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Abstract

The design and implementationof e�cient aggregate data structures has been an important issue

in functional programming� It is not clear how to select a good representation for an aggregate when

access patterns to the aggregate are highly variant� or even unpredictable� Previous approaches rely

on compile�time analyses or programmer annotations� These methods can be unreliable because

they try to predict program behaviors before they are executed�

We propose a probabilistic approach� which is based on Markov processes� for automatic selec�

tion of data representations� The selection is modeled as a random process moving in a graph with

weighted edges� The proposed approach employs coin tossing at run�time to aid choosing suitable

data representations� The transition probability function used by the coin tossing is constructed in

a simple and common way from a measured cost function� We show that� under this setting� ran�

dom selection of data representations can be quite e�ective� The probabilistic approach is applied

to an simple example� and the results are compared to some deterministic selection algorithms�

� Introduction

How to design and implement e�cient aggregate data structures has been a major concern for both
the designers and users of functional programming languages� See� for example� Chuang and Goldberg
��� ��� Okasaki �	�� Schoenmakers �

� and Shao� Reppy� and Appel �
�� 
��� The problem becomes
more complicated if access patterns to aggregates are highly variant� or even unpredictable� A common
situation occurs where there are several representations of an aggregate� with one representation being
more e�cient than the others for certain operations but worst for the remaining operations� and vice
versa� Which representations should one chooses� given that there is no a priori knowledge of what
operations� and how often� the aggregates will be mostly used for�

This is known as the data representation selection problem for very highlevel programming lan�
guages� See� for example� Schonberg� Schwartz� and Sharir �
��� The goal is to determine a suitable
representation for aggregates of builtin abstract data types �such as sets and arrays� such that the
aggregates will exhibit good performance� The problem occurs as well for userde�ned abstract data
types� where there may exist multiple representations of the data type but each with di�erent per�
formance characteristics� Naturally� aggregates of the data type will require di�erent representations
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in di�erent program contexts in order to achieve good performance� Previous approaches to the data
representation selection problem have relied heavily on compiletime analyses or programmer anno�
tations to help selecting a good implementation of the data structure� These approaches can be very
unreliable since they try to predict a program�s behavior before it is executed�

Another approach is to design a representation for the abstract data type such that� though not the
best possible in every situation� its performance is not too bad for all situations� This representation
is used for all aggregates of the abstract data type� and designers and users of the data type now spare
themselves of the problem of selecting the right representation� One drawback of this approach is that
users of the abstract data type may pay for cost they do not ask for� For example� in some context
the users may not use at all certain functionality of the data type� Nevertheless the performance of
all aggregates of that type is degraded because they all have to accommodate this extra functionality
into their representation�

This paper takes a di�erent view of the data representation selection problem� and presents a
probabilistic approach to solve the problem� We view the data representation selection problem as an
online problem in the following way� There are several representations of an aggregate� and it costs
each representation certain amount of time to process each kind of operations� These representations
can be converted to on another at a cost� There is a sequence of requests consisting of various kinds
of operations to be served by the aggregate� The goal is to make choices� as the requests arrive�
which representation to serve the current request� and if necessary� to perform a conversion between
representations� such that the total cost of serving the entire request sequence is small�

Note that we have shift the decision of making the selections from compiletime to runtime� But
a runtime choice may still be inappropriate if it only relies on history of the request sequence to make
the current selection� There are two reasons for this� First� history is no indication of the future � the
runtime choice may just be as inaccurate as the compiletime choice� Secondly� keeping the history
around increases the space requirement of program execution � the space�time overhead incurred by
runtime choices may be too high to make them feasible� Probabilistic techniques have been used in
online algorithms to avoid the above two problems� See� for example� Fiat� Karp� Luby� McGeoch�
Sleator� and Young ���� Karp ���� and Raghavan and Snir �
��� Random choices� based on carefully
devised principles� can often be shown to make few bad decisions in the long term� Furthermore�
random choices can often be �memoryless�� in the sense that they only depend on the current state
of execution� but not on previous states�

Though the idea of random choices quite simple and appealing� to the best of our knowledge�
we �nd few applications of probabilistic approaches to the data representation selection problem� In
Chuang ���� a randomization technique is used to implement purely functional arrays for e�cient
multithreaded read�update operations� and is shown to be e�ective� In this paper we further develop
a general framework based on probabilistic choices to solve the data representation selection problem�
In Section � of this paper� we will describe a somewhat simple example to be used in this paper for both
illustration and experimentation� Several other examples taken from the literature is described in this
section as well� Section � will present the general framework and some preliminary analyses� An actual
implementation and some experimental results are presented in Section �� Related implementation
issues are discussed in Section �� Section � discusses related and future work�

� Examples

We use a somewhat simple example thorough this paper as a demonstration� but the technique applies
to others� Suppose that we want to implement an abstract data type named bag that supports just
three kinds of operations� creation of an empty bag� insertion of an integer to a bag� and query to
a bag for a given integer to see if it is there� Of course� we may also support deletion of an integer
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from a bag� and so on� But right now let us assume there are just three kinds of operations� creation�
insertion� and membership query�

A bag can be implemented as a list� The list representation provides constant time insertion by
appending the inserted integer at the front of the list� A membership query� however� will takes time
linear to the the length of list for the worst case� A bag can be implemented by a balanced search
tree as well� Insertion and membership query then each takes logarithmic time� with respect to the
number of nodes in the tree� Clearly if the bag will be used mostly for insert operations� then a list
representation is preferable� If we have a large bag and the number of membership queries is huge�
then we would prefer a balanced search tree representation� But what are the precise criteria for
preferring one representation over the other�

The problem can be rephrased as the following� We want to serve a sequence of bag operations
that starts with a create operation and followed by some number of insert and query operations� We
have no a prior knowledge of what the sequence looks like� including the number of operations in the
sequence� The problem is to decide which bag representation one should use� and� if more than one
representation is preferred� when should one convert one representation to the other�

Other examples of this kind of characteristics abound in functional programming� For example�
Chuang ��� discusses the performance tradeo� between two representations of arrays �one good for
update operations and one good for read operations� and how to make probabilistic choices online�
Okasaki �	� presents an implementation of �randomaccess lists� that is good for both list and array
operations� Performance of the list operations of the randomaccess lists� however� are not as good as
those of the straightforward list representation� so is the case for the array operations� Users of mostly
list operations �or mostly array operations� for the matter� su�er from such an implementation as a
result� We can use the probabilistic technique developed in this paper to mix two representations of
randomaccess lists �but each with di�erent performance characteristics� such as pure lists and pure
arrays� to get a more adaptive representation� Note that the bag example demonstrated in this paper
can be easily made into randomaccess lists as well�

� Models and Analyses

We take a probabilistic view of the problem of selecting a suitable aggregate representation to serve a
sequence of operations� The way the aggregate is implemented may change over time to better serve
the incoming operations� In particular� we model the change of representations over time as a Markov
process�

A Markov process can be described informally as a set of states and a chance process that moves
around through these states� In this paper� the states of the Markov process are just the di�erent ways
an aggregate can be implemented� and our goal is to determine good transition probabilities between
the states such that the total cost of serving a sequence of operations over time is small� We use
Markov processes as models because of their simplicity� and because of the rich techniques developed
for them in the literature� See� for example� Chung ��� and Doyle and Snell ���� Markov processes are
also �memoryless�� in the sense that the probability of moving from one state to another one depends
only on the current state�

The following �xes notation convention that will be used later in this paper�

s is a set of k distinct states s�� s�� � � � � sk� Each state represents a particular way the aggregate is
implemented� It is equally well for an aggregate to be in any one state because each representation
will provide the same functionality �although at a di�erent cost� see below��

P is a kbyk transition probability matrix for s such that� being in state si� it will move to state sj
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with probability Pi�j � Naturally�


 � Pi�j � � for all i� j� and
kX

j��

Pi�j � 
 for all i�

C is a kbyk cost matrix with
� � Ci�j � � for all i� j�

Ci�j is the cost of making a move from si to sj � C is not necessarily symmetric�

e is a vector of length k� and ei is the expected cost of making a move out of state si� That is�
e � �e�� e�� � � � � ek�

T � and

ei �
kX

j��

Pi�jCi�j for all i�

E is a kbyk matrix� representing the expected costs of the random walks introduced by C and
P � Ei�j is the expected cost of �rst reaching sj starting from si� We can formulate E by the
following recurrent equation�

Ei�j � Pi�jCi�j  
X
k ��j

Pi�k�Ci�k  Ek�j� for all i� j�

�� �� �� � � � symbolize the kinds of operations supported by the aggregate� The set � consists of all
kinds of operations�

n is the current size of the aggregate�

For example� each bag aggregate has two representations� We let state s� be the list representation
and s� the balanced search tree representation� The two representations are convertible to each other
and will support all bag operations� P��� will be the probability that� while in the list representation�
the next bag operation will be performed on the same representation� and P��� the probability that
the next bag operation will be performed on the balanced search tree representation �which itself is
converted from the current list representation�� Likewise for P��� and P����

Furthermore� C��� is the cost of performing a bag operation while the bag is implemented as a list�
C��� is the cost of converting the list representation to the balanced search tree representation� plus the
cost of performing the bag operation on the new representation� Likewise� for C��� and C���� Hence�
value e� is the expected cost of performing a bag operation while the bag is in its list representation�
and E��� is the expected cost of transforming the list representation of a bag into the balanced search
tree representation while serving requests from the incoming operation sequence�

A bag in fact supports three kinds of operation� creation� insertion� and membership query� Let �
represent the insert operation� � represent the membership query� and � represent the create operation�
Then � � f�� �� �g� and a request sequence starts with a � operation and followed by interwoven �
or � operations�

For now it su�ces to consider n� the aggregate size� �xed� and the request sequence consisting of
only one kind of operation� For example� we may concern ourselves of serving a sequence of membership
queries to a bag of exactly n integers� We will later show how to extend the Markov framework to
aggregates supporting multiple kinds of operations and of variant sizes�
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Recall that a membership query takes logarithmic time for a balanced search tree� and it takes linear
time for a list in the worst cases� If the bag is already in its balanced search tree representation� then
we may want to continue to use the representation to support further membership queries� Troubles
occurs when the bag is in its list representation� Should we perform membership query on the list
presentation �which is costly for each query but is tolerable if there are few of them�� or should we
convert immediately the list representation to the balanced search tree representation and then serve
all the queries on the new representation �which initially will cost O�n logn� time for the conversion�
but pays o� if there are many queries�� Note that this is a di�cult decision to make at compiletime
because often we cannot predict the number of membership queries the bag has to serve�

The idea is that� while in the list representation� the bag should gradually change to the balanced
search tree representation over time to better serve membership queries� This gradual change of
implementation is modeled as a Markov process where representations change according to P � the
transition probability matrix� It will be desirable if the Markov process bears the following two
properties�

�
� The expected cost of serving a request �while making the transition to the new representation� is
comparable to the original cost of serving the request as if no conversion occurs�

��� The expected cost of eventually converting to the new representation is comparable to the cost of
an immediate conversion�

Property �
� make sure that� in the short term �i�e�� there are few membership queries in the se�
quence�� the expected cost of serving a request is comparable to the case when the conversion to new
representation is simply not worthy� Property ��� make sure that� in the long term �i�e�� there are
many membership queries�� the expected cost of converting to new representation is still comparable
to the case where an immediate conversion is most desirable�

Formally� we can put it in the following way� Let si be the current state� and let sj be the
preferred state� A state sj is preferred if Cj�j is the smallest among all Ch�h� where sh � fs�� s�� � � � � skg�
That is� the cost of serving a request is smallest at state sh� Then we want to �
� compare ei �the
expected cost of serving a request at state si� to Ci�i �the original cost of serving the request as if no
conversion occurs�� and ��� compare Ei�j �the expected cost of eventually converting to the preferred
representation� to Ci�j �the cost of an immediate conversion�� In the above example of bag aggregates�
we may call balanced search tree the preferred representation because it takes less time to serve a
membership query� and we want to convert a bag from the list representation to the balanced search
tree representation if there are many membership queries�

In general� there may be more than one preferred states� �For example� there may be several
representations of a bag aggregate which serve membership queries equally well�� Assuming for the
moment that the preferred states are absorbing�� That is� Pj�j � 
 if sj is preferred� Let s� the set of
all states� be partitioned into two subsets B and D� where B is the set of the u absorbing states� and
D be the set of the remaining v nonabsorbing states� Let s be reordered such that the absorbing
states come before nonabsorbing states�

We then write P as the following

P �

�
I �
R Q

�

where I is a ubyu identity matrix� and � a ubyv matrix with all �� R is a vbyu matrix
representing the transition probabilities from nonabsorbing states to absorbing states� and Q is a
vbyv matrix representing the transition probabilities between nonabsorbing states�

�This requirement is not really necessary� but make easier the proof that follows
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Let eD be a vector of length v� describing the expected costs of making a move out of the v non
absorbing states� and let ED be a vector of length v� describing the expected costs of �rst reaching an
absorbing state from nonabsorbing states�

Lemma ��� ED � �I � Q���eD �

Proof� Recall that
Ei�j � Pi�jCi�j  

X
k ��j

Pi�k�Ci�k  Ek�j�

for all i� j� Because we are interested in the expected cost of �rst reaching any absorbing state from
a nonabsorbing state� we can simply reformulate the above as

Ei �
X
j�B

Pi�jCi�j  
X
j�D

Pi�j�Ci�j  Ej�

�
X

j�B�D

Pi�jCi�j  
X

j�B�D

Pi�jEj

� ei  �PE�i

for all i � B �D� where we let ei � Ei � � for i � B�
In matrix form� it follows that E � e PE and �I � P �E � e� Recall that

P �

�
I �
R Q

�

and we have �
� �
R I �Q

��
�
ED

�
�

�
�
eD

�

It follows that �I � Q�ED � eD and ED � �I �Q���eD� �

The matrix N � �I � Q��� is called the fundamental matrix for the absorbing Markov process
P � The entries Ni�j of this matrix have the following probabilistic interpretation� Ni�j is the expected
number of times that the process will be in state sj before absorption when it started in si �where
both si and sj are no absorbing state�� See Doyle and Snell ����

Note that Lemma ���
� show how to calculate Ei�j for any two states si �� sj � We simply view
sj absorbing� and let B � fsjg� and D � B� For Ei�i� the expected cost of returning to itself when
starting from state si� we can use the following equation�

Ei�i � Pi�iCi�i  
X
j ��i

Pi�j�Ci�j  Ej�i� � ei  
X
j ��i

Pi�jEj�i

where ei and Ej�i� j �� i� are already known�
The problem remains� given C� how to construct a P such that ei and Ei�j are each comparable

to Ci�i and Ci�j � We use the following heuristics to construct a P from C� which we call the �local�
construction�

Pi�j �

�
Ci�jPk
j��

�

Ci�j

We then bound ei and Ei�j in the following lemma�

�



Lemma ��� Let sj be the preferred state� B � fsjg� and D � B� Then� for the �local� construction�

ei � k �min
j
Ci�j

Ei �
!e


� !q

for each i � D� where k is the number of states� and

!e � max
i�D

ei

qi �
X
j�D

Pi�j

!q � max
i�D

qi

�

Proof� First of all� for a �local� construction� we have� for each i � D�

ei �
X
j

Pi�jCi�j �
kP
j

�

Ci�j

� k

Q
j Ci�jP

k

Q
j
Ci�j

Ci�k

� k

Q
j Ci�jQ
j
Ci�j

minj Ci�j

� k �min
j
Ci�j

Furthermore� qi is the probability that� when in state si� the next move will not reach any preferred
state� and ei the expected cost of that move� It follows that !q is the upper bound of the probability
that� while not in the preferred states� the next move still do not reach them� and !e an upper bound
of the expected cost of such a move� We then have �

���q as an upper bound of the total number of

times it stays at the nonpreferred states when starting from them� and �e
���q

an upper bound for Ei�
the expected cost of all the moves before reaching any preferred state� starting from a nonpreferred
state� �

The bound for ei is good� but the one for Ei is quite loose� We are currently working on a better
bound� For the bag example� however� there are only two states s� and s�� for the list and balanced
search tree representations� It follows from the above lemma that

P �

�
P��� P���
P��� P���

�
�

�
� C���

C����C���

C���

C����C���
C���

C����C���

C���

C����C���

�
A

e� � P���C���  P���C��� �
�C���C���

C���  C���

� �minfC���� C���g � �C���

and

E��� �




� P���
e� � �

C��� C���

C���

��
�C���C���

C��� C���

� � �C���

Similarly� e� � �C��� and E��� � �C����

��� Aggregates with Multiple Kinds of Operations

In the bag example� after creation� each bag in fact supports two kinds of operations� insertion and
membership query� Insertion is better performed in list� and membership query is more e�cient in
balanced search tree� In general� for each kind of operations 	 � �� it will has its own cost matrix
C�� Furthermore� when operating 	� the representation of the aggregate should be chosen based on a
Markov process derived from C��
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Let y
�
i be the cost of operating 	 in state si� and Xi�j the the cost of converting an aggregate from

state si to state sj � Then� by de�nition�

C
�
i�j �

�
y
�
i if i � j

Xi�j  y
�
j if i �� j

From each C�� we then construct a Markov process P� to model the change of representations when
operating 	�

��� Variant�Sized Aggregates

Some operations will change the size of an aggregate� Often the performance of the aggregate is
a�ected as its size grows or shrinks� For example� an insertion makes the size of a bag grow by
one� If the bag is implemented by a balanced search tree� then each subsequent insertion or query to
the bag costs more time than it does to the original bag� Therefore� the cost matrix C not only is
parameterized by w� the kinds of operations supported by the aggregate� it is also a function of n� the
size of the aggregate� Let�s write C�n� for the cost matrix at size n� and P �n� for the corresponding
transition probability�

Notice that� in general� we want to precompute P such that� at the moment of serving a request�
we can make a quick decision based on P to choose a suitable implementation� Since C is a function
of n it will be impractical to precompute P for all size n� If we delay the construction of P until
runtime� where n is known� then the overhead for making a probabilistic choice at runtime may be
too large to render the whole scheme impractical�

As a compromise� we use the following way to estimate P � Precompute only P ��m�� m � N � When
processing a request to an aggregate of size n with �m�� 
 n � �m� make a probabilistic choice based
on P ��m�� This estimation of P �n� works out well in practice� but is biased against implementations
whose sizes grow faster than the others�

��� The Algorithm

Given�

A speci�cation of an abstract data type that supports operations of kind 	 � �� and k representations
s�� s�� � � �sk of the abstract data type�

Preprocessing�

Measure C��n� where 	 � � and n � �m� m � N �
Build P��n� from C��n� using the �local� heuristics�

On�Line Service�

An aggregate a is requested to serve a 	 operation� Let si be the current state of the aggregate� and
n its size� Suppose �m�� 
 n � �m� m � N � Then

	 Make a probabilistic choice based on P�
i ��

m�� let sj be the new state�

� If si � sj � then return 	i�a��

� Otherwise �rst mutate a from state si to state sj � then return 	j�a��
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� Experimentation

We have conducted an experiment� under Standard ML of New Jersey ��	�� to measure the e�ectiveness
of the proposed approach� We implement an integer bag by two di�erent representations� a list with
all the integers in the bag� and a mapping that maps an integer to the number of times it has appeared
in the bag� The map is taken from the SML�NJ ��	� library� and is very e�ciently implemented by
a balanced search tree� The signature of the bag aggregate� as well as its implementations in the the
list and map representations� are described in SML in Figure 
 in Appendix A�

Each representation supports three kinds of operation� insert operation �insert�� membership
query �member�� and creation of a empty bag �void�� In addition� each representation also supports
the following operations� size that returns the size of a bag� and list�bag and bag�list that convert
between an integer bag and an integer list� �Do not confuse this list to the list representation of a bag�
See Figure 
 for details�� The function size is used to determine which cost matrix C �hence� which
transition matrix P � to use� It is a constant time function� The function list�bag and bag�list

mediate between the list and map representations for conversion purposes�
The performance of the two representations is measured by a separate program by timing the

execution time of insertions and queries� each for aggregates of di�erent sizes� The data is shown in
Table 
� and is used to construct cost matrices C�n�� A functor is then written to accept the two
representations �as well as their performance data�� build the cost matrices� construct the transition
probability matrices� and produce a representation that �based on algorithms outlined in Section �����
when serving an insertion or a query� will make a probabilistic choice on whether or not to �rst perform
a conversion� The skeleton of the functor is shown in Figure � in Appendix A�

We run a set of simple benchmarks to evaluate the performance of the probabilistic scheme� The
results are shown in Table �� The probabilistic scheme is never the fastest� However� its performance
is between those of map and list representations� except in a benchmark � ����������� � where it
is worse than both� There is a simple explanation� in this case both the map and list representa�
tions happen to run the benchmark using about the same time� while the probabilistic scheme pays
additional overhead �such as generating random numbers and performing conversions� for making
runtime choices�

We also observe that the map library provided by SML�NJ ��	� is very e�cient� it is fastest
except in only two occasions where it loses to the list representation� Notice that in the two occasions�
the probabilistic scheme also beats the map representation� The greedy algorithm� which always
converts to the preferred state when serving a request� often performs badly because the conversion
cost cannot be amortized by the subsequent �short� sequence of operations of the same kind� We may
make the following likely implication� In order for compiletime analyses or programmer annotations
to be e�ective in making dynamic selection of data representations� the conversion costs between
representations must be taken into account�

� Discussion

We face several problems when performing the experimentation� First of all� it is really a tedious job
to make an accurate measurement of the cost matrices� �That is also one of the reason why we have
not experimented with aggregate that supports more than two kinds of operations� and which also has
more than two di�erent representations�� For example� the least measurable unit of time in SML�NJ
��	� is ���
 second� and we have to repeatedly run the measurement code and divide the accumulated
time� We also have to discount the time spent on spurious activities in the measure code� such as the
generation of sample operation sequences and the skeleton loops to carry out the operations�

We also �nd the "oating point support in SML lacking� For example� it will be really nice to be
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�b� For the map representation�

Table 
� Performance measurement for both list and map representations of bag aggregates�

Note� The �gure is measured by using the System�Timer structure of SML�NJ ��	�� on a �� MHz
SPARC workstation with �� MB memory� Only user time is reported� garbage collection and system
times are not measured� �SML�NJ ��	� garbage collects at inde�nite time�� Considerable care has
been taken to make a �more or less� accurate measurement� However� "uctuations remain�
The bag elements are randomly drawn from the integer set f�� �� � � � � ���� 
g� In the above tables the
time in entry �m is the average of the times for aggregate of sizes from �m��  
 to �m� if m is small�
If m is large� the times in the entry is the average of times for aggregate of sizes from �m � c to �m

for some constant c� From the two tables� we can construct the cost matrices C�s� For example�
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Table �� Performance of various representations of bag aggregates for some simple benchmarks�

Note� For request sequences� we use the notation that� for example� �������j������������ is a sequence of

���� requests which� at any moment� an � operation occurs with probability ��			 and a � operation
occurs with probability ����
� The probability an operation occurs may also depend on its ordinal
number t in the sequence� like� �� t�ln t

t

j� ln t
t

������� If there is no subscript� then the operation always
occurs�
We compare the performance of the following four representations� the one that always uses the map
representation� the one that always uses the list representation� the one that always converts to the
preferred representation when performing an operation� and the one that uses the �local� transition
probability� Only user time is reported� garbage collection time and system time are not measured�

able to express numbers like Inf and NaN� which are in the ANSI�IEEE Standard ����
	��� That
will make easier the task of stating certain conversions between representations are impossible �i�e��
Ci�j ����

We use the ref data type in SML to make mutable representation of an aggregate� This is not a
problem per se� but is troublesome if the bag data type wants to be polymorphic to its element type�
The SML typing rules will then insist a weak type variable for the bag element� Though in general
this is the right thing to do� we do not see it is necessary in this context� All usages of the assignment
operator �� are in the Mix functor in Figure �� and it can be shown that the types of the new value
and the old value are always the same� Nothing will go wrong there�

Last but not least� notice that the probabilistic scheme is also good for multithreaded aggregate
accesses� The analysis in Section � depends only on the current state of the aggregate� not on any
previous states� Also notice that we mutate the aggregate when making a conversion� hence repeated
accesses to the aggregate will not need the same conversion again�

� Related and future works

The problem of automatic selection of data representations� when put in a probabilistic framework� is
closely related to the problem of random walks in a weighted graph� See for example� the important
work of Borodin� Linial� and Saks �
�� Coppersmith� Doyle� Raghavan� and Snir ���� and Doyle and
Snell ���� They often assume the cost matrices are symmetric� and use more complicated techniques
to derive tight bounds of the probabilistic schemes involved� The competitive paging problem and
its probabilistic solution of Fiat� Karp� Luby� McGeoch� Sleator� and Young ��� is related to the data







representation selection problem as well� though it also assumes symmetric cost matrices�
More analyses are needed for the �local� heuristics for building the transition probability matrix�

In general it is not clear how well it performs when compared to an o�line optimal algorithm� We also
need to exploit other construction of the transition probability matrix� perhaps by using techniques
of multivariable constraint optimization�

Right now we also assume that� for aggregates of the same size� all operations of a given kind will
cost the same amount of time� In general this is not true� and we need to look into this issue�
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signature BAG �

sig

type Bag

val void� unit �� Bag

val insert� int � Bag �� Bag

val member� int � Bag �� bool

val size� Bag �� int

val bag�list� Bag �� int list

val list�bag� int list �� Bag

end

functor BagByList �	 � BAG �

struct

type Bag � int � int list

fun void �	 � �
� �	

fun insert �k� �n� l		 � �n��� k��l	

fun member �k� ��� l		 � exists �fn h �� h � k	 l

fun size �n� �	 � n

fun bag�list �n� l	 � l

fun list�bag l � �length l� l	

end

functor BagByMap �Map� INTMAP	 � BAG �

struct

local

fun conses �k� 
� l	 � l

� conses �k� n� l	 � conses �k� n��� k��l	

in

type Bag � int Map�intmap

val void � Map�empty

fun insert �k� b	 � case Map�peek �b� k	 of

NONE �� Map�insert �b� k� �	

� SOME n �� Map�insert �b� k� n��	

fun member �k� b	 � case Map�peek �b� k	 of

NONE �� false

� SOME � �� true

val size � Map�numItems

fun bag�list b � Map�fold conses b �

fun list�bag l � fold insert l �void �		

end

end

Figure 
� The signature for Bag� and its two representations�

Note� The integer map library �the signature is INTMAP� and the structure IntMap� from SML�NJ ��	�
is used to implement the BagByMap representation of Bag� The integer maps are implemented by trees of
bounded balance� please consult SML�NJ ��	� documentation for details� Notice that� if structure U

� BagByList�� and structure V � BagByMap�IntMap�� then V�list�bag o U�bag�list converts
a bag from its list representation to the map representation� and U�list�bag o V�bag�list converts
a bag from its map representation to the list representation�
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signature BAG�COST�MATRIX �

sig

val cVoid� real

val cInsert� real vector

val cMember� real vector

val cBag�list� real vector

val cList�bag� real vector

end

signature TWO�BAGS �

sig

structure U� sig structure Bag� BAG� structure CostMatrix� BAG�COST�MATRIX end

structure V� sig structure Bag� BAG� structure CostMatrix� BAG�COST�MATRIX end

end

functor Mix �TwoBags� TWO�BAGS	� BAG �

struct

open TwoBags

datatype Union � U of U�Bag�Bag

� V of V�Bag�Bag

type Bag � Union ref

fun size �ref �U bag		 � U�Bag�size bag

� size �ref �V bag		 � V�Bag�size bag

fun state �ref �U �		 � 


� state �ref �V �		 � �

fun conv �b as ref �U bag		 � �b �� V �V�Bag�list�bag �U�Bag�bag�list bag		� b	

� conv �b as ref �V bag		 � �b �� U �U�Bag�list�bag �V�Bag�bag�list bag		� b	

fun plainInsert �k� b as ref �U bag		 � ref �U �U�Bag�insert �k� bag			

� plainInsert �k� b as ref �V bag		 � ref �V �V�Bag�insert �k� bag			

val ��� P�insert ��� �

��� constructed from C�insert� which is built from

U�CostMatrix and V�CostMatrix ���

fun insert �k� b	 �

case ��� the new state� which is decided by coin tossing and

based on P�Insert��state b	�size b ��� of


 �� plainInsert �k� b	

� � �� plainInsert �k� conv b	

�����

end

Figure �� A skeleton of the SML code that mixes two representations of the bag aggregate into one�

Note� Actually� we do not use coin tossing if the aggregate size is small �� ���� The operation
will always uses the current representation� Also� a void operation returns with equal probability an
empty bag of either one of the two representations�
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