N�b�X
i��i�

bX
i���

bX
i���

�
tf � 
m� 

i� � �� �N � b� 
i� � �� � b� i	� � �� � tx

�

� 
logN � �� � b � 
ts � 
m� 

i� � �� �N � b� 
i� � �� � b�� � tc�
o

T�TLS � � �
m��N�b�X
i���

NX
i���

n
	 � tf �

bX
i���

�
tf � 
b� i�� � tx

�
�

m��N�b�X
i��i�

bX
i���

bX
i���

tx

� 
logN � �� � 
ts � b � tc�
o

The symbolic manipulations of the above formulas can be solved using a computer algebra system

like �Derive� ���
� The total execution time is a function of the problem size m� the number of PEs

N � and the block size b� When the problem size m and the number of PEs N are �xed� the optimal

execution time can be obtained by requiring �T
�b � �� or by substituting all possible b into the formula�

Table � shows TLU � T�TLS� and T for various block size b ranging from � to ��� and for various numbers

of PEs N ranging from � to ��� when the problem size m is ����� We also list the real execution time

on a ���node nCUBE�� computer for a comparison�

It is interesting to point out that both the optimal execution time of the LU decomposition and

the whole program is achieved when the block size is �� however� the optimal execution time of two

triangular linear systems is achieved when the block size is � or ��� We will discuss other details of

choosing a block size b again in Section ��

��� Determining Whether Data Redistribution is Necessary

It is feasible to assume that the optimal data distributions for each single Do�loop may be di�erent

among one another in a sequence of Do�loops which perform computation�intensive scienti�c applica�

tions� For instance� when computing a ��D FFT for a data matrix� we usually calculate a ��D FFT for

each row �rst� and then we evaluate a ��D FFT for each column� If we adopt a �xed data distribution

throughout the computation on a linear processor array� it will incur certain communication overhead

due to requiring several �bit�reverse shu�e�exchange� and �butter�y�pattern� data communications�

However� if we perform a transpose operation for the matrix between calculating ��D FFTs for all rows

and ��D FFTs for all columns� then no communication operations are required during evaluating each

��D FFT� In e�ect� we found that under load balance constraints� the communication overhead due

to mismatch arrays� component alignments is much higher than the communication overhead due to

��
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 �PE 	 � �PE 	 �
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� �
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T �

��� ������
� �
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��� ��
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 �������

Table �� The simulation time in units of seconds for solving a linear system A�
����
��X�
�� � B�
��

based on the LU decomposition and two triangular linear systems� The data that are not in parentheses
are obtained by running a ���node nCUBE�� computer� the data in parentheses are based on an
analytical model�

select a di�erent block size b� In the following� we introduce a simple dynamic programming algorithm

to determine whether the data redistribution is necessary�

Suppose that a program contains s Do�loops� L�� L�� � � �� Ls in sequence� Let Mi�j be the cost of

computing the sequence of Do�loops Li� Li��� � � �� Li�j�� using the component�alignment algorithm�

and Pi�j be the distribution scheme� for � � i � s and � � j � s � i� �� De�ne Ti�j to be the cost of

computing the sequence of Do�loops L�� L�� � � �� Li�j�� with the restriction that it uses the distribution

scheme Pi�j to compute Do�loops Li� Li��� � � �� Li�j��� Thus� the �nal data distribution scheme after

computing Ti�j is Pi�j � Initially� T��j is equal to M��j � cost
Pi�k� k � Pi� j� returns the communication

cost of changing data layouts from Pi�k� k to Pi� j �

Heuristic algorithm for determining whether data redistribution is necessary�

A dynamic programming algorithm for computing the cost of data distribution schema of executing a

sequence of s Do�loops on distributed memory computers is presented�

��



Input� Mi�j � Pi�j � and T��i 
� M��i�� where � � i � s and � � j � s� i� ��

Output� The cost of executing s Do�loops on distributed memory computers�

�� for i �� � to s do

�� for j �� � to s� i� � do

�� Ti�j �� MIN��k�ifTi�k� k �Mi� j � cost
Pi�k� k � Pi� j�g �

�� end for end for

�� Minimum Cost �� MIN��k�sfTs�k��� kg �

The above algorithm can be regarded as �nding a�single�source shortest paths in a weighted graph�

In this weighted graph� there are two virtual nodes and s�s���
� physical nodes� The two virtual nodes

include one source and one sink� s�s���
� physical nodes ni�j are numbered by i and j� where � � i � s

and � � j � s � i � �� Nodes� weight� edges� and edges� weight of this graph are de�ned as follows�


�� The weight of two virtual nodes each is zero� 
�� The weight of node ni�j is Mi�j � 
�� The source

has s edges connected to nodes n��j � and the weight of these edges each is zero� for � � j � s�

respectively� 
�� The sink� which also has s edges� is connected by nodes ni��s�i���� and the weight of

these edges each is also zero� for � � i � s� respectively� And� 
�� node ni�j has s � 
i� j� � � edges

connected to nodes n�i�j��k � and the weight of these edges each is cost
Pi�j � P�i�j�� k�� for 
i � j� � s

and � � k � s � 
i� j� � �� respectively� Then� the above algorithm is equivalent to �nding shortest

paths from the source to the sink such that the sum of nodes� weight and edges� weight in each of these

paths are minimal� Fig� � shows the corresponding single�source shortest paths problem for s � ��

source

n11

n12

n21 n31 n41 n51

n13

n32

n42

n22

n23

n24

n33

n15 sink

n14

Figure �� The corresponding single�source shortest paths problem for s � ��

The data distribution scheme obtained from the above algorithm is at least as good as any static

data distribution scheme� because the cost of any static data distribution scheme is equal to T��s� We

��



now brie�y describe how to improve this dynamic programming algorithm� It is clear that Mi� ��i��� �

Mi� �i � for � � �i � s� i��� We can show that if Mi� ��i��� is larger than Mi� � plus M�i���� ��i����� and

plus a threshold value which is equal to three times of the maximal communication cost between any

two distribution schema� for some � where � � � � �i � �� then it is better to use three distribution

schema Pi� � � P�i���� ��i������ and P�i��i���� �j��i��� to compute the sequence of Do�loops Li� Li��� � � ��

Li�j��� than to use only one distribution scheme Pi� j � for �i � � � j � s � i � �� Therefore� we

need not compute Mi� j � Based on this observation� we can show that Ti� ��i��� 	 T�i���� ��i����� and

Ti� j 	 T�i��i���� �j��i���� Therefore� we need not compute Ti� j � for �i � � � j � s � i� ��

Let �i be the minimum integer such that Mi� ��i��� 	 Mi� � �M�i���� ��i������ 
a threshold value��

for some � where � � � � �i � s � i � �� Note that� for the boundary cases when �i � s � i � �

or � � s � i � �� we de�ne dummy values Mi� s�i��� Ms��� �� and M�i���� �s�i������ so that the

above assumption is satis�ed� Let � be the maximal value among �i� for � � i � s� For example�

� � max��i�sf�ig� Then the above dynamic programming algorithm can be improved as follows�

��� for i �� � to s do

��� for j �� � to �i do

��� Ti�j �� MIN��k�minfi� ���gfTi�k� k �Mi� j � cost
Pi�k� k � Pi� j�� if k � �i�kg �

��� end for end for

��� Minimum Cost �� MIN��k��fTs�k��� k� if k � �s�k��g �

The time complexity of this improved dynamic programming algorithm is O


Ps

i�� �i������ which

is bounded by O
s���� In addition� before applying this algorithm� we need to compute at most

�� � �� � � � �� �s � s reasonable�size component alignment problems for the consecutive Do�loops Li�

Li��� � � �� Li�j��� where � � i � s and � � j � �i � �� The total number of component alignment

problems computed is thus no more than s
� � ���

� Generating Communication Sets for Doall Statements

Single�loop doall statements have the same power as one�dimensional array statements� For instance�

the following table shows the equivalence relation between single�loop doall statements and one�

dimensional array statements� where g is a function of array C�

��



doall statements array statements

doall i 	 �� bu��l�
s�

c
A�l� � i � s�� 	 g�C�l� � i � s��� A�l� � u� � s�� 	 g�C�l� � u� � s���

doall i 	 l� u� s A�l� � l � s� � l� � l � s� � bu�l
s
c � s � s� � s � s�� 	

A�l� � i � s�� 	 g�C�l� � i � s��� g�C�l� � l � s� � l� � l � s� � bu�l
s
c � s � s� � s � s���

In this section� we are interested in generating all necessary communication sets in each PE when

a single�loop doall statement is executed by distributed memory machines� In the sequel� we will use

doall statements to represent single�loop doall statements� In the following� we state the problem we

want to solve in this section�

Problem� In a distributed�shared�memory machine� processors are numbered from � to N � ��
Arrays A
�a� � a�
� and C
�c� � c�
� are distributed in cyclic
b�� and cyclic
b��� respectively� Then�
we want to compute necessary communication sets in each processor due to execute the following
doall statement� where s� 	 �� s� 	 �� and g is a function�

doall i � �� bu��l�s�
c

A
l� � i � s�� � g
C
l�� i � s����

The case when s� or s� is negative can be treated analogously� This problem has been studied

before� Koelbel and Mehrotra pioneeredly provided closed�form representations for the special cases

when l� � �� s� � �� a� � c� � �� a� � c� � m � �� and arrays are distributed in block or cyclic

distributions ���� ��
� The following researchers concerned with block�cyclic 
cyclic
b�� distributions�

Although they only formulated �send sets� and �receive sets�� none of them got closed�form repre�

sentations� Stichnoth et al� pointed out that a cyclic
bi� distribution can be regarded as a union of

bi cyclic
�� 
cyclic� distributions� Since there exists closed forms to represent communication sets for

cyclic distributions� communication sets for block�cyclic distributions can thus be represented by a

union of b� � b� closed forms ���
� Gupta et al� proposed closed forms for representing communication

sets for arrays that are distributed using block or cyclic distributions� These closed forms are then

used with a virtual processor approach to give a solution for arrays with block�cyclic distributions ��
�

The above two approaches did not discover periodic patterns in communication sets�

Chatterjee et al� enumerated the local memory access sequence of communication sets based on a

�nite�state machine ��
� Kennedy et al� also presented algorithms� which were based on a �nite�state

machine and an integer lattice method� for computing the local memory access sequence ��
 ���
 ���
�

They also noticed that the data access patterns in the communication sets appeared periodically� They

��



calculated communication sets based on a scanning technique similar to the merge sort for computing

the intersection of two reference patterns corresponding to the left�hand�side and the right�hand�side

array subscripts ��
� Their methods� however� would incur certain runtime overheads due to indirect

addressing of data� Independently� Benkner et al� also proposed a similar technique and implemented

in their Prepare HPF compiler ��
�

Next� for the special case when the parameters a� � c�� a� � c�� l� � l� � �� and s� � s� � �� the

mentioned problem is reduced to a data redistribution problem� Research on this data redistribution

problem also have been reported ��
 ���
 ���
 ���
 ���
�

��� The Structure of Generated Code

We now analyze the problem� We will say that fk
i� � lk � i � sk and the inverse functions f��k 
lk �

i � sk� � i� for k � � or �� Figure � shows a detailed outline of implementing a doall statement in each

PE which is a generalization based on formulas presented in ���
�

Step � of Figure � generates an iteration set which speci�es iterations to be performed on PEp�

and two processor sets which represent PEs that PEp will send data to or receive data from� Step

� calculates communication sets and sends them to other PEs� Step � performs computations for

iterations which access only local data� Step � receives data message from other PEs and executes

computations for iterations which access local data and some message bu�ers� Note that� exec
p�

in substep ��� is only formulated for deriving other communication sets and processor sets� Since

exec
p� �
S
q�recv pe�q�iter
p� q� and iter
p� q� � f��� 
recvC
p� q��� we can combine substep ��� and

three substeps in Step � into a receive�execute loop� Therefore� in practice� iteration sets exec
p� and

iter
p� q� need not to be calculated� It is also interesting to point out that in order to gain e�ciency by

allowing overlapped execution� we have arranged communication and computation tasks interleavedly�

��� The Derivation of Communication Sets

In this subsection� we derive communication sets and processor sets with arbitrary block sizes b� and

b�� Without loss of generality� we assume that 
a� � a� � �� is a multiple of Nb� and 
c� � c� � ��

is a multiple of Nb�� The data distribution function for array A is fA
j� � 
b j�a�b�
c mod N�� thus�

localA
p� � ��a� � pb� � a� � pb� � b� � �
 � a� � Nb�
� The data distribution function for array C

��



Code on processing element p �PEp	�

�� Generate iteration sets and processor sets�
��� exec
p� � f��� 
localA
p�	 �l� � u� � s�
�� which speci�es iterations to be performed on PEp�

where localA
p� � ��a� � p � b� � a� � p � b� � b� � �
 � a� � N � b�
�
��� send pe
p� � fq j q 
� p and PEp will send some data to PEqg�
��� recv pe
p� � fq j q 
� p and PEp will receive some data from PEqg�

�� forall q � send pe
p�� do
��� sendC
p� q� � localC
p� 	 f�
exec
q��� which represents elements sent from PEp to PEq�

where localC
p� � ��c� � p � b� � c� � p � b� � b� � �
 � c� � N � b�
�
��� send message containing sendC
p� q� to PEq�

�� perform computations for iterations in iter
p� p�� where iter
p� p� � f��� 
localC
p� 	 �l� � u� �
s�
� 	 exec
p� � f��� 
sendC
p� p��� which stands for iterations on PEp that access only local
data� where u� � l� � b
u� � l���s�c � s��


� forall q � recv pe
p�� do

�� receive message containing recvC
p� q� from PEq� where recvC
p� q� � sendC
q� p�� which

speaks for elements sent from PEq to PEp�

�� iter
p� q� � f��� 
localC
q� 	 �l� � u� � s�
� 	 exec
p� � f��� 
recvC
p� q��� which indicates

iterations on PEp that access local data and some message bu�ers whose contents are received
from PEq�


�� execute computations for iterations in iter
p� q��

Figure �� Implementing a doall statement on a distributed�shared�memory machine�

is fC
j
�� � 
b j

��c�
b�

c mod N�� thus� localC
p� � ��c� � pb� � c� � pb� � b� � �
 � c� � Nb�
� We also

assume that 
u� � l�� is a multiple of s� and u� � l� � 

u� � l���s�� � s��

The function nxt
x� y� z� we use here� is the smallest integer greater than x and is congruent to y

modulo z� that is� nxt
x� y� z� � x � 
y � x� mod z� In Table �� we introduce some notations which

will be used later�

Let jpf and jpl be the �rst j and the last j such that �botl
A� p� j� � topl
A� p� j�
	 �l� � u� � s�
 
� 
�

respectively� and kpf and kpl be the �rst k and the last k such that �botl
C� p� k� � topl
C� p� k�
	 �l� �

u� � s�
 
� 
� respectively� Figure � shows an algorithm for computing jpf and jpl� kpf and kpl also

can be computed similarly� The value jstart � d
l� � a� � pb� � b� � ���
Nb��e is the �rst j such that

topl
A� p� j�� l�� The value jfinal � b
u� � a� � pb���
Nb��c is the last j such that botl
A� p� j�� u��

If s� � b�� then jstart � jpf and jfinal � jpl� If s� 	 b�� we need to check other details�

��



botl
A� p� j� � a� � pb� � jNb�

topl
A� p� j� � a� � pb� � b� � � � jNb�

bota
A� p� j� � nxt
maxfbotl
A� p� j�� l�g� l�� s��

topa
A� p� j� � nxt
minftopl
A� p� j�� u�g � s� � �� l�� s��

bote
A� p� j� � 
bota
A� p� j�� l���s�

tope
A� p� j� � 
topa
A� p� j�� l���s�

botf 
A� p� j� � bote
A� p� j�s�� l�

topf 
A� p� j� � tope
A� p� j�s�� l�

botl
C� p� k� � c� � pb� � kNb�

topl
C� p� k� � c� � pb� � b� � � � kNb�

bota
C� p� k� � nxt
maxfbotl
C� p� k�� l�g� l�� s��

topa
C� p� k� � nxt
minftopl
C� p� k�� u�g � s� � �� l�� s��

bote
C� p� k� � 
bota
C� p� k�� l���s�

tope
C� p� k� � 
topa
C� p� k�� l���s�

botf 
C� p� k� � bote
C� p� k�s�� l�

topf 
C� p� k� � tope
C� p� k�s�� l��

Table �� Notations which will be used in deriving sets�

We now return to the derivation� Because exec
p� will be used for deriving other communication

sets and processor sets� we formulate it �rst� We have the following relations�

localA
p� �
Sa��a���

Nb�
��

j�
 �botl
A� p� j� � topl
A� p� j�


exec
p� � f��� 
localA
p�	 �l� � u� � s�
�

� f���

�Sjpl
j�jpf

�bota
A� p� j� � topa
A� p� j� � s�

�

�
Sjpl
j�jpf

�bote
A� p� j� � tope
A� p� j�
�

Note that� in the expression �bote
A� p� j� � tope
A� p� j�
� it may occur that bote
A� p� j�	 tope
A� p� j�

when s� 	 b�� Throughout this paper� if � 	 �� then �� � �
 is empty� Next� according to the

order of appearance in Figure �� after deriving exec
p�� we should present processor sets send pe
p�

and recv pe
p�� However� since exact solutions of these two sets are tedious� we prefer to present

communication sets sendC
p� q� and recvC
p� q� �rst� We now introduce a set f�
exec
q��� which will

�	



jstart � d
l� � a� � pb� � b� � ���
Nb��e� if 
j 	 jfinal� then
jfinal � b
u� � a� � pb���
Nb��c� exec
p� � 
�
if 
s� � b�� then else  � jpf � jfinal � 
jpf � jstart� j � jfinal�
jpl � jfinal� while 
j � jpf� do

else  � s� 	 b� � if 
bota
A� p� j�� topa
A� p� j��
j � jstart� jpl � j�
while 
j � jfinal� do break�
if 
bota
A� p� j�� topa
A� p� j�� else

jpf � j� j � j � ��
break� endif

else endwhile
j � j � �� endif

endif endif
endwhile

Figure �� An algorithm for computing jpf and jpl�

be used in deriving sendC
p� q��

f�
exec
q�� �
Sjql
j�jqf

f�
�bote
A� q� j� � tope
A� q� j�
�

�
Sjql
j�jqf

�bote
A� q� j�s�� l� � tope
A� q� j�s�� l� � s�


�
Sjql
j�jqf

�botf
A� q� j� � topf 
A� q� j� � s�
�

We now de�ne the periodic coe�cients of the communication set sendC
p� q�� which is equal to

localC
p� 	 f�
exec
q��� Let periods be the period of the reference pattern of array C in sendC
p� q�

whose value is a multiple of Nb�� periodCsb be the number of blocks of local elements of array C whose

reference pattern in sendC
p� q� appears periodically� and periodAsb be the number of blocks of local

elements of array A� whose reference pattern of local elements of array C in sendC
p� q� 
based on

f�
exec
q��� appears periodically� Then� we have the following equations�

periods � lcm
Nb�� 
lcm
Nb�� s���s�� � s��

periodCsb � periods�
Nb��

periodAsb � 
periods � s���
Nb�s���

We now study the intersection of localC
p�	 f�
exec
q��� which is equal to
�Skpl

k�kpf
�botl
C� p� k� �

topl
C� p� k�

�
	
�Sjql

j�jqf
�botf
A� q� j� � topf 
A� q� j� � s�


�
� We found that if d b�s� e � d �N���b���

s�
e� then

��



each referenced block of array A in PEq 
�botf
A� q� j� � topf 
A� q� j� � s�
� will intersect to at most one

local block of array C in PEp 
�botl
C� p� k� � topl
C� p� k�
�� Similarly� if d b�s� e � d �N���b���
s�

e� then each

local block of array C in PEp will also intersect to at most one referenced block of array A in PEq�

Property � When N � �� at least one of the following two conditions is true� 
a� d b�s� e � d �N���b���
s�

e

and 
b� d b�s� e � d �N���b���
s�

e�

Proof � First� we want to show that if 
a� fails then 
b� must be true� If 
a� fails� then d b�s� e 	

d �N���b���
s�

e� We have d �N���b���
s�

e � d b�s� e 	 d �N���b���
s�

e � d b�s� e� Therefore� d
b�
s�
e � d �N���b���

s�
e�

Similarly� we can show that if 
b� fails then 
a� must be true�

Property � Let L and R be the left boundary and the right boundary of ��a � a� b� �
 � e � Nb
	 �� �

� � �
� respectively� Suppose that d������ e � d �N���b��
� e� Then�

��a � a� b� �
 � e � Nb
	 �� � � � �
 � �L � R � �
�

where

L �

�
�� if � � ��a � a� b� �
 � e � Nb

nxt
nxt
maxfa� �g� a� Nb�� �� ��� otherwise�

R �

�
�� if � � ��a � a� b� �
 � e � Nb

nxt
nxt
minfe� �g� a� Nb��Nb� b� �� �� ��� otherwise�

Proof � Let L� and R� be the left boundary and the right boundary of ��a � a� b� �
 � e � Nb
	 �� � �
�

respectively� Then�

L� �

�
�� if � � ��a � a� b� �
 � e � Nb

nxt
maxfa� �g� a� Nb�� otherwise�

R� �

�
�� if � � ��a � a� b� �
 � e � Nb

nxt
minfe� �g� a� Nb��Nb� b� �� otherwise�

Since d������ e � d �N���b��
� e� �� � � � �
 will intersect to at most one local block of ��a � a�b��
 � e � Nb
�

Thus� ��a � a� b� �
 � e � Nb
	 �� � � � �
 � �nxt
L�� �� �� � nxt
R� � � � �� �� �� � �
 � �L � R � �
�

Based on Properties � and �� we can show that sendC
p� q� can be represented by a union of a

variable number of closed forms� First� if d b�s� e � d �N���b���
s�

e� sendC
p� q� can be represented as follows�

sendC
p� q� � localC
p� 	 f�
exec
q��

��



� ��c� � pb� � c� � pb� � b� � �
 � c� � Nb�
 	
�Sjql

j�jqf
�botf
A� q� j� � topf 
A� q� j� � s�


�
�

Sjql
j�jqf

�
��c� � pb� � c� � pb� � b� � �
 � c� � Nb�
 	 �botf
A� q� j� � topf 
A� q� j� � s�


�
�

Sjql
j�jqf

�L
j� � R
j� � s�


� �L
jqf� � R
jqf� � s�
�
�Sminfjql�jqf�period

A
sb
g

j�jqf��
��L
j� � R
j� � s�
 � u� � periods


�
�

where

L
j� �

�
botf
A� q� j�� if botf 
A� q� j� � localC
p�
nxt
nxt
maxfc� � pb�� botf
A� q� j�g� c�� pb�� Nb��� l�� s��� otherwise�

R
j� �

�
topf 
A� q� j�� if topf 
A� q� j�� localC
p�
nxt
nxt
minfc�� topf
A� q� j�g� c�� pb�� Nb���Nb�� b� � s�� l�� s��� otherwise�

Second� if d b�s� e � d �N���b���
s�

e� sendC
p� q� can be represented as follows�

sendC
p� q� � f�
exec
q��	 localC
p�

� f�f
��
�

�
f�f

��
� 
f�
exec
q��	 localC
p��

�
� f�f

��
�

�
��a� � qb� � a� � qb� � b� � �
 � a� � Nb�
 	

�Skpl
k�kpf

�botf
C� p� k� � topf 
C� p� k� � s�

��

�
Skpl
k�kpf

f�f
��
�

�
��a� � qb� � a� � qb� � b� � �
 � a� � Nb�
 	 �botf
C� p� k� � topf 
C� p� k� � s�


�
�

Skpl
k�kpf

�f�f
��
� 
L
k�� � f�f

��
� 
R
k�� � s�


� �f�f
��
� 
L
kpf�� � f�f

��
� 
R
kpf�� � s�
 ��Sminfkpl�kpf�period

C
sb
g

k�kpf��
��f�f

��
� 
L
k�� � f�f

��
� 
R
k�� � s�
 � u� � periods


�
�

where

L
k� �

�
botf
C� p� k�� if botf 
C� p� k�� localA
q�
nxt
nxt
maxfa� � qb�� botf
C� p� k�g� a�� qb�� Nb��� l�� s��� otherwise�

R
k� �

�
topf 
C� p� k�� if topf 
C� p� k� � localA
q�
nxt
nxt
minfa�� topf
C� p� k�g� a�� qb�� Nb���Nb� � b� � s�� l�� s��� otherwise�

Next� we handle recvC
p� q�� Because recvC
p� q� is equal to sendC
q� p�� recvC
p� q� also can be

represented by a union of a variable number of closed forms� Although recvC
p� q� speci�es a set

of indices of array C� in practice� we prefer that recvC
p� q� can be represented based on indices of

array A� For instance� the loop body of the doall statement A
f�
i�� � g
C
f�
i��� is equivalent to

A
f�
i�� � g
C
f�
f
��
� 
f�
i������ Thus� the doall statement can be executed e�ciently after receiving

data messages from other PEs once we fetch elements of array A� Therefore� our goal is to generate the

��



set corresponding to indices of array A� which is equal to f�
f
��
� 
recvC
p� q���� because recvC
p� q� �

f�f
��
� 
f�f

��
� 
recvC
p� q���� Since the derivation of recvC
p� q� is similar to that of sendC
p� q�� we omit

all of the middle steps� and only present the �nal formulas�

First� if d b�s� e � d �N���b���
s�

e� recvC
p� q� can be represented as follows�

recvC
p� q� � f�f
��
� 
f�f

��
� 
recvC
p� q��� � f�f

��
� 
f�f

��
� 
sendC
q� p���

� f�f
��
�

�
�f�f

��
� 
L
jpf�� � f�f

��
� 
R
jpf�� � s�
��Sminfjpl�jpf�period

A
sb
g

j�jpf��
��f�f

��
� 
L
j�� � f�f

��
� 
R
j�� � s�
 � u� � periods � s��s�


��
�

where

L
j� �

�
botf
A� p� j�� if botf 
A� p� j� � localC
q�
nxt
nxt
maxfc� � qb�� botf
A� p� j�g� c�� qb�� Nb��� l�� s��� otherwise�

R
j� �

�
topf 
A� p� j�� if topf 
A� p� j�� localC
q�
nxt
nxt
minfc�� topf
A� p� j�g� c�� qb�� Nb���Nb�� b� � s�� l�� s��� otherwise�

Second� if d b�s� e � d
�N���b���

s�
e� recvC
p� q� can be represented as follows�

recvC
p� q� � f�f
��
� 
f�f

��
� 
recvC
p� q��� � f�f

��
� 
f�f

��
� 
sendC
q� p���

� f�f
��
�

�
�L
kqf� � R
kqf� � s�
 ��Sminfkql�kqf�period

C
sb
g

k�kqf��
��L
k� � R
k� � s�
 � u� � periods � s��s�


��
�

where

L
k� �

�
botf
C� q� k�� if botf 
C� q� k�� localA
p�
nxt
nxt
maxfa� � pb�� botf
C� q� k�g� a�� pb�� Nb��� l�� s��� otherwise�

R
k� �

�
topf 
C� q� k�� if topf 
C� q� k� � localA
p�
nxt
nxt
minfa�� topf
C� q� k�g� a�� pb�� Nb���Nb� � b� � s�� l�� s��� otherwise�

We now formulate send pe
p� and recv pe
p�� It is possible to derive exact solutions for send pe
p�

and recv pe
p�� However� the computation cost is very expensive in a general case� This is because to

test whether q is in send pe
p� or whether q is in recv pe
p� is equivalent to test whether sendC
p� q� 
� 


or whether sendC
q� p� 
� 
� respectively� Because of this reason� we consider inexact solutions for

send pe
p� and recv pe
p�� We now introduce a property� which will be used to derive send pe
p� and

recv pe
p��

��



Property � Suppose that array A is distributed by cyclic
b��� fA
i�� which speci�es the PE that stores

A
i�� is the data distribution function of array A� x and y are two indices of array A� where x � y�

Then� we have

fA
�x � y
� �

����
���

�� � N � �
� if y � x� � 	 
N � �� � b��

�fA
x� � fA
y�
� if y � x� � � 
N � �� � b� and fA
x� � fA
y��

�� � fA
y�
� �fA
x� � N � �
� if y � x� � � 
N � �� � b� and fA
x� 	 fA
y��

Property � also holds for array C with its corresponding distribution by cyclic
b�� and its data distri�

bution function fC � We now process send pe
p�� which is equal to fA
f�
f
��
� 
localC
p�	�l� � u� � s�
����

send pe
p� � fA
f�
f
��
� 
localC
p� 	 �l� � u� � s�
���

�
Skpl
k�kpf

fA
f�
�bote
C� p� k� � tope
C� p� k�
��

�
Sminfkpl�kpf�period

C
sb
g

k�kpf
fA
�botf
C� p� k� � topf 
C� p� k� � s�
�



Sminfkpl�kpf�period

C
sb
g

k�kpf
fA
�botf
C� p� k� � topf 
C� p� k�
��

Note that� the above formula is an equation only when s� � b�� Next� we are concerned with recv pe
p��

which is equal to fC
f�
exec
p����

recv pe
p� � fC
f�
exec
p���

�
Sjpl
j�jpf

fC
f�
�bote
A� p� j� � tope
A� p� j�
��

�
Sminfjpl�jpf�period

A
sb
g

j�jpf
fC
�botf
A� p� j� � topf 
A� p� j� � s�
�



Sminfjpl�jpf�period

A
sb
g

j�jpf
fC
�botf
A� p� j� � topf 
A� p� j�
��

Note that� the above formula is an equation also only when s� � b��

� Using Closed Forms to Represent Communication Sets

In the last section� we derived communication sets and processor sets with arbitrary block sizes b� and

b�� These sets� however� cannot be represented by a constant number of closed forms� For instance�

each of these sets only can be represented by a union of 
periodAsb � �� or 
periodCsb � �� closed forms�

Since the number of boundary indices of these closed forms which we need to calculate is proportional to

the corresponding periodAsb or period
C
sb� the computation overhead becomes serious if the corresponding

periodAsb or period
C
sb is large� In this section� we return to analyze the block sizes of b� and b�� Our goal

��



is to choose reasonable block sizes b� and b�� so that processor sets and communication sets can be

represented by a constant number of closed forms� In the sequel� we will use closed forms to represent

a constant number of closed forms�

	�� Determining Suitable Block Sizes b� and b�

Consider the target doall statement again� We �rst present an ideal case� Suppose that we assign

the entry A
j� to PE p � 
b j�l�s��h
c mod N� and the entry C
j�� to PE p� � 
b j

��l�
s��h

c mod N�� Then� for

i � f�� �� � � � � h � �g� A
l� � i � s�� and C
l� � i � s�� are in PE �� for i � fh� h � �� � � � � � � h � �g�

A
l�� i�s�� and C
l�� i�s�� are in PE �� and so on� In addition� there is no communication overhead

to perform the target doall statement� In this ideal case� we notice that b� � s� � h and b� � s� � h�

We now consider the general case� Suppose that the data distribution functions for arrays A and

C are fA
j� � 
b j�offset�b�
c mod N� and fC
j

�� � 
b j
��offset�

b�
c mod N�� respectively� We found that�

even if we don�t care about the values of offset� and offset� � if b��s� is a factor of b��s�� or b��s� is

a multiple of b��s�� then the communication sets can be represented by closed forms� However� if the

condition fails� it will incur computation and communication overheads due to random access patterns

whose costs are relatively very expensive� Table � summarizes certain conditions where processor sets

and communication sets have closed forms�

conditions send peC�p� recv peC�p� sendC�p� q� recvC�p� q�

arbitrary b� and b�
b��s� is a factor of b��s�

p p p
b��s� is a multiple of b��s�

p p p
all�closed�forms condition�

p p p p

Table �� Conditions when processor sets and communication sets have closed forms� All�closed�forms
condition is when b��s� is a factor of b��s� and 
b� � s���
b� � s�� is a factor or a multiple of N � or
when b��s� is a multiple of b��s� and 
b� � s���
b� � s�� is a factor or a multiple of N �

If these sets can be represented by closed forms� then they can be implemented e�ciently� Other�

wise� we only can use ad hoc methods to enumerate these sets or use indirectly memory access methods

to get their corresponding data� The latter case� of course� will incur certain computation overhead�

Therefore� our goal is to determine suitable block sizes such that the more sets can be represented by

closed forms the better� In the following� we show examples to illustrate the �avor of choosing block

��



sizes� We assume that the iteration space of a doall statement is large enough such that each PE has

to execute roughly the same amount of iterations�

Example �� Suppose that the loop bodies of two consecutive doall statements are

A
l� � i � s�� � A
l� � i � s�� � C
l� � i � s�� and

A
l� � i � s�� � A
l� � i � s���D
l� � i � s���

In this case� we choose b� � s� � h� b� � s� � h� and b� � s� � h� where block sizes b�� b�� and b� are for

arrays A� C� and D� respectively� Then all sets� send peC
p�� recv peC
p�� sendC
p� q�� and recvC
p� q�

for the �rst doall statement� as well as send peD
p�� recv peD
p�� sendD
p� q�� and recvD
p� q� for the

second doall statement all have closed forms�

Example �� Suppose that the loop bodies of two consecutive doall statements are

A
l� � i � s�� � A
l� � i � s�� �C
l� � i � s�� and

C
l� � i � s�� � C
l� � i � s�� �D
l� � i � s���

First� we may naively choose b� � s� �h� b� � lcm
s�� s���h� and b� � s� �h� Then� except recv peC
p�

for the �rst doall statement and send peD
p� for the second doall statement� all other sets have closed

forms� Second� we can choose b� � s� � 
s� � h� gcd
s�� s���� b� � 
s� � s� � h� gcd
s�� s���� and

b� � s� � 
s� � h� gcd
s�� s���� Then all sets for the above two doall statements have closed forms� Of

course� the second choice is better than the �rst choice�

Example �� Suppose that the loop bodies of two consecutive doall statements are

A
l� � i � s�� � A
l� � i � s��� C
l� � i � s�� and

A
l� � i � s�� � A
l� � i � s�� �D
l� � i � s���

First� we may naively choose b� � lcm
s�� s���h� b� � s� �h� and b� � s� �h� Then� except send peC
p�

for the �rst doall statement and send peD
p� for the second doall statement� all other sets have closed

forms� Second� we can choose b� � 
s� � s� � h� gcd
s�� s���� b� � s� � 
s� � h� gcd
s�� s���� and

b� � s� � 
s� � h� gcd
s�� s���� Then all sets for the above two doall statements have closed forms�

Certainly� the second choice is better than the �rst choice�

In the following� we derive processor sets and communication sets for three cases in Table ��

��



	�� The Case When b� � s� � h� and b� � s� � h� � h�

In this case� b��s� is a factor of b��s�� Therefore� send peC
p�� sendC
p� q�� and recvC
p� q� have closed

forms� First� we process send pe
p�� which is equal to fA
f�
f
��
� 
localC
p� 	 �l� � u� � s�
���� Since

periods � Nb� and periodCsb � periods�
Nb�� � �� it is enough to analyze the set of PEs which use

elements of array C within a block of size b�� We found that if h� � N � then every PE will use some

elements of array C within a block of size b�� If h� � N � then the left boundary element and the

right boundary element of array C within a block of size b� are referred by fA
botf 
C� p� kpl�� and

fA
topf
C� p� kpf��� respectively� Note that� if nxt
botl
C� p� kpf�� l�� s�� � l�� then fA
botf 
C� p� kpf��

maybe is not equal to fA
botf
C� p� kpl��� Based on Property �� we have the following closed form�

send pe
p� �

���������������
��������������

�� � N � �
� if u� � l� � � � Nb� and h� � N �

�fA
botf 
C� p� kpl�� � fA
topf 
C� p� kpf��
�
if u� � l� � � � Nb�� h� � N� and fA
botf
C� p� kpl�� � fA
topf 
C� p� kpf���

�� � fA
topf 
C� p� kpf��
� �fA
botf
C� p� kpl�� � N � �
�
if u� � l� � � � Nb�� h� � N� and fA
botf
C� p� kpl�� 	 fA
topf 
C� p� kpf���

fA
�botf
C� p� kpf� � topf 
C� p� kpf�
�� fA
�botf
C� p� kpl� � topf 
C� p� kpl�
��
if u� � l� � � � Nb��

Second� we formulate recv pe
p�� which is equal to fC
f�
exec
p���� We start from exec
p� and

check the elements of array C that these iterations will refer to� Recall that exec
p� �
Sjpl
j�jpf

�bote
A� p�

j� � tope
A� p� j�
� Then� f�
exec
p�� �
Sjpl
j�jpf

�botf 
A� p� j� � topf 
A� p� j� � s�
� which represents the

elements of array C that are referred by iterations executed in PEp� and fC
f�
exec
p��� indicates

the set of PEs that store these elements of array C� Since periodAsb � 
periods � s���
Nb�s�� � h��

recv pe
p� can be represented by a union of at most h� � � closed forms�

recv pe
p� �

�����������������
����������������

�� � N � �
� if u� � l� � � � Nb� and h� � N �Sjpf�h���
j�jpf

fC
�botf
A� p� j� � topf 
A� p� j�
��

if u� � l� � � � Nb�� h� � N� and nxt
botl
A� p� jpf�� l�� s�� � l���Sjpf�h���
j�jpf

fC
�botf
A� p� j� � topf 
A� p� j�
�
�
�

fC
�botf
A� p� jpf � h�� � nxt
l� � periods � s�� l�� s��
��
if u� � l� � � � Nb�� h� � N� and nxt
botl
A� p� jpf�� l�� s�� � l��Sjpl

j�jpf
fC
�botf
A� p� j� � topf 
A� p� j�
�� if u� � l� � � � Nb��

Note that� in the above formula� the set fC
�botf
A� p� j� � topf 
A� p� j�
� consists of only one or two

PEs� In addition� all these PEs are distinct� However� in spite of these facts� recv pe
p� still cannot

be represented by a constant number of closed forms independent of h��

��



Third� we deal with sendC
p� q�� which is equal to localC
p�	 f�
exec
q��� This set will be repre�

sented by a union of three closed forms� sheadC
p� q�� sbody
�
C
p� q�� and sbody�C
p� q�� Before deriving

sendC
p� q�� we show an example to explain where these three closed forms come from�

Example 
� Suppose that the number of processors is �� the loop body of a doall statement is

A
�� � �i� � g
C
� � i��� where g is a function� and u� � ���� Then� l� � ��� s� � �� l� � �� s� � ��

and u� � ��	� If we let h� � � and h� � ��� then b� � s� � h� � � and b� � s� � h� � h� � ���

Figure � shows elements of array C in PE
 and the corresponding PEs which will refer to these

elements� Among them� sendC
�� �� � sheadC
�� ���sbody�C
�� ���sbody
�
C
�� ��� where sheadC
�� �� �

�� � � � �
 � ���� � �� � �
 � �� � �
� sbody�C
�� �� � ���� � �� � �
 � ��	 � ��
� and sbody�C
�� �� � ���	� �

	� � �
 � ��	 � �
 � ��	 � ��
� sendC
�� �� � sheadC
�� ��� sbody�C
�� ��� where sheadC
�� �� � �� � � �

�
 � ��	 � �� � �
 � �� � �
 and sbody�C
�� �� � ����	 � 	� � �
 � ��	 � �
 � ��	 � ��
� Note that� sheadC
�� ��

is on purpose written by a union of two closed forms� as we will derive a uni�ed formula to represent

shead
p� q�� Next� sbody�C
�� �� � 
�
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array index of array C

C

Figure �� Elements of array C in PE
� where array C is distributed by cyclic
��� over four processors�
In addition� sendC
�� q� � sheadC
�� q�� sbody�C
�� q�� sbody�C
�� q�� for � � q � ��

We notice that sheadC
p� q� is not empty if nxt
botl
C� p� kpf�� l�� s�� � l�� sbody
�
C
p� q� includes

some elements if botl
C� p� k� is in between botf 
A� q� j� � � and topf 
A� q� j� for some j and k� and

sbody�C
p� q� will be evaluated without any conditions� In addition� the period of f�
exec
q�� is

��




lcm
Nb�� s���s�� � s� � Ns�h� and periods � Nb�� Let k
�

pf � kpf � � if nxt
botl
C� p� kpf�� l�� s��

� l�� k
�

pf � kpf otherwise� Then� we have

sheadC
p� q� �

������
�����

�botf
A� q� jqf� � minftopf 
A� q� jqf�� topa
C� p� kpf�g � s�
 �
��botf
A� q� jqf � �� � topf 
A� q� jqf � �� � s�
 � topa
C� p� kpf� � Ns�h�
�

if nxt
botl
C� p� kpf�� l�� s�� � l��


� otherwise�

sbody�C
p� q� �

���������
��������

��bota
C� p� k
�

pf� � nxt
bota
C� p� k
�

pf�� topf
A� q� jqf�� Ns�h�� � s�
 � u� � Nb�
�

if botf
A� q� jqf� � bota
C� p� k
�

pf� � topf 
A� q� jqf� or

nxt
bota
C� p� k
�

pf�� topf
A� q� jqf�� Ns�h��� s�
h� � �� � bota
C� p� k
�

pf�

� minfnxt
bota
C� p� k
�

pf�� topf
A� q� jqf�� Ns�h��� topf
A� q� jql�g�


� otherwise�

sbody�C
p� q� � ���nxt
bota
C� p� k
�

pf�� botf
A� q� jqf � ��� Ns�h�� �

nxt
bota
C� p� k
�

pf�� botf
A� q� jqf � ��� Ns�h�� � s�
h� � �� � s�
 �

topa
C� p� k
�

pf� � Ns�h�
 � u� � Nb�
�

sendC
p� q� � sheadC
p� q�� sbody�C
p� q�� sbody�C
p� q��

Fourth� we are concerned with recvC
p� q�� which is equal to sendC
q� p�� Hence� recvC
p� q� also can

be represented by a union of three closed forms� As indicated in Section �� we prefer that recvC
p� q� can

be represented based on indices of array A� In addition� there is a one�to�one correspondence between

rheadC
p� q�� rbody
�
C
p� q�� rbody

�
C
p� q� and f�f

��
�

�
f�
f

��
� 
rheadC
p� q��� � f�
f

��
� 
rbody�C
p� q��� �

f�
f
��
� 
rbody�C
p� q���

�
� Let k

�

qf � kqf �� if nxt
botl
C� q� kqf�� l�� s�� � l�� k
�

qf � kqf otherwise� Then�

recvC
p� q� can be represented as follows�

rheadC
p� q� �

�������
������

f�f
��
�

�
�bota
A� p� jpf� � minftopa
A� p� jpf�� topf
C� q� kqf�g � s�
 �

��bota
A� p� jpf � �� � topa
A� p� jpf � �� � s�
 � topf 
C� q� kqf� � Nb�

�
�

if nxt
botl
C� q� kqf�� l�� s�� � l��


� otherwise�

rbody�C
p� q� �

������������
�����������

f�f
��
�

�
��botf
C� q� k

�
qf� � nxt
botf 
C� q� k

�
qf�� topa
A� p� jpf�� Nb�� � s�
 �

u� � Nb�h�

�
�

if botf 
A� p� jpf� � bota
C� q� k
�

qf� � topf 
A� p� jpf� or

nxt
bota
C� q� k
�

qf�� topf
A� p� jpf�� Ns�h��� s�
h� � �� � bota
C� q� k
�

qf�

� minfnxt
bota
C� q� k
�

qf�� topf
A� p� jpf�� Ns�h��� topf
A� p� jpl�g�


� otherwise�

rbody�C
p� q� � f�f
��
�

�
���nxt
botf
C� q� k

�
qf�� bota
A� p� jpf � ��� Nb�� �

nxt
botf 
C� q� k
�
qf�� bota
A� p� jpf � ��� Nb�� � s�
h� � �� � s�
 �

topf 
C� q� k
�
qf� � Nb�
 � u� � Nb�h�


�
�

�	



recvC
p� q� � rheadC
p� q�� rbody�C
p� q�� rbody�C
p� q��

In the following� we show an example to explain how to relate indices of array A to recvC
p� q��

Example �� We continue Example �� Figure 	 shows elements of array A in PE� through PE��

and the corresponding PEs that store elements of array C� which will be used to modify elements

of array A� Among them� f�
f
��
� 
recvC
�� ���� � f�
f

��
� 
rheadC
�� ���� � f�
f

��
� 
rbody�C
�� ���� �

f�
f
��
� 
rbody�C
�� ����� where f�
f

��
� 
rheadC
�� ���� � ��� � �� � �
 � ���� � �	 � �
 � �	 � ��
�

f�
f
��
� 
rbody�C
�� ���� � ����� � ��� � �
 � ��� � ���
� and f�
f

��
� 
rbody�C
�� ���� � ����	� � �		 � �
 �

��� � ��
 � ��� � ���
� f�
f
��
� 
recvC
�� ���� � f�
f

��
� 
rheadC
�� ���� � f�
f

��
� 
rbody�C
�� ����� where

f�
f
��
� 
rheadC
�� ���� � ��� � �� � �
 � ���� � �� � �
 � �	 � ��
 and f�
f

��
� 
rbody�C
�� ���� � ������ � ��� �

�
 � ��� � ��
 � ��� � ���
�

	�� The Case When b� � s� � h� � h� and b� � s� � h�

This case has a symmetrical scene as the case in the last subsection because b��s� is a multiple of b��s��

Therefore� recv peC
p�� sendC
p� q�� and recvC
p� q� have closed forms� First� we process send pe
p��

which is equal to fA
f�
f
��
� 
localC
p� 	 �l� � u� � s�
���� Since periodCsb � periods�
Nb�� � h��

send pe
p� can be represented by a union of at most h� � � closed forms�

send pe
p� �

�����������������
����������������

�� � N � �
� if u� � l� � � � Nb� and h� � N �Skpf�h���
k�kpf

fA
�botf
C� p� k� � topf 
C� p� k�
��

if u� � l� � � � Nb�� h� � N� and nxt
botl
C� p� kpf�� l�� s�� � l��Skpf�h���
k�kpf

fA
�botf
C� p� k� � topf 
C� p� k�
� �

fA
�botf
C� p� kpf � h�� � f�

nxt
l� � periods � s�� l�� s��� l���s��
��
if u� � l� � � � Nb�� h� � N� and nxt
botl
C� p� kpf�� l�� s�� � l��Skpl

k�kpf
fA
�botf
C� p� k� � topf 
C� p� k�
�� if u� � l� � � � Nb��

Note that� send pe
p� cannot be represented by a constant number of closed forms independent of h��

Second� we formulate recv pe
p�� which is equal to fC
f�
exec
p���� Since periodAsb � 
periods �

s���
Nb�s�� � �� it is enough to analyze the set of PEs� which store elements of array C that will be

��
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Figure 	� Elements of array A in PE� through PE�� where array A is distributed by cyclic
�� over
four processors� In addition� f�
f

��
� 
recvC
p� ���� � f�
f

��
� 
rheadC
p� ���� � f�
f

��
� 
rbody�C
p� ���� �

f�
f
��
� 
rbody�C
p� ����� for � � p � ��

accessed by elements of array A within a block of size b��

recv pe
p� �

���������������
��������������

�� � N � �
� if u� � l� � � � Nb� and h� � N �

�fC
botf 
A� p� jpl�� � fC
topf 
A� p� jpf��
�
if u� � l� � � � Nb�� h� � N� and fC
botf
A� p� jpl�� � fC
topf
A� p� jpf���

�� � fC
topf 
A� p� jpf��
 � �fC
botf
A� p� jpl�� � N � �
�
if u� � l� � � � Nb�� h� � N� and fC
botf
A� p� jpl�� 	 fC
topf
A� p� jpf���

fC
�botf
A� p� jpf� � topf 
A� p� jpf�
�� fC
�botf
A� p� jpl� � topf 
A� p� jpl�
��
if u� � l� � � � Nb��

Third� we deal with sendC
p� q�� which is equal to localC
p� 	 f�
exec
q��� This set can be repre�

sented by a union of three closed forms� sheadC
p� q�� sbody
�
C
p� q�� and sbody

�
C
p� q�� Let j

�

qf � jqf ��

��



if nxt
botl
A� q� jqf�� l�� s�� � l�� j
�

qf � jqf otherwise�

sheadC
p� q� �

������
�����

�bota
C� p� kpf� � minftopa
C� p� kpf�� topf
A� q� jqf�g � s�
 �
��bota
C� p� kpf � �� � topa
C� p� kpf � �� � s�
 � topf 
A� q� jqf� � Nb�
�

if nxt
botl
A� q� jqf�� l�� s�� � l��


� otherwise�

sbody�C
p� q� �

���������
��������

��botf
A� q� j
�

qf� � nxt
botf 
A� q� j
�

qf�� topa
C� p� kpf�� Nb�� � s�
 � u� � Nb�h�
�

if bota
C� p� kpf� � botf 
A� q� j
�

qf� � topa
C� p� kpf� or

nxt
botf 
A� q� j
�

qf�� topa
C� p� kpf�� Nb��� s�
h� � �� � botf
A� q� j
�

qf�

� minfnxt
botf
A� q� j
�

qf�� topa
C� p� kpf�� Nb��� topa
C� p� kpl�g�


� otherwise�

sbody�C
p� q� � ���nxt
botf
A� q� j
�

qf�� bota
C� p� kpf � ��� Nb�� �

nxt
botf 
A� q� j
�

qf�� bota
C� p� kpf � ��� Nb�� � s�
h� � �� � s�
 �

topf 
A� q� j
�

qf� � Nb�
 � u� � Nb�h�
�

sendC
p� q� � sheadC
p� q�� sbody�C
p� q�� sbody�C
p� q��

Fourth� we manage recvC
p� q�� which is equal to sendC
q� p�� Hence� it also can be represented by

a union of three closed forms� As stated before� we prefer that recvC
p� q� can be represented based

on indices of array A� Let j
�

pf � jpf � � if nxt
botl
A� p� jpf�� l�� s�� � l�� j
�

pf � jpf otherwise� Then�

we have

rheadC
p� q� �

�������
������

f�f
��
�

�
�botf 
C� q� kqf� � minftopf 
C� q� kqf�� topa
A� p� jpf�g � s�
 �

��botf
C� q� kqf � �� � topf 
C� q� kqf � �� � s�
 � topa
A� p� jpf� � Ns�h�

�
�

if nxt
botl
A� p� jpf�� l�� s�� � l��


� otherwise�

rbody�C
p� q� �

������������
�����������

f�f
��
�

�
��bota
A� p� j

�

pf� � nxt
bota
A� p� j
�

pf�� topf
C� q� kqf�� Ns�h�� � s�
 �

u� � Nb�

�
�

if bota
C� q� kqf� � botf
A� p� j
�

pf��� topa
C� q� kqf� or

nxt
botf 
A� p� j
�

pf�� topa
C� q� kqf�� Nb��� s�
h� � �� � botf 
A� p� j
�

pf�

� minfnxt
botf 
A� p� j
�

pf�� topa
C� q� kqf�� Nb��� topa
C� q� kql�g�


� otherwise�

rbody�C
p� q� � f�f
��
�

�
���nxt
bota
A� p� j

�

pf�� botf
C� q� kqf � ��� Ns�h�� �

nxt
bota
A� p� j
�

pf�� botf
C� q� kqf � ��� Ns�h�� � s�
h� � �� � s�
 �

topa
A� p� j
�
pf� � Ns�h�
 � u� � Nb�


�
�

recvC
p� q� � rheadC
p� q�� rbody�C
p� q�� rbody�C
p� q��

��



	�� The Case When Both send pe
p� and recv pe
p� Have Closed Forms

When b��s� is a factor of b��s� and 
b� � s���
b� � s�� is a factor or a multiple of N � or when b��s�

is a multiple of b��s� and 
b� � s���
b� � s�� is a factor or a multiple of N � then both send pe
p� and

recv pe
p� have closed forms�

In the �rst case� let b� � s� � h�� b� � s� � h� � h�� and h� is either a factor of N or a multiple

of N � In this case� send pe
p� can be represented by closed forms as presented in Section ���� In the

following� we show that recv pe
p� also can be represented by closed forms�

recv pe
p� �

��������������
�������������

�� � N � �
� if u� � l� � � � Nb� and h� � N �

�fC
botf
A� p� jpf�� �
fC
botf
A� p� jpf�� � minfN � �� 
jpl � jpf�N�h�g � N�h�
 mod N�

if h� � N and fC
botf
A� p� j�� � fC
topf 
A� p� j��� for all jpf � j � jpf � ��

��fC
topf
A� p� jpf��� � � fC
topf 
A� p� jpf��
 �
fC
topf
A� p� jpf�� � minfN � �� 
jpl� jpf �N�h�g � N�h�
 mod N�

if h� � N and fC
botf
A� p� j�� 
� fC
topf 
A� p� j��� for some jpf � j � jpf � ��

Note that� the above closed form has two exceptions� First� when fC
botf 
A� p� jpf�� � fC
topf 
A� p�

jpf��� then 
fC
topf 
A� p� jpf��� �� mod N is not in recv pe
p�� Second� when u� � l� � � � Nb� and

fC
botf
A� p� jpl�� � fC
topf 
A� p� jpl��� then 
fC
topf 
A� p� jpf�� � 
jpl � jpf�N�h�� mod N is not in

recv pe
p��

In the second case� let b� � s� � h� � h�� b� � s� � h�� and h� is either a factor of N or a multiple

of N � In this case� recv pe
p� can be represented by closed forms as presented in Section ���� In the

following� we show that send pe
p� also can be represented by closed forms�

send pe
p� �

��������������
�������������

�� � N � �
� if u� � l� � � � Nb� and h� � N �

�fA
botf
C� p� kpf�� �
fA
botf 
C� p� kpf�� � minfN � �� 
kpl � kpf�N�h�g � N�h�
 mod N�

if h� � N and fA
botf
C� p� k�� � fA
topf 
C� p� k��� for all kpf � k � kpf � ��

��fA
topf
C� p� kpf��� � � fA
topf 
C� p� kpf��
 �
fA
topf 
C� p� kpf�� � minfN � �� 
kpl� kpf�N�h� � N�h�
 mod N�

if h� � N and fA
botf
C� p� k�� 
� fA
topf 
C� p� k��� for some kpf � k � kpf � ��

Note that� the above closed form also has two exceptions� First� when fA
botf 
C� p� kpf�� � fA
topf 
C�

p� kpf��� then 
fA
topf 
C� p� kpf��� �� mod N is not in send pe
p�� Second� when u� � l� � � � Nb�

and fA
botf
C� p� kpl�� � fA
topf
C� p� kpl��� then 
fA
topf
C� p� kpf���
kpl�kpf�N�h�� mod N is not

in send pe
p��

��



	�	 Experimental Studies

In this subsection� we present two experimental studies on a nCUBE�� computer� For each experimental

study� the execution time required by each processor to execute the node program was measured and

the maximum �nish time was reported� The �rst experimental study calculates a saxpy operation on

two data arrays� the second experimental study performs a data redistribution operation on a speci�c

data array� In e�ect� the data redistribution operation can be seen as a special case of the saxpy

operation�

Example �� Consider the following saxpy operation�

doall i � �� ����	

A
�		�� � � i� � A
�		� � � � i� � saxpy con � C
� � � � i��

where saxpy con is a �oating�point constant� In addition� array A is distributed by a cyclic
b��

distribution� array C is distributed by a cyclic
b�� distribution� Table � lists experimental results of

implementing this saxpy operation with various block sizes b� and b�� Experimental results can be

distilled as follows�

�� The execution time of computing the cases when b� � s� � h and b� � s� � h � h� is close to that

of the cases when b� � s� � h � h
� and b� � s� � h�

�� When h� is less than the number of PEs� then the execution time becomes better when h� is close

to �� This is because� in these cases� each block of array C in PEp 
�botl
C� p� k� � topl
C� p� k�
�

will intersect to at most one referenced block of arrayA in PEq 
�botf
A� q� j� � topf 
A� q� j� � s�
��

and vice versa� Therefore� certain optimization can be taken by using two�nested closed forms to

represent sendC
p� q� and recvC
p� q� instead of using the mentioned formulas which use three�

nested closed forms to represent the above two sets� sendC
p� q� and recvC
p� q�� In addition�

each PE needs to send data messages to at most 
h� � �� PEs� Therefore� the communication

time reduces when h� becomes smaller�

�� When h� is larger than or equal to the number of PEs� then the execution time improves when

block sizes b� and b� are increasingly larger� This may illustrate that our algorithm favors the

��
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Table �� Execution time 
second� of computing the saxpy operation in Example � using � PEs� �
PEs� � PEs� and �� PEs� respectively� Array A is distributed by a cyclic
b�� distribution� array C is
distributed by a cyclic
b�� distribution�

cases when block sizes are large� because in these cases� the indexing overhead for packing data

messages is not signi�cant�

�� All cases except three show scalable improvements when the number of PEs grows� Three

exception cases are when the number of PEs is ��� b� � ����� and b� � � or b� � �� and b� � �

and b� � ������ This is because in these extreme block to cyclic cases or cyclic to block cases�

the indexing overhead for packing data messages is signi�cant� in addition� the communication

overhead also becomes worse when the number of PEs grows because of involving certain all�to�all

communications�

��



�� Because the iteration space is linear and each PE executes roughly the same number of iterations�

there is no load unbalance problem� Therefore� according to the communication oracle� it is

preferable to choose large block sizes b� and b�� From Figure ��� which is drawn based on Table

�� we can summarize that it is preferable to choose block sizes b� � �� and b� � �� for this saxpy

operation�
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Figure ��� Execution time 
second� of performing the saxpy operation in Example � using � PEs� �
PEs� � PEs� and �� PEs� respectively� Array A is distributed by a cyclic
b�� distribution� array C is
distributed by a cyclic
b�� distribution�

Example 
� Consider the following data redistribution operation�

doall i � �� ���	�	

A
i� � OLD A
i��

where array A is distributed by a cyclic
b�� distribution� array OLD A is distributed by a cyclic
b��

distribution� Table � lists experimental results of implementing this data redistribution operation with

various block sizes b� and b�� Experimental results show that the behavior of the execution time of

this data redistribution operation is similar to that of the saxpy operation� From Figure ��� which

��



is drawn based on Table �� we can summarize that it is preferable to choose block sizes b� � �� and

b� � �� for this data redistribution operation�
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Table �� Execution time 
second� of performing the data redistribution operation in Example � using
� PEs� � PEs� � PEs� and �� PEs� respectively� Array A is distributed by a cyclic
b�� distribution�
array OLD A is distributed by a cyclic
b�� distribution�

In the above two experimental studies� we assumed that the problem variables and the number of

PEs were given at run time� Therefore� each node had to compute all boundary indices of closed forms

at run time� In practice� for many applications� problem variables and the number of PEs are known

at compiling time� Then� boundary indices of closed forms can be computed in advance at compiling

time� and the resulting execution time can thus be even better as expectation�
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Figure ��� Execution time 
second� of performing the data redistribution operation in Example � using
� PEs� � PEs� � PEs� and �� PEs� respectively� Array A is distributed by a cyclic
b�� distribution�
array OLD A is distributed by a cyclic
b�� distribution�

� Conclusions

We have presented in this paper several techniques for determining data distribution and generating

communication sets on distributed memory multicomputers� In Section �� we proposed a cost model

which emphasized that the total execution time should include both the computation time and the

communication time� This cost model was then used to determine the granularity of data distri�

bution� We also extended Li and Chen�s component alignment algorithm and developed a dynamic

programming algorithm for heuristically determining whether data redistribution was necessary�

In Section � and Section �� we derived formulas to represent communication sets of executing

single�loop doall statements� In Section �� we found that there were no simple formulas to represent

communication sets when data arrays were distributed arbitrarily� However� in Section �� we found that

��



there existed closed forms to represent communication sets if data arrays were distributed according

to certain restrictions� Experimental studies also showed that the indexing overhead of the proposed

closed forms was not signi�cant and the approach scaled well as the number of PEs increased�
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