A Probabilistic Approach to the Problem of

Automatic Selection of Data Representations”

Tyng—Ruey Chuang Wen L. Hwang

Institute of Information Science
Academia Sinica
Nankang, Taipei 11529, Taiwan

E-mail: trc@iis.sinica.edu.tw, whwang@iis.sinica.edu.tw

November 25, 1995

Abstract

The design and implementation of efficient aggregate data structures has been an important issue
in functional programming. It is not clear how to select a good representation for an aggregate when
access patterns to the aggregate are highly variant, or even unpredictable. Previous approaches rely
on compile-time analyses or programmer annotations. These methods can be unreliable because
they try to predict program behaviors before they are executed.

We propose a probabilistic approach, which is based on Markov processes, for automatic selec-
tion of data representations. The selection is modeled as a random process moving in a graph with
weighted edges. The proposed approach employs coin tossing at run—time to aid choosing suitable
data representations. The transition probability function used by the coin tossing is constructed in
a simple and common way from a measured cost function. We show that, under this setting, ran-
dom selection of data representations can be quite effective. The probabilistic approach is applied
to an simple example, and the results are compared to some deterministic selection algorithms.

1 Introduction

How to design and implement efficient aggregate data structures has been a major concern for both
the designers and users of functional programming languages. See, for example, Chuang and Goldberg
[2, 3], Okasaki [9], Schoenmakers [11] and Shao, Reppy, and Appel [13, 14]. The problem becomes
more complicated if access patterns to aggregates are highly variant, or even unpredictable. A common
situation occurs where there are several representations of an aggregate, with one representation being
more efficient than the others for certain operations but worst for the remaining operations, and vice
versa. Which representations should one chooses, given that there is no a priori knowledge of what
operations, and how often, the aggregates will be mostly used for?

This is known as the data representation selection problem for very high—level programming lan-
guages. See, for example, Schonberg, Schwartz, and Sharir [12]. The goal is to determine a suitable
representation for aggregates of builtin abstract data types (such as sets and arrays) such that the
aggregates will exhibit good performance. The problem occurs as well for user—defined abstract data
types, where there may exist multiple representations of the data type but each with different per-
formance characteristics. Naturally, aggregates of the data type will require different representations

*This research is supported, in part, by National Science Council under contract NSC 84-2213-E-001-004. This
report is achieved as Technical Report TR-IIS-95-011 at the Institute of Information Science, Academia Sinica.

in different program contexts in order to achieve good performance. Previous approaches to the data
representation selection problem have relied heavily on compile-time analyses or programmer anno-
tations to help selecting a good implementation of the data structure. These approaches can be very
unreliable since they try to predict a program’s behavior before it is executed.

Another approach is to design a representation for the abstract data type such that, though not the
best possible in every situation, its performance is not too bad for all situations. This representation
is used for all aggregates of the abstract data type, and designers and users of the data type now spare
themselves of the problem of selecting the right representation. One drawback of this approach is that
users of the abstract data type may pay for cost they do not ask for. For example, in some context
the users may not use at all certain functionality of the data type. Nevertheless the performance of
all aggregates of that type is degraded because they all have to accommodate this extra functionality
into their representation.

This paper takes a different view of the data representation selection problem, and presents a
probabilistic approach to solve the problem. We view the data representation selection problem as an
on-line problem in the following way. There are several representations of an aggregate, and it costs
each representation certain amount of time to process each kind of operations. These representations
can be converted to on another at a cost. There is a sequence of requests consisting of various kinds
of operations to be served by the aggregate. The goal is to make choices, as the requests arrive,
which representation to serve the current request, and if necessary, to perform a conversion between
representations, such that the total cost of serving the entire request sequence is small.

Note that we have shift the decision of making the selections from compile-time to run—time. But
a run—time choice may still be inappropriate if it only relies on history of the request sequence to make
the current selection. There are two reasons for this. First, history is no indication of the future — the
run—time choice may just be as inaccurate as the compile—time choice. Secondly, keeping the history
around increases the space requirement of program execution — the space/time overhead incurred by
run—time choices may be too high to make them feasible. Probabilistic techniques have been used in
on-line algorithms to avoid the above two problems. See, for example, Fiat, Karp, Luby, McGeoch,
Sleator, and Young [7], Karp [8], and Raghavan and Snir [10]. Random choices, based on carefully
devised principles, can often be shown to make few bad decisions in the long term. Furthermore,
random choices can often be “memoryless,” in the sense that they only depend on the current state
of execution, but not on previous states.

Though the idea of random choices quite simple and appealing, to the best of our knowledge,
we find few applications of probabilistic approaches to the data representation selection problem. In
Chuang [2], a randomization technique is used to implement purely functional arrays for efficient
multithreaded read/update operations, and is shown to be effective. In this paper we further develop
a general framework based on probabilistic choices to solve the data representation selection problem.
In Section 2 of this paper, we will describe a somewhat simple example to be used in this paper for both
illustration and experimentation. Several other examples taken from the literature is described in this
section as well. Section 3 will present the general framework and some preliminary analyses. An actual
implementation and some experimental results are presented in Section 4. Related implementation
issues are discussed in Section 5. Section 6 discusses related and future work.

2 Examples

We use a somewhat simple example thorough this paper as a demonstration, but the technique applies
to others. Suppose that we want to implement an abstract data type named bag that supports just
three kinds of operations: creation of an empty bag, insertion of an integer to a bag, and query to
a bag for a given integer to see if it is there. Of course, we may also support deletion of an integer

from a bag, and so on. But right now let us assume there are just three kinds of operations: creation,
insertion, and membership query.

A bag can be implemented as a list. The list representation provides constant time insertion by
appending the inserted integer at the front of the list. A membership query, however, will takes time
linear to the the length of list for the worst case. A bag can be implemented by a balanced search
tree as well. Insertion and membership query then each takes logarithmic time, with respect to the
number of nodes in the tree. Clearly if the bag will be used mostly for insert operations, then a list
representation is preferable. If we have a large bag and the number of membership queries is huge,
then we would prefer a balanced search tree representation. But what are the precise criteria for
preferring one representation over the other?

The problem can be rephrased as the following. We want to serve a sequence of bag operations
that starts with a create operation and followed by some number of insert and query operations. We
have no a prior knowledge of what the sequence looks like, including the number of operations in the
sequence. The problem is to decide which bag representation one should use, and, if more than one
representation is preferred, when should one convert one representation to the other?

Other examples of this kind of characteristics abound in functional programming. For example,
Chuang [2] discusses the performance tradeoff between two representations of arrays (one good for
update operations and one good for read operations) and how to make probabilistic choices on-line.
Okasaki [9] presents an implementation of “random—access lists” that is good for both list and array
operations. Performance of the list operations of the random—access lists, however, are not as good as
those of the straightforward list representation; so is the case for the array operations. Users of mostly
list operations (or mostly array operations, for the matter) suffer from such an implementation as a
result. We can use the probabilistic technique developed in this paper to mix two representations of
random-access lists (but each with different performance characteristics, such as pure lists and pure
arrays) to get a more adaptive representation. Note that the bag example demonstrated in this paper
can be easily made into random-—access lists as well.

3 Models and Analyses

We take a probabilistic view of the problem of selecting a suitable aggregate representation to serve a
sequence of operations. The way the aggregate is implemented may change over time to better serve
the incoming operations. In particular, we model the change of representations over time as a Markov
process.

A Markov process can be described informally as a set of states and a chance process that moves
around through these states. In this paper, the states of the Markov process are just the different ways
an aggregate can be implemented, and our goal is to determine good transition probabilities between
the states such that the total cost of serving a sequence of operations over time is small. We use
Markov processes as models because of their simplicity, and because of the rich techniques developed
for them in the literature. See, for example, Chung [4] and Doyle and Snell [6]. Markov processes are
also “memoryless,” in the sense that the probability of moving from one state to another one depends
only on the current state.

The following fixes notation convention that will be used later in this paper.

s is a set of k distinct states s1,s2,...,5;. Each state represents a particular way the aggregate is
implemented. It is equally well for an aggregate to be in any one state because each representation
will provide the same functionality (although at a different cost, see below).

P is a k-by-Fk transition probability matrix for s such that, being in state s;, it will move to state s;

with probability P; ;. Naturally,

1>PF; > 0 foralli,j,and

k
ZPW = 1 forall«.
7=1

(' is a k—by—k cost matrix with
oo >C;; >0 foralli,j.

(; ; is the cost of making a move from s; to s;. ' is not necessarily symmetric.

e is a vector of length k., and e; is the expected cost of making a move out of state s;. That is,
e=ler,eq,...,ex]7, and

k
e = ZPi7]Ci7] for all .

J=1

F is a k-by—k matrix, representing the expected costs of the random walks introduced by € and
P. FE;; is the expected cost of first reaching s; starting from s;. We can formulate £ by the
following recurrent equation:

Ei; = FCi;+ Z P w(Cip + By ;) forall i, ;.
k#j

a,B3,7,... symbolize the kinds of operations supported by the aggregate. The set w consists of all
kinds of operations.

n is the current size of the aggregate.

For example, each bag aggregate has two representations. We let state s; be the list representation
and s, the balanced search tree representation. The two representations are convertible to each other
and will support all bag operations. P, ; will be the probability that, while in the list representation,
the next bag operation will be performed on the same representation, and P; > the probability that
the next bag operation will be performed on the balanced search tree representation (which itself is
converted from the current list representation). Likewise for P, 5 and P ;.

Furthermore, (' 1 is the cost of performing a bag operation while the bag is implemented as a list.
(1,2 is the cost of converting the list representation to the balanced search tree representation, plus the
cost of performing the bag operation on the new representation. Likewise, for C'y 5 and Cy ;. Hence,
value ey is the expected cost of performing a bag operation while the bag is in its list representation,
and Fj o is the expected cost of transforming the list representation of a bag into the balanced search
tree representation while serving requests from the incoming operation sequence.

A bag in fact supports three kinds of operation: creation, insertion, and membership query. Let o
represent the insert operation, 3 represent the membership query, and v represent the create operation.
Then w = {a, 3,7}, and a request sequence starts with a v operation and followed by interwoven «
or 3 operations.

For now it suffices to consider n, the aggregate size, fixed, and the request sequence consisting of
only one kind of operation. For example, we may concern ourselves of serving a sequence of membership
queries to a bag of exactly n integers. We will later show how to extend the Markov framework to
aggregates supporting multiple kinds of operations and of variant sizes.

Recall that a membership query takes logarithmic time for a balanced search tree, and it takes linear
time for a list in the worst cases. If the bag is already in its balanced search tree representation, then
we may want to continue to use the representation to support further membership queries. Troubles
occurs when the bag is in its list representation. Should we perform membership query on the list
presentation (which is costly for each query but is tolerable if there are few of them), or should we
convert immediately the list representation to the balanced search tree representation and then serve
all the queries on the new representation (which initially will cost O(nlogn) time for the conversion,
but pays off if there are many queries)? Note that this is a difficult decision to make at compile-time
because often we cannot predict the number of membership queries the bag has to serve.

The idea is that, while in the list representation, the bag should gradually change to the balanced
search tree representation over time to better serve membership queries. This gradual change of
implementation is modeled as a Markov process where representations change according to P, the
transition probability matrix. It will be desirable if the Markov process bears the following two
properties:

(1) The expected cost of serving a request (while making the transition to the new representation) is
comparable to the original cost of serving the request as if no conversion occurs.

2) The expected cost of eventually converting to the new representation is comparable to the cost of
P y g P P
an immediate conversion.

Property (1) make sure that, in the short term (i.e., there are few membership queries in the se-
quence), the expected cost of serving a request is comparable to the case when the conversion to new
representation is simply not worthy. Property (2) make sure that, in the long term (i.e., there are
many membership queries), the expected cost of converting to new representation is still comparable
to the case where an immediate conversion is most desirable.

Formally, we can put it in the following way. Let s; be the current state, and let s; be the
preferred state. A state s; is preferredif C; ; is the smallest among all C}, ;,, where s, € {51, s9,..., sg}.
That is, the cost of serving a request is smallest at state sp. Then we want to (1) compare e; (the
expected cost of serving a request at state s;) to C;; (the original cost of serving the request as if no
conversion occurs), and (2) compare E; ; (the expected cost of eventually converting to the preferred
representation) to C; ; (the cost of an immediate conversion). In the above example of bag aggregates,
we may call balanced search tree the preferred representation because it takes less time to serve a
membership query, and we want to convert a bag from the list representation to the balanced search
tree representation if there are many membership queries.

In general, there may be more than one preferred states. (For example, there may be several
representations of a bag aggregate which serve membership queries equally well.) Assuming for the
moment that the preferred states are absorbing.! That is, Pj; = 1 if s; is preferred. Let s, the set of
all states, be partitioned into two subsets B and D, where B is the set of the v absorbing states, and
D be the set of the remaining v non—absorbing states. Let s be reordered such that the absorbing
states come before non—absorbing states.

P (I 0)
R Q

We then write P as the following
where 1 is a u—by—u identity matrix, and 0 a u—by—v matrix with all 0. R is a v—by—u matrix
representing the transition probabilities from non—absorbing states to absorbing states, and ¢ is a
v—by—v matrix representing the transition probabilities between non—absorbing states.

!This requirement is not really necessary, but make easier the proof that follows.

Let ep be a vector of length v, describing the expected costs of making a move out of the » non—
absorbing states, and let Ep be a vector of length v, describing the expected costs of first reaching an
absorbing state from non—absorbing states.

Lemma 3.1 Ep = (I —Q) tep &

Proor. Recall that
Eij=P;Ci;+ Y Piu(Cig+ Epj)
ktj
for all ¢, 7. Because we are interested in the expected cost of first reaching any absorbing state from
a non—absorbing state, we can simply reformulate the above as

Ei = Y PiCij+ Y Pij(Cij+ E))

JEB jeD

= Y. PG+ Y Pk
jeEBUD jeEBUD

= &+ (PE)

for all : € BU D, where we let ¢, = F; =0 for ¢ € B.
In matrix form, it follows that £ = e+ PE and (I — P)E = e. Recall that

r=(a4)
(5 2) ()= ()

It follows that (I — Q)Ep = ep and Ep = (I — Q) tep. a

The matrix N = (I — Q)71 is called the fundamental matriz for the absorbing Markov process
P. The entries N; ; of this matrix have the following probabilistic interpretation: N; ; is the expected
number of times that the process will be in state s; before absorption when it started in s; (where
both s; and s; are no absorbing state). See Doyle and Snell [6].

Note that Lemma (3.1) show how to calculate £;; for any two states s; # s;. We simply view
s; absorbing, and let B = {s;}, and D = B. For E;, the expected cost of returning to itself when
starting from state s;, we can use the following equation:

and we have

Eii=PiiCii+ Y Pij(Cij+ Ej)=e+ Y PijEj;
j#i j#i
where e; and L, j # ¢, are already known.
The problem remains: given (', how to construct a P such that e; and F; ; are each comparable

to C;; and C; ;. We use the following heuristics to construct a P from €', which we call the “local”
construction:

1
Ci

k 1
Zj:l Ci,]

Pi;

We then bound e; and F; ; in the following lemma.

Lemma 3.2 Let s; be the preferred state, B = {s;}, and D = B. Then, for the “local” construction,

e; < k-minC;;
J

é

FE, < —
= 12

for each ¢+ € D; where k is the number of states, and

€ = maxe;
€D

@ = Y P
JED

j = maxg;

1 e 4

Proor. First of all, for a “local” construction, we have, for each 7 € D,

ei=) PriCij= g =k G L% ey,
. Z] C- H] Oiv] H] Oiv] J
I & 2k Cin min, C;

Furthermore, ¢; is the probability that, when in state s;, the next move will not reach any preferred
state, and e; the expected cost of that move. It follows that ¢ is the upper bound of the probability
that, while not in the preferred states, the next move still do not reach them, and é an upper bound

of the expected cost of such a move. We then have lizj as an upper bound of the total number of

times it stays at the non—preferred states when starting from them, and lizj an upper bound for £,
the expected cost of all the moves before reaching any preferred state, starting from a non—preferred
state. a

The bound for e; is good, but the one for F; is quite loose. We are currently working on a better
bound. For the bag example, however, there are only two states s; and s;, for the list and balanced

search tree representations. It follows from the above lemma that

Cip Ci1a
P = (P171 PL?) _ Ci114+C12 C11+C12
2,2 2,1
P2’1 P2’2 Ca14C22 C21+C22
2C1,1Ch 2 .
e1=P1C11+ P1oCo = ——=— <2min{C;1,C1 2} <2Cy,
Ciag+Cia
and
[1 o — Ciap+Cia, 2C11C1)= 20
12= T—F € = =201
1—Py C11 Cia+Cia

)

Similarly, €9 S 20272 and E271 = 20271.

3.1 Aggregates with Multiple Kinds of Operations

In the bag example, after creation, each bag in fact supports two kinds of operations: insertion and
membership query. Insertion is better performed in list, and membership query is more efficient in
balanced search tree. In general, for each kind of operations ¢ € w, it will has its own cost matrix
C'?. Furthermore, when operating ¢, the representation of the aggregate should be chosen based on a
Markov process derived from C?.

Let yjs be the cost of operating ¢ in state s;, and X; ; the the cost of converting an aggregate from
state s; to state s;. Then, by definition,

b Xij+y! ifi#j

From each C'?, we then construct a Markov process P? to model the change of representations when
operating ¢.

3.2 Variant—Sized Aggregates

Some operations will change the size of an aggregate. Often the performance of the aggregate is
affected as its size grows or shrinks. For example, an insertion makes the size of a bag grow by
one. If the bag is implemented by a balanced search tree, then each subsequent insertion or query to
the bag costs more time than it does to the original bag. Therefore, the cost matrix C' not only is
parameterized by w, the kinds of operations supported by the aggregate, it is also a function of n, the
size of the aggregate. Let’s write C[n] for the cost matrix at size n, and P[n] for the corresponding
transition probability.

Notice that, in general, we want to pre—compute P such that, at the moment of serving a request,
we can make a quick decision based on P to choose a suitable implementation. Since ' is a function
of » it will be impractical to pre—compute P for all size n. If we delay the construction of P until
run—time, where n is known, then the overhead for making a probabilistic choice at run—time may be
too large to render the whole scheme impractical.

As a compromise, we use the following way to estimate P: Pre—compute only P[2"],m € N. When
processing a request to an aggregate of size n with 27~ < n < 2™, make a probabilistic choice based
on P[2™]. This estimation of P[n]| works out well in practice, but is biased against implementations
whose sizes grow faster than the others.

3.3 The Algorithm

Given:
A specification of an abstract data type that supports operations of kind ¢ € w, and k representations
S1,82,...8; of the abstract data type.

Preprocessing:
Measure C?[n] where ¢ € w and n = 2", m € N.
Build P?[n] from C?[n] using the “local” heuristics.

On-Line Service:
An aggregate a is requested to serve a ¢ operation. Let s; be the current state of the aggregate, and
n its size. Suppose 271 < n < 2™ m € N. Then

o Make a probabilistic choice based on P;b[Qm], let s; be the new state.

— If 5; = 5;, then return ¢;(a).

— Otherwise first mutate a from state s; to state s;, then return ¢;(a).

4 Experimentation

We have conducted an experiment, under Standard ML of New Jersey 0.93, to measure the effectiveness
of the proposed approach. We implement an integer bag by two different representations: a list with
all the integers in the bag, and a mapping that maps an integer to the number of times it has appeared
in the bag. The map is taken from the SML/NJ 0.93 library, and is very efficiently implemented by
a balanced search tree. The signature of the bag aggregate, as well as its implementations in the the
list and map representations, are described in SML in Figure 1 in Appendix A.

Fach representation supports three kinds of operation: insert operation (insert), membership
query (member), and creation of a empty bag (void). In addition, each representation also supports
the following operations: size that returns the size of a bag, and 1ist2bag and bag2list that convert
between an integer bag and an integer list. (Do not confuse this list to the list representation of a bag.
See Figure 1 for details.) The function size is used to determine which cost matrix C' (hence, which
transition matrix P) to use. It is a constant time function. The function list2bag and bag2list
mediate between the list and map representations for conversion purposes.

The performance of the two representations is measured by a separate program by timing the
execution time of insertions and queries, each for aggregates of different sizes. The data is shown in
Table 1, and is used to construct cost matrices C[n]. A functor is then written to accept the two
representations (as well as their performance data), build the cost matrices, construct the transition
probability matrices, and produce a representation that (based on algorithms outlined in Section 3.3),
when serving an insertion or a query, will make a probabilistic choice on whether or not to first perform
a conversion. The skeleton of the functor is shown in Figure 2 in Appendix A.

We run a set of simple benchmarks to evaluate the performance of the probabilistic scheme. The
results are shown in Table 2. The probabilistic scheme is never the fastest. However, its performance
is between those of map and list representations, except in a benchmark — (a?9°319)20 — where it
is worse than both. There is a simple explanation: in this case both the map and list representa-
tions happen to run the benchmark using about the same time, while the probabilistic scheme pays
additional overhead (such as generating random numbers and performing conversions) for making
run—time choices.

We also observe that the map library provided by SML/NJ 0.93 is very efficient; it is fastest
except in only two occasions where it loses to the list representation. Notice that in the two occasions,
the probabilistic scheme also beats the map representation. The greedy algorithm, which always
converts to the preferred state when serving a request, often performs badly because the conversion
cost cannot be amortized by the subsequent (short) sequence of operations of the same kind. We may
make the following likely implication: In order for compile-time analyses or programmer annotations
to be effective in making dynamic selection of data representations, the conversion costs between
representations must be taken into account.

5 Discussion

We face several problems when performing the experimentation. First of all, it is really a tedious job
to make an accurate measurement of the cost matrices. (That is also one of the reason why we have
not experimented with aggregate that supports more than two kinds of operations, and which also has
more than two different representations.) For example, the least measurable unit of time in SML/NJ
0.93 is 0.01 second, and we have to repeatedly run the measurement code and divide the accumulated
time. We also have to discount the time spent on spurious activities in the measure code, such as the
generation of sample operation sequences and the skeleton loops to carry out the operations.

We also find the floating point support in SML lacking. For example, it will be really nice to be

kind aggregate size
sec. /op. 2° 26 27 28 29 210
insert 3.51x107% [3.51x 107°% [3.70 x 107° | 3.53 x 107° | 3.59 x 107° | 3.59 x 10~°
member || 1.10 x 10™* [2.00 x 107 | 3.61 x 10~* | 7.62x 10~* | 1.52 x 1072 | 3.75 x 10~°
bag2list || 2.90 x 107° | 3.13 x 107° | 2.75 x 107° | 2.75 x 107° | 2.87 x 107° | 2.78 x 10~°
list2bag || 1.46 x 107> | 1.46 x 107> | 3.91 x 107° | 5.86 x 107> | 1.17 x 10~* | 2.34 x 10~*
kind aggregate size
860./0p. 211 212 213 214 215 216
insert 3.52x107% [3.55 x 107° | 3.52x 107°% | 3.55 x 107° | 3.59 x 107° | 4.23 x 107°
member || 7.81 x 1072 | 1.59 x 1072 | 3.38 x 1072 | 6.38 x 1072 | 1.30 x 10~! | 2.88 x 10~!
bag2list || 2.81 x 107° | 2.85 x 107° | 2.84 x 107° | 2.96 x 107° | 2.38 x 107° | 2.83 x 10~°
list2bag || 4.69 x 107* | 9.38 x 107™* | 3.13 x 107> | 7.50 x 1072 | 1.50 x 1072 | 2.75 x 1072
(a) For the list representation.
kind aggregate size
sec. /op. 2° \ 26 \ 27 28 2° 210
insert 6.47x 107> | 7.81 x 107° [8.76 x 107° [9.89 x 10™° | 1.14 x 10~* | 1.26 x 10~*
member || 1.20 x 107° | 1.19x 107° | 1.34 x 10> | 1.59 x 107> | 1.38 x 107" | 1.83 x 10~°
bag2list || 1.81 x 107 | 3.76 x 107™* | 7.23 x 107* | 1.43 x 1072 | 2.81 x 10™2 | 7.34 x 10~
list2bag || 1.09 x 1072 | 2.62 x 1072 | 5.92x 1073 | 1.35 x 1072 | 3.10 x 1072 | 9.02 x 1072
kind aggregate size
860./0p. 211 212 213 214 215 216
insert 1.36 x 107% | 1.45x 107* | 1.45 x 10~* | 1.57 x 10™* | 1.73 x 10~* | 1.94 x 10~*
member || 7.17 x 107% [1.67 x 107> [2.40 x 10~° | 2.36 x 107> | 1.54 x 107> | 2.22 x 10~°
bag2list || 1.50 x 1072 { 3.03 x 1072 | 6.13 x 1072 | 1.25 x 107! | 2.43 x 107! | 5.00 x 1071
list2bag || 2.15 x 1071 | 4.95 x 1071 | 1.08 x 10° | 2.42 x 10 | 5.28 x 10 | 1.15x 10!

(b) For the map representation.

Table 1: Performance measurement for both list and map representations of bag aggregates.

NoTE. The figure is measured by using the System.Timer structure of SML/NJ 0.93, on a 40 MHz
SPARC workstation with 32 MB memory. Only user time is reported; garbage collection and system
times are not measured. (SML/NJ 0.93 garbage collects at indefinite time.) Considerable care has

been taken to make a (more or less) accurate measurement. However, fluctuations remain.

The bag elements are randomly drawn from the integer set {0,2,.
time in entry 2 is the average of the times for aggregate of sizes from 27~ 4 1 to 2™, if m is small.
If m is large, the times in the entry is the average of times for aggregate of sizes from 2™ — ¢ to 2™

..,229 —1}. In the above tables the

for some constant ¢. From the two tables, we can construct the cost matrices (’s. For example,

Cr4[2°] 3.51 x 107°
O 427 2.90 x 107°% + 1.09 x 107> 4+ 6.47 x 10™°
C34[2°] = 1.81x107* 4 1.46 x 107" +3.51 x 107°
C5,[2°] = 6.47x107°

10

sequence representation

time in sec. map ‘ list ‘ greedy ‘ “local”
(20.999180.001) % [1.34 [0.39 | 13.84[0.79
(a0.5|ﬁ0.5)10000 0.83 | 50.62 | 929.90 13.63
(av0.1|B0.9)100% 0.25 | 17.69 56.35 4.49
(at—l_nt|ﬁ1nTt)10000 1.50 0.39 11.99 0.73
(a1060ﬁ1000)10 1.64 | 219.16 9.16 14.15
(a?99310)20 3.04 8.24 | 36.01 14.29
(alV3990)20 0.30 | 7.86 1.00 3.17

Table 2: Performance of various representations of bag aggregates for some simple benchmarks.

NoTE. For request sequences, we use the notation that, for example, (a0,999|ﬁ0.001)10000 is a sequence of
10000 requests which, at any moment, an a operation occurs with probability 0.999 and a 3 operation
occurs with probability 0.001. The probability an operation occurs may also depend on its ordinal
number ¢ in the sequence, like, (@it |Bwm:)%, If there is no subscript, then the operation always
occurs. ' '
We compare the performance of the following four representations: the one that always uses the map
representation, the one that always uses the list representation, the one that always converts to the
preferred representation when performing an operation, and the one that uses the “local” transition
probability. Only user time is reported; garbage collection time and system time are not measured.

able to express numbers like Inf and NaN, which are in the ANSI/IEEE Standard 754-1985. That
will make easier the task of stating certain conversions between representations are impossible (i.e.,
Cm‘ = OO)

We use the ref data type in SML to make mutable representation of an aggregate. This is not a
problem per se, but is troublesome if the bag data type wants to be polymorphic to its element type.
The SML typing rules will then insist a weak type variable for the bag element. Though in general
this is the right thing to do, we do not see it is necessary in this context. All usages of the assignment
operator := are in the Mix functor in Figure 2, and it can be shown that the types of the new value
and the old value are always the same. Nothing will go wrong there.

Last but not least, notice that the probabilistic scheme is also good for multithreaded aggregate
accesses. The analysis in Section 3 depends only on the current state of the aggregate, not on any
previous states. Also notice that we mutate the aggregate when making a conversion; hence repeated
accesses to the aggregate will not need the same conversion again.

6 Related and future works

The problem of automatic selection of data representations, when put in a probabilistic framework, is
closely related to the problem of random walks in a weighted graph. See for example, the important
work of Borodin, Linial, and Saks [1], Coppersmith, Doyle, Raghavan, and Snir [5], and Doyle and
Snell [6]. They often assume the cost matrices are symmetric, and use more complicated techniques
to derive tight bounds of the probabilistic schemes involved. The competitive paging problem and
its probabilistic solution of Fiat, Karp, Luby, McGeoch, Sleator, and Young [7] is related to the data

11

representation selection problem as well, though it also assumes symmetric cost matrices.

More analyses are needed for the “local” heuristics for building the transition probability matrix.
In general it is not clear how well it performs when compared to an off-line optimal algorithm. We also
need to exploit other construction of the transition probability matrix, perhaps by using techniques
of multivariable constraint optimization.

Right now we also assume that, for aggregates of the same size, all operations of a given kind will
cost the same amount of time. In general this is not true, and we need to look into this issue.

References

[1] Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on—line algorithm for metrical
task system. Journal of the Association for Computing Machinery, 39(4):745-763, October 1992.

[2] Tyng—Ruey Chuang. A randomized implementation of multiple functional arrays. In Proceedings
of 1994 ACM Conference on Lisp and Functional Programming, pages 173—-184. Orlando, Florida,
USA, June 1994. The proceedings also appears as Lisp Pointers, Volume VII, Number 3, July-
September 1994. ACM Press.

[3] Tyng—Ruey Chuang and Benjamin Goldberg. Real-time deques, multihead Turing machines,
and purely functional programming. In Conference on Functional Programming Languages and
Computer Architecture, pages 289-298. University of Copenhagen, Denmark, June 1993. ACM
Press. [This paper was reviewed in ACM Computing Reviews, 9408-0543, August 1994, page 425].

[4] Kai Lai Chung. FElementary Probability Theory with Stochastic Processes. Undergraduate Texts
in Mathematics. Springer—Verlag, 1974.

[5] Don Coppersmith, Peter Doyle, Prabhakar Raghavan, and Marc Snir. Random walks on weighted
graphs and applications to on-line algorithms. Journal of the Association for Computing Ma-
chinery, 40(3):421-453, July 1993.

[6] Peter G. Doyle and J. Laurie Snell. Random Walks and Flectric Networks, volume 22 of The
Carus Mathematical Monographs. The Mathematical Association of America, 1984.

[7] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator, and Neal E.
Young. Competitive paging algorithms. Journal of Algorithms, 12:685-699, December 1991.

[8] Richard M. Karp. An introduction to randomized algorithms. Discrete Applied Mathematics,
34(1-3):165-201, November 1991.

[9] Chris Okasaki. Purely functional random—access lists. In SIGPLAN-SIGARCH-WG2.8 Confer-
ence on Functional Programming Languages and Computer Architecture, pages 86-95. La Jolla,

California, USA, ACM Press, June 1995.

[10] P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms. IBM Journal of
Research and Development, 38(6):683-707, November 1994.

[11] Berry Schoenmakers. Data Structures and Amortized Complexity in a Functional Setting. PhD
thesis, Department of Mathematics and Computing Science, Findhoven University of Technology,
September 1992.

12

[12] E. Schonberg, J. T. Schwartz, and M. Sharir. An automatic technique for selection of data
representations in SETL programs. ACM Transactions on Programming Languages and Systems,
3(2):126-143, 1981.

[13] Zhong Shao and Andrew W. Appel. Space—efficient closure representations. In Proceedings of
1994 ACM Conference on Lisp and Functional Programming, pages 150-161. Orlando, Florida,

USA, June 1994. The proceedings also appears as Lisp Pointers, Volume VII, Number 3, July-
September 1994. ACM Press.

[14] Zhong Shao, John H. Reppy, and Andrew Appel. Unrolling lists. In Proceedings of 1994 ACM
Conference on Lisp and Functional Programming, pages 185-195. Orlando, Florida, USA, June

1994. The proceedings also appears as Lisp Pointers, Volume VII, Number 3, July—September
1994. ACM Press.

A Code

13

signature BAG =

sig
type Bag
val void: unit -> Bag
val insert: int * Bag -> Bag
val member: int * Bag -> bool
val size: Bag -> int
val bag2list: Bag -> int list
val list2bag: int list -> Bag
end
functor BagByList () : BAG =
struct
type Bag = int * int list
fun void () = (o, [1)
fun insert (k, (n, 1)) = (n+1, k::1)
fun member (k, (_, 1)) = exists (fn h => h = k) 1
fun size (n, _) =n
fun bag2list (n, 1) =1
fun list2bag 1 = (length 1, 1)
end
functor BagByMap (Map: INTMAP) : BAG =
struct
local
fun conses (k, 0, 1) =1
| conses (k, n, 1) = conses (k, n-1, k::1)
in
type Bag = int Map.intmap
val void = Map.empty
fun insert (k, b) = case Map.peek (b, k) of
NONE => Map.insert (b, k, 1)
| SOME n => Map.insert (b, k, n+1)
fun member (k, b) = case Map.peek (b, k) of

NONE

=> false

val size
fun bag2list b
fun list2bag 1

| SOME _ => true

Map.numItems
Map.fold conses b []
fold insert 1 (void ())

end
end

Figure 1: The signature for Bag, and its two representations.

NoTE. The integer map library (the signature is INTMAP, and the structure IntMap) from SML/NJ 0.93
is used to implement the BagByMap representation of Bag. The integer maps are implemented by trees of
bounded balance; please consult SML/NJ 0.93 documentation for details. Notice that, if structure U
= BagByList() and structure V = BagByMap(IntMap), then V.1list2bag o U.bag2list converts
a bag from its list representation to the map representation, and U.list2bag o V.bag2list converts
a bag from its map representation to the list representation.

14

signature BAG_COST_MATRIX =

sig
val cVoid: real
val cInsert: real vector
val cMember: real vector
val cBag2list: real vector
val cList2bag: real vector
end

signature TWO_BAGS =
sig
structure U: sig structure Bag: BAG; structure CostMatrix: BAG_COST_MATRIX end
structure V: sig structure Bag: BAG; structure CostMatrix: BAG_COST_MATRIX end
end

functor Mix (TwoBags: TWO_BAGS): BAG =
struct
open TwoBags

datatype Union = U of U.Bag.Bag
| V of V.Bag.Bag
type Bag = Union ref

fun size (ref (U bag)) = U.Bag.size bag
| size (ref (V bag)) = V.Bag.size bag
fun state (ref (U _)) =0
| state (ref (V _)) =1
fun conv (b as ref (U bag)) = (b := V (V.Bag.list2bag (U.Bag.bag2list bag)); b)
| conv (b as ref (V bag)) = (b := U (U.Bag.list2bag (V.Bag.bag2list bag)); b)
fun plainInsert (k, b as ref (U bag)) = ref (U (U.Bag.insert (k, bag)))
| plainInsert (k, b as ref (V bag)) = ref (V (V.Bag.insert (k, bag)))

val ... P insert ... =
constructed from C insert, which is built from
U.CostMatrix and V.CostMatrix ...

fun insert (k, b) =
case ... the new state, which is decided by coin tossing and
based on P~"Insert_(state b)[size b] ... of
0 => plainInsert (k, b)
| 1 => plainInsert (k, conv b)

Figure 2: A skeleton of the SML code that mixes two representations of the bag aggregate into one.

NoTE. Actually, we do not use coin tossing if the aggregate size is small (< 2%). The operation
will always uses the current representation. Also, a void operation returns with equal probability an
empty bag of either one of the two representations.

15

