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Abstract

In this paper, we present a new algorithm for computing the 2-D discrete cosine transform
(DCT). First, we arrange the input data matrix in a certain order. Second, we formulate
the output data matrix to a block-structure matrix multiplication, and show that the block-
structure matrix has the same properties as the 1-D DCT kernel matrix. Therefore, the 2-D
DCT problem is reduced to the 1-D BCT problem. We thus can provide a procedure for com-
puting the 2-D DCT which is similar to that of the 1-D DCT.

If we are only interested in the number of scalar multiplications used in an algorithm, then
the proposed algorithm requires 3 L N2log N scalar multiplications for computing an (N x N)-
point 2-D DCT. If compared to the conventional row-column approach which requires N2 log N
scalar multiplications, or to some recursive algorithms which require -N Zlog N scalar mul-
tiplications, or to some algorithms based on polynomial transform techmques which require
;N 2log N scalar multiplicatiens, our algorithm is one of the best. The methodology, which
deals with general (N x N)-point 2-D DCT’s, will be illustrated by designing three lower order
examples.

Index Terms: 2-dimensional discrete cosine transform, recursive algorithm, signal-flow graph.
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1 Introduction

This paper is concerned with designing a fast algorithm for computing the 2-D discrete cosine
transform (DCT). Because the DCT performs much like the theoretically optimal Karhunen-Loeve
transform for the first-order Markov stationary random data, the DCT has found wide applications
in speech and image pr.ocessing, as well as telecommunication signal processing for the purpose of
data compression, feature extraction, image reconstruction, and filtering. As these applications
are key techniques used in multi-media research, DCT algorithms thus play an important role in

many multi-media applications. A complete survey of DCT algorithms can be seen elsewhere [11}.

For the fast computation of the 2-D DCT, the conventional approach is the row-column method,
which requires evaluating 2N sets of N-point 1-D DCT’s for an (N x N)-point 2-D DCT. Kamangar
and Rao [8], who arranged the 2-D input data and output data into 1-D arrays in lexicographical
order, wrote tﬂé needed 2-D transform coefficients as the Kronecker product of the two 1-D DCT
coefficient matrices and yielded the sparse matrix factorization for that 2-D coefficient matrix.
Haque [6], Chan and Ho [1], and Lee and Huang [10] derived 2-D DCT recursive algorithms based
on Lee’s [9], Hou’s [7], and Lee and Huang’s {10] 1-D DCT algorithms, respectively.

Vetterli mapped the 2-D DCT into a 2-D DFT plus a number of rotations, and the 2-D DFT was
then computed by polynomial transform techniques [12]. His algorithm, while achieving substantial
computa.tio?.’a.l savings, had a rather involved structyre. Duhamel and Guillemot provided a direct
2-D DCT algorithm based on polynomial transform techniques [5]. They showed that the resulting
signal-flow graphs were simple and repetitive; however, they also admitted that its derivation
was complicated and it was fairly difficult to obtain a closed-form expression for the arithmetic

complexity of such an algorithm.

Cho and Lee [2] [3] claimed a fast 2-D DCT algorithm, in which an (N x N)-point 2-D DCT
could be obtained by computing N sets of N-point 1-D DCT’s as well as some additions. That
is, the number of multiplications required for the proposed algorithm is the same as that required
for computing N sets of N-point 1-D DCT’. So the complexity of their algorithm is greatly

reduced. However, according to their comments [4], the signal-flow graph for the post-addition



stage seems very complicated and the order of the output index is seemingly irregular, because the
post-addition stage was not based on the mathematical expressions. Consequently, denva,tlon of

the mgnal flow graph becomes complicated as the transform size increases.

Recently, Cho, Yun, and Lee elaborated their previous work and presented systematic expres-
- sions for the post-addition stage [4]. The structure of the signa.l—ﬂow graph shows a regularity
similar to that of Hou’s 1-D DCT algorithm [7]. However, their algorithm still has a minor compl-
cation. First, before performing 1-D DCT’s, they need to calculate a pre-addition stage, in which
the plus operations and the minus operations cross each other, and therefore, the pre-addition
stage is seemingly irregular, Second, they divide the post-addition stage into two parts and solve
them using two methods independently. They also did not provide a closed-form ekpression for

the arithmetic complexity of their algorithm.

It is our goal in this paper to develop a fast and simple 2-D DCT algorithm. We will first
arrange the input data matrix in a certain order. Then, we formulate the output data matrix to
a block-structure matrix multiplication, and show that the block-structure matrix has the same
propertfes as the 1-D DCT kernel matrix. Hence, the 2-D DCT problem is reduced to the 1-D

'DCT problem. We thus can provide a procedure for comi)uting the 2-D DCT which is similar to
‘that of the 1-D DCT.

The rest of this paper is organized as.follows. In Section 2, we discover intrinsic properties
of the 2-D DCT. In Section 3, we provide a new and fast 2-D DCT algorithm. In Section 4, we
present three lower order examples. In Section 5, we show th;t the 2-D DST can be computed by
the 2-D DCT. Finally, some cc.)nclud.'mg remarks are given in Section 6.

2 Properties of the 2-D DCT

For a given input data matrix xyxn = [2;;], 0 <%, j < N ~ 1, the 2-D DCT output matrix
YNxN = [¥mn], 0 < my, » £ N — 1, which is defined by
N-1N=-]

b = 35 €(m) n) 30 3 25 cos( Dy o 2Dy (1)
=0 j=0




where ; tor k=0
- 75, oI K =
(k) {1, for1<k< N -1
and £ = m or n.

In this paper, we want to derive a recursive formula for the 2-D DCT. For convenience, we
assume throughout this paper that N has a value of 2 to a power and N > 2. We will remove
¢(m), €(n), and also the normalization factor % in Equation (1), since they can be done in 2

separate step. Therefore, from now on, we deal with a simplified version of Equation (1):
N-1N-

Ymn = Z Z Tij COS((2z+ 1)m T) co ((232';]‘1)71 ). (2)
i=0 j=0

Based on the trigonometric identity: cos A cos B = 1[cos(A + B) + cos(A — B)],

Yma = -NZINZ_ z; ; [cos ((2i+1)'m+(2j+1)n

(it Dm = (24 + 1)
2N

T) + cos SN =) (3)

i=0 j=0

We now study the relationship between (2: 4+ 1) and (2j + 1), for 0 < ¢, j £ N — 1. For every

pair of (i, ), there exists an unique p, such that exactly one of the following conditions holds: -
a: (2+1) = p(2i+1)-2Vg, (4)
b: (26+1) = 2Ng—p(2i+1), | (5)

where p is an odd integer, p € wW=1{1,8,5,+--, N — 1}, ¢, and g are integers depending on p
4
and i. Hende, j is a function of p and i depending on Equations (4) and (5).

We now further elaborate Equations (4) and (5). We differentiate the cases when ¢, or ¢ is

even and when ¢, or g is odd. In (4), if g, is even, we write the equation:

(2j(plao|.o3) + 1) = p(zi + 1) - 2Nq(p,a.,i,e); (6)

if ¢, is odd, we write the equation:

(Qj(p,a,i.o) + 1) = P(zi + 1) - 2NQ(p,a,i,o)' (7)

In (3), if g5 is even, we write the equation:
(2ipbic) + 1) = 2N (44,0 — B(2i+ 1); (8)
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if gy is odd, we write the equation:

(25p,i0) T 1) = 2Nq(p 4,0 — P(20 4+ 1). (9)

Note that, for every pair of (p,7), ¢ = g2 + 1. Therefore, if g, is even then ¢ is odd; if ¢, is odd
then g; is even. Hence, either both Equations (6) and (9) hold and both Equations (7) and (8) fail,
or both Equations (6) and (9) fail and both Equations (7) and (8) hold.

We then replace (27 + 1) in (3) with the equations in (6)-(9), Equation (3) becomes

Y = 3 E'pEW E::u [(mi,j(p.a.i,e) + mi!j(p,b,i,e)) + (_l)n(‘”f,.i(p,a,e,a) t TiGipsi0 )]
Cx [COS(!2i+1!!m+np!7r) + COS(!2i+12M;_n2!?l’)],

where i, ..., = %i; if j satisfies (6), otherwise @; ;. ., = 0. Similarly, zi;, ... = @i if j
satisfies (7), otherwise Tiritoaie) = 03 Tirippiey = Tid if j satisfies (8), otherwise Tijppie) = 0 and
iy = Tig il J satisfies (9), otherwise z; ;.. . = 0. Let

Api = (mf'.f(p,a.e,e) + mi.:i(p,a,.'.e))

'Bp:'.' = (mivj(p,a,i.o) + mirj(p,b,l'.o))'
Then, if n is even,

’ N-1 . .
2i+ (m+n 2+ 1} (m—n
tmn =2 3 O (At By eos( BEIN A B o G4 DIZ M)y ()
pEW =0 4

if »is odd,

Ymn = -p;{ g (Ap — Bya) feos( (2 1;(;+ 2 ™)+ cos(2F 1%(; —"o.

Define f(;-1)2,r to be the 1-D DCT output sequence of a giveﬁ input data sequence A, ;, where
0<4, r< N —1. Thatis, '
(2z + 1)
fo-vyp2r = Z Ap,i co SN )

i=0
Stmilarly, define fy_;_(y-1)/2,» to be the 1-D DCT output sequence of a given input data sequence

By, where 0 <7, 7 < N — 1. Let

m+np = 2Nk +r; (12)
m—np = 2Nks+rs, (13)




where —(N — 1) < 71, 72 < N, k; and kg are integers. Then,

N-1 . Iy '
S dpicos(EE 1)2(13~6+ ") = { E) ™ fo-1y/21m ﬁ " leV
=0 —
N-1 . -
S Apseos(EERZ10 7y { (1" fo-l 2t W
i=0 | | .=
NE—I Bp . COS( (21 + 1)(m+ np)r) — { (_1)k1fN—1—(p_1)/2,[,.1| if vt # N
. ’ 2N - 0 fri=N
=0 .
N-1 . '

(2i 4+ 1)(m — np) { (=10 fy—1(pty/2 if 7 N

By, cos( 1) = p=1)/2ral | #

,‘;0 2 0 if T = N.

Define f; v = 0 for 0 < ¢ < N — 1. Then, if n is even, from (10),

1
Ymn = 5 3 =1 frpmry s H(=1)2 Fpmny2,ral H=DF fv 1o ety (=12 fu—1-(p-1) /2.2l
© T peW _

(14)
if n is odd, from (11),

. i ’
Ymn = 3 3 (=1 fpmryr2ra (= 1) fipm1y sl = (= 1) F o1 oty /2l —(— 1) FN 1oty /2, /rall-
rEW
' (15)

Let Y, Tepresent the n-th column entries of yyxn. Then, Yy, = (Homs Yims ***y YN—-1,n)". Let £
represent the sequence of f;,, for 0 < 4, r < N — 1. Then, f; = (fio, fi1, --*» fin—1). Since the
size of the vectors y and f; is N, we can represent Equations (14) and (15) as a block-structure

matrix multiplication:

YNle = (EN)NﬁFNle;“ (16)
where
Yo %)
b.4 £
YN’xl = :l ’ Fyaa = . )
Yna v
and (EN) N2 =
{Go)w (Goa)y -+ (Gon-1)n (Go,n—1)w e (Gog)x (Goa)w
(G (Giz)v -+ (Guya)w —(Giy-1)v -+ —(Giz)¥ —(Gi1)~
(G2a)N (Gaa)n -+ (Gan-1)y  (Giya)y - (Gia)w (Gz1)n . (A7)
(GN—.1,1 Yo (GN—.I,:B)N . (GN-I:N-I)N —(Giv-;,N-ﬂN —(Giv._1,a)N —(Gy1a)n
5



In Equations (16) and (17), (Gn,p)n and (G}, )~ represent N x N matrices, (Ex )2 represents an

N? x N? matrix, Y2y, and Fyz,, represent vectors of size N°.

Note that, in Equa.tion-s (12) and (13), 71 and 7 will not be equal to N at the same time. If
m =0 or n =0, then |ki| = [ko| and || = |ra; if m # 0'and n # 0, then |ry] # |rg]. Therefore,
from Equations (14) and (15), we can observe that each of the rows of (Gnp)n or (G, ,)v has
one or two nonzero elements, and the location of the nonzero elements is dependent on np, where

0<n <N -—1and pe W. Specifically, in both (Grp)n and (G, ), for O.s m, <N -1,

the element in the position of (m,r)

. 1 . m-+n _ r m—1 — T R
2 ffefther cos _“—Rmz.ﬂ\; T = COS 2N1rr OT COS _Ezﬂ_:,r = cos mﬂ',r
-3 .}fEIthelil-COS —22N T =_; €OS g7 T Or COS -—-22N T = —COS 5y 7;
= 1 if cos mg—_ﬁz,‘ﬂ'.rr = €08 T BT = 08 gy ;
. mtnp, _ m-ng__ _ _ .
-1 if cos .WE'A' = cos TP T = — €O8 5 T;
~ 0 otherwise.

Therefore,
(Gnalv = (Grp)N-

For convenience, without any confusion, for N > 2, we will frequently represent (Ex)y2 only by
its left half matrix:

(EN)IW = [(GH.P)N] 0<n<N=1 = [(Gn.2='+1)N] 0<n<N-1
p p€{1,3,---,N—1} 0<ig<N/2-1
J

In the following, we want to show that the block-structure matrix (Ex)n2 has the same proper-
ties as the N-point 1-D DCT kernel matrix. First, the block-structure matrix (Ex)nz in Equation
(17) has the same structure as the N-point 1-D DCT kerne]l matrix shown below.

(1-D DCT)y = Cx

cf0,1) ¢(0,3) e c(0, N —1) ¢(0,N +1) es c(0,2N — 3) c(0,2N —1)

c(1,1) e(1,3) “ee c{l,N —1) e(1,N +1) cen c(1,2N —3) c(1,2N — 1)

= c(2,1) (2,3) e cf2, N -1) e(2,N +1) e c(2,2N - 3) e(2,2N — 1}
Let¥v_51) oN=1,3) - N=LN=1) (N—-LN+1) - (N-1L2¥-3) c(N-1,2N-1)




c(0,1) ¢(0,3) c(0,N -1)
¢(1,1) (1,3) (1, N-1)

= ¢(2,1) ¢(2,3) (2, N-1)

N —1,1) o(N—1,3)

where ¢(n, p) represents cos S3FT.

oN—1,N=1) —c(N—1LN—1)

¢(0, N = 1) ¢(0,3) ¢(0,1)
—o(1, N —1) —¢(1,3) —c(1,1)

e(2, N -1) c(2,3) e(2,1)

—c(N.— 1,3) —c(N; 1,1)

Second, since the elements in (G, )N only depend on np, therefore, for 0 < n, n' < N —1and

p, p' €W, if np = n'p’ then (Grp)N = (Gnp)N. Define

(an)N = (Gn,p)N,

for0<n<N—-1andpeW. Then, fori > 0,

the element (m,r) of (H;)n

% %f e?ther cos %!\,}—‘:Tr = COS ﬁﬁ' OT €08 ?—FW_: COS
-3 if either cos m?}l'viar = — COs %w OrT cos ";E,‘w = —cOos %ﬂ'
= 1 if cos Zktr = cos 22T = cos g (18)
-1 if cos Zkr = cos Zfm = — cos
0 otherwise.
In addition, (H;)n has the following properties, which are the same as cos %w.
Property (Hi)w cos f%r—‘ﬂ'
1 (Hi—one)nv = (1) (Hi)n cos Sk = (—1)% cos g7
fori i—-2Nk >0 fori, i—2Nk >0
2/ (Hone—i)nv = (- 1)*(Hi)w ccos k=ig = (—1)* cos gon
fori, 2Nk—-i>10 : fori, 2Nk—-i >0
3 2(H;)n(Hj)n = 2cos 2Lf\{"fr‘cos ﬁvr = (19)
{ (Hjiej))v, ifi+i=N |[ coslizils, ifitj=N
(Hpi-j)v + (Hipj)n, fi+j#N cos l%l‘:r t+cosPhim, ifi+j#EN

for0<d, j<N-1

4 (Hi)w(H)v = (H;)wv(H:)w
for0<i, j<N-1

Property 1 holds because of

cosm+(z'—2Nk)?r
2N
sfm—(z—21\(1’;:)?r

co 2N

for0<i, j<N-1

A coS HaT = cOS e i
cos 2Nﬁ' cOSs 2‘N.‘.'l'-- cos 2NTI' €Os 2Nﬂ'
for0<s, jSN-1

m+1i
2N

_1\E m—21
(-1 CO8 =

(—1)* cos

T

K



Property 2 holds because of

m+(@Nk—3) e m—i_
cos 2N r = (-1)"cos N .1r
cos AT (Z?\ik_ z)ﬂ (1) cosm+31r.

2N

Property 3 was proved by [4]. Property 4 follows immediately from Property 3.

The purpose of showing that the block-structure matrix (Enx)y2 has the same properties as
the N-point 1-D DCT kernel ma,tri‘x.'CN, is that we can compute the 2-D DCT using a procedure
similar to that of the 1-D DCT. '

3 The 2-D DCT Algorithm

In [10], we derived a recursive algdrithm for computing the 1-D DCT Zy = Cy zn. The derivation
was based on the four cosine properties listed in (19). Because our 2-D DCT algorithm is based on
this recursive algorithm, we describe its procedure due to its relevance to deriving our 2-D DCT

algorithm.
3.1 A Recursive Algorithm for Computing the 1-D DCT

z]. . - '
Let [ 7 ] be (ZoiZ2, - - -5 ZN-2 21,23, ..., Zy-1) and [ zc ] be (20,225 + - +3 EN=2s ZN=1y++4
o . 4]

73,71, We will use the subindex ‘e’ to represent the even eritries of a vector, ‘o’ the odd entries,

and /&’ the odd entries but in reversed order.

Let Px, Sv, Ly, and @ x be the same matrices defined in [10]. Py is a column permutation
matrix; Sn is a row permutation matrix for performing 5, shuffle exchange operation; Ly is a
regular lower triangular matrix whose nonzero entries are either +1 or +2; and @ x is a diagonal
matrix whose dia,gbﬁa,_l elements are cosine coefficients cos 4—'21‘-'{}—1-11', for0 € n < % — 1. Define

- Gy = 54 Cn Py. Then, ‘Cx has a recursive structure.




?""

Step 1: Evaluate [

1-D DCT recursive algorithm [10] :

Ze

Q

] = P} z;

Step 2: /* Recursively compute [ € ] =Gy [ Ze ] */

Z5
2.1 if N is 2, then compute Z, = (7, + 25) and Z, = cos %r (2ze — z5) directly;

2.2 else recursively perform Z, = S% é%f_ {(ze + z5) and Z, = L% .S'% é% Q_zzg (2 — 25)3

Step 3: calculate Z = Sy [ gc ] a
o

3.2 Our 2-D DCT Algorithm

The procedure of our 2-D DCT algorithm is similar to the 1-D DCT algorifhm describéd_ in the
last subsection. We start from Equation (16). Suppose that N’ also has a value of 2 to a power
and 2 <N’ < N. First, let [ 5: ] be (y5,¥% - ¥y Yoo V5 - s ¥hy_,) and [?; ] be (£5,13,
veostl o Eh_1,. . 15, £1)E. Second, let Py, Syv, and Ly be the same matrices defined in [10]. Let
(Pn)nvs (Sn)nv, and (Ly)arw be the block ma.tri;: versions of Pyr, Sy, and Ly, respectively.
That is, (Py)vn = Pvt ® Iny (Sn)nwv = S @ Iy and (Ly)nvew = Inr ® In, where ® denotes
the Kronecker product and Iy is the Nx N identity matrix.
/

Third, let (@) be a block matrix with block size IV, where 2 < N’ < N/2, and (Qn)Nwv =
diagonal((Gyjont ant1)n] = diagonal[( Hy(sni1)/2n)n]; for 0 < m < N'— 1. Fourth, for 2 < N’ <
N, define

(Ev)vn = [(GFN;n,Zi—{-l)N] 0<n<N -1
0<i<N'j2-1
Exaw = 8w En)vw (P)new-

Then, (EN) ~n also has a recursive structure.



In the following, we describe the procedure for computing the 2-D DCT. It is a recursive
algorithm, and its derivation is based on the four properties listed in (19). Note that, the derivation
does not need to be illustrated due to space constraints; however, this has been verified.

2-D DCT algorithm:

Step 1: Compute N sets of 1-D DCT’s for each input data sequence of {A,,,,}i_0 and {15»‘,,,1},_0 )
where p € W; and let the output vectors be f,_1y/ and fy_1-(p-1)/2 respectively;

Step 2: evaluate [ ? ] = (P )2 F;
5
let N' = N;
* 3 Y, 7 Fe ¥
Step 3: /* Recursively compute vy | = (Ex)nw | /
] 7]

3.1 if N'is 2, then compute Y, = (F. + F5) and ¥, = (Hyp2)N(Fe — F3) directly;

3.2 else recursively perform

Y (Sn)nrnvgz (B vz (Fe +. F5);
Y, = (L) (Sndnmyz (Bn)vn2 @)z (Fe — Fo);

Step 4: calculate Y = (Sn)n2 [ g: ]._, in
/

In the following, we analyze the algorithm’s complexity. As shown in [7] [10], it requires
%N log N multiplications and %N log N — N + 1 additions for computing an N-point 1-D DCT.
In our algorithm, for computing an (N X N)-point 2-D DCT, it requires evaluating N sets of
N-point 1-D DCT’s and a post-addition stage, where the block version of this post-addition stage
has the same structure as the 1-D DCT. Therefore, it requires %N 2log N multiplications and
7N 2)og N — 2N2 42N — Nlog N additions for computing an (N x N)-point 2-D DCT. Note that,
it only requires N — 2 additions for calculating (Hinva, where vy is a vector of size N and
0 < i < N —1. Table 1 shows the comparison of the computa.tmn complexities among those 2-D

DCT algorithms found in the related research works.
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# of multiplications # of additions
this paper %Nz log ¥ %1\121051\1'--21\!"2 +2N —NlogN
[4] iN%logN. IN?log N —2N%+ 2N — NlogN
2] $N%logN SN%log N — 2N +2
[12] IN?logN + {N?~2N +§ | N?log N+ {N? —6N + &
[10] ENZlog N — 1N? 3NZlogN - 2N2 42N
[1] [6] IN%logN 3N2?log N —2N? 42N
row-column | N2log N 3N2%log N - 2N+ 2N
method

Table 1: Computation complexities for the 2-D DCT.

4 Examples

In this section, we illustrate our 2-D DCT algorithm with three lower order examples. Let o = 1/2.

For N = 2,
Step 1: -
/ {A1i} = {200, 211} f, = DCT({A1,:}}.0);
{Bi1,}i=0 = {201, T1,0}, f; = DCT({B1,:}}=0)-
Step 2:

P£=[3 2] (Pé)4=_P§®Iz=[§§ ‘};] [§Z]=(Pé>4r‘=[§‘;].

= O], aon=[ 0] =] 2]

sé:lé [1]], (33)4=S§®Ig=[£2 g:] (Ba)e = (55)e (Bo)a (Pa)s = (Ea)a.

11



Step 3: N/ = 2, therefore,

Yo=y,=(Fet Fs)=(fo+ £); Y= ¥, = (Hi)o(Fe — F5) = (Hi)ao(fo — £1)-

Step 4: . -
ep ve Xo].—(s) v.1_ (£0+f1)]
Tly T T (el 1) |

Figs 1-(a) and 1-(b) show the signal-flow graph and the abstract signal-flow graph for N = 2.

Yor N =4,
Step 1:
{A1}0 = {00, 211, 722, Ta3}s £, = DCT({A1:H0)i
{43} 30 = {%o,1, T1,3, T20, T32} £, = DCT ({43, }0);
{B3,_i}?=o = {202, T1,0, 2,3, T31 1, f, = DCT({Bs,:}i=0);
{Bl,i}?=0 = {30,31 T1,2; 22,15 ES,O}: .f3 = DCT({BL:'}?:O .
Step 2: -
1000 It 04 0q4 04 ' %
¢ |00 10 & _ pt _ | 04 04 Iy 04 Fo| _iptvp—|f
Pi=logoo1| Pe=FR®L=lg o 0, 1| |F = (FihoF' = |
6 1 00 » 04 Iy 04 04 .f]_
/ (Hola  (Ho)s (Hols (Hok

(E4) - (H1)a (H3)a —(H3)s ~(H1)a
6= (H)y —(Ha —(Ha)e  (Ha)a
(Hz)y —(Hi)a (Hi)a —(Ha)s

1000 0100

01 00 a 0 a 0

(H)a=|g g 10| FMH=]0 a0 al
000 1 0 0 a 0
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Figure 1: The 2-D DCT signal-flow graphs and abstract signal-flow graphs for (a) (})) N=2,(c)
(d) N = 4, and (e) N = 8. Solid lines represent transfer factor 1, while dashed lines represent
transfer factor —1. Circles o represent adders. H i/ means (H;);. o = 1/2.

13




1000 Iy 04 04 04
=00 10 (she=sien=| ¢ T of o
0 001 0, 04 04 I4
55034 EHo)4 EHO;‘t %Hogdg
- _ret __ )y —(H2) H —{H
(Eg)re = (5016 (Ba)rs (Pa)rs = (Hj)‘; —(H:)4 ~( H:): (Hz):
‘ (H3)s (Hi)a —(Hs)a —(Hi)s
Step 3: N’ = 4, we compute Y, and Y, recursively.
Y. = ¥0]=(S4)8(E4)8(Fe+F5)
| ¥
L[ L0 || (Ho)s  (Ho)s ( Ll 1%
[0 L (Hz)a —(Hz)a f, y A
Y, = ;{1 } = (L)s (S1)s (Ba)s (Qa)s (Fe — F5) |
| Y3 .
— Ik 0511y 04 (Ho)a (Ha)a (Hi)a 04 ( | | & )
| —1s 2L | {04 L (H2)s —(Ha)s 04 (Hs)s i 1
_ [ (Hy)s ~(H3)a ( 1 ] 2 )
_ | (Ha)e (Hiu || B fi |7
Step 4: | :
¥ Iy 04 0y Oy ZO
ST ‘Y. | _10s 04 Iy O Y
¥=1yv ‘(54)‘6[1’9]‘ o I 0 0 ||y,
s 04 04 04 Iy Ly,
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Step 3: N’ = 8, we compute ¥, and Y, recursively.
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Fig 1-(e) shows the abstract signal-flow graph for N = 8.

5 Computation of the 2-D DST by the 2-D DCT

In this section, we show how to compute the 2-D DST by using the 2-D DCT. For a given input
data matrix [z; ,], 0 <14, j§ < N-1,the2-D DST output matrix yy.n = #5,1, 0S8, v N -1,
is defined by

N=-1N-=-1

Yow = = e’(u) e (v) Z z Tij sm( (2i + 1)('u, +1) ) sin( (21 + 23\({” + 1)1"),‘ (20)
i=0 j=0
where '
1, for0<E<N-2
ew={Y iy &

and k = » or v. Similar to the 2-D DCT case, we will also remove €(u), €(v), and the normalization

factor 2, and rewrite Equation (20) in a simplified version

N-1N-1 . :
=3 S aiysi H(M"_l_).ﬂ-) sin(%ﬂﬁ)_ (22)
i=0 j=0 ’

Note that, for the sake of distinction, we use the superscript 's’ for denoting the sine transform,

and ‘¢’ for denoting the cosine transform.
We now state ]}OW to compute the 2:D DST using the 2-D DCT. First, by substituting
m=N;1—u and n=N-1-19, fort;Su, v<N-1,
into the 2-D DCT formula in (2}, we have -

N—-1N-1 . )
Wot-uN-1-0 = E Z T4, ‘3‘35((2z FHW -1 - u)r) cos((zj TN -1 v)ﬂ_)

=0 j=0 2N 2N
N-1N-1 .

= Z Z( 1)=+J Ti sm((zz_‘FQM )sin(%—;—ggﬂm (23)
=0 7=0

Let
Cwgy = (=1 g, for 0<4, jSN -1,
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and the 2-D' DCT output of the data matrix [w;;], 0 < ¢, § £ N — 1, be denoted by Wg,,
0 < u, » < N — 1. Then, from Equation (23), we have

N-1N-1 ; " _ .
W o1ouNotow = Z:o ;6( ~1)H w;; & o2t Dut1) +1)( +1) )Sin((23+;3\$ +1)
N-1N-1 . v
= 2 2% Sm((23+1)(u+1) )sin(————*(2j+;3f,_ + 1)1r)
=0 j=0 .
= Xi.

We use the following procedure to summarize the above description for the computation of the
2-D DST by using the 2-D DCT.

Computation of the 2-D DST by the 2-D DCT:
Step 1: Compute the data matrix [w;;], for 0 <4, j < N- 1, where w;; = (-1)Hz;

Step 2: evaluate the 2-D DCT output matrix [Wg,], 0 < u, v < N —1, for the data matrix fw; ;1
0 <3, j £ N—1, by using our 2-D DCT algorithm;

Step 3: calculate 45, = Wi_j_y N-1-y» Tor0<u, v <N -1 0

6 Conclusions -~

¥
7

A systematic method for designing the 2-D DCT algorithm has been presented in this paper. The
method, which is based on certain intrinsic properties of the 2-D DCT, allows us to reduce the 2-D
DCT problem to the 1-D DCT problem. We thus can design a 2-D DCT algorithm similar to a
1-D DCT algorithm. We also show that the 2-D DST can be computed using the 2-D DCT.

An important contribution of this paper is to provide a clear procedure for the computation.
This allows us to testify that the algorithm is simple and the corresponding signal-flow graphs
ate regular. It also allows us to give a closed-form expression for the arithmetic complexity of
this algorithm. In practice, for some special purpose hardware devices for implementing DSP

applications, such as VLSI implementations, the cost of performing a multiplication may be higher
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than that of performing an addition. If we are only interested in the number of scalar multiplications

used in an algorithm, then our algorithm is one of the best algorithms found in published results.
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