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Abstract

We consider the problem of finding a smallest set of edges whose addition four-connects a
triconnected graph. This is a fundamental graph-theoretic problem that has applications in
designing reliable networks.

We present an O(n-a(m, n)-+m) time sequential algorithm for four-connecting an undirected
graph G that is triconnected by adding the smallest number of edges, where n and m are the
number of vertices and edges in G, respectively, and a(m, n) is the inverse Ackermann function.
This is the first polynomial time algorithm to solve this problem exactly.

In deriving our algorithm, we present a new lower bound for the number of edges needed to
four-connect a triconnected graph. The form of this lower bound is different from the form of
the lower bound known for biconnectivity augmentation and triconnectivity augmentation. Qur
new lower bound applies for arbitrary &, and gives a tighter lower bound than the one known
earlier for the number of edges neéded to k-connect a (k — 1)-connected graph. For k = 4, we
show that this lower bound is tight by giving an efficient algorithm for finding a set of edges
with the required size whose addition four-connects a triconnected graph.

1This work was supported in part by NSF Grant CCR-90-23059 and by an IBM graduate fellowship. An extended
abstract of this work appeared in the Proceedings of 33rd Annual Symposium on Feundations of Computer Science,
1892, pp. 70~79. Part of this work was done when the author was at Department of Computer Sciences, University
of Texas at Austin.




1 Introduction

The problem of augmenting a graph to reach a certain connectivity requirement by adding
edges has important applications in network reliability [FC70,. JG86, SWK69] and fault-
tolerant computing. One version of the augmentation problem is to augment the input
graph to reach a given connectivity requirement by adding a smallest set of edges. We refer
to this problem as the smallest augmentation problem. .

In this paper, we describe an almost linear time algorithm for optimally four- connecting
a triconnected graph. This Is the first polynomial time algorithm to solve this problefn
exactly. We first present a lower bound for the number of edges that must be added in
order to reach four-connectivity. Note that lower bounds different from the one we give
here are known for the aumber of edges needed to biconnect a connected graph [ET76] and
to triconnect a biconnected graph [HR91]. It turns out that in both cases, we can always
augment the graph using exactly the number of edges specified in this above lower bound
[ET76, HR91]. However, an extension of this type of lower bound for four-connecting 2
triconnected graph does not always give us the exact pumber of edges needed [Jor92, KT91].
(For details and examples, see Section 4.) We present a new type of lower bound that equals
the exact number of edges needed to four-connect 2 triconnected graph. By using our new
Jower bound, we derive an O(r- a(m,n)+m) time sequential algorithm for finding a smallest
set of edges whose addition four-connects a triconnected graph with » vertices and m edges,
where o(m,n) is the inverse Ackermann function. Our new lower bound applies for arbitrary
k, and gives a tighter lower bound than the one known earlier for the number of edges needed
to k-connect a (k/— 1)-connected graph. The new lower bound and the algorithm described
in this paper may lead to a better anderstanding of the problem of optimally k-connecting
a (k — 1)-connected graph, for an arbitrary k.

The algorithmic notation used is pseudo-Pascal and is similar to the notation of Tarjan
[Tar83] and Ramachandran {Ram93]. We enclose comments between ‘{*’ and ‘*}’. Param-
eters are called by value unless they are declared with the keyword modifies in which case
they are called by value and result. Graphs used in this paper is undirected and triconnected
. unless specified explicitly otherwise. ’

The organization of this paper is as follows. Section 2 lists related work. Section 3 gives
definitions used in this paper. Section 4 gives a lower bound of the number of edges needed to




four-connect a triconnected graph. Section 5 gives our algorithm for finding a smallest four-
connectivity augmentation based on the lower bound shown in Section 4. Finally, Section 6
concludes this paper.

2 Related Work

2.1 Verteﬁ-Connectivity Augmentations

The following results are known for solving the smallest augmentation problem on an undi-
rected graph to satisfy a vertex-connectivity requirement.

Eswaran and Tarjan [ET76] (and Plesnik [Ple76], independently) gave a lower bound
for the smallest number of edges needed to biconnect an undirected graph and proved that
the lower bound can always be achieved. Rosenthal and Goldner [RG77] developed a linear
time sequential algorithm for finding a smallest biconnectivity augmentation; however, the
algorithm in [RG77] contains an error. Hsu and Ramachandran [HR93] gave a corrected
~ linear time sequential algorithm. An O(log” n) time parallel algorithm on an EREW PRAM
using a linear number of processors for this problem was also given in Hsu and Ramachandran
[HR93]. '

Ferndndez-Baca and Williams [FBW89] considered the smallest augmentation problem
for reaching biconnectivity on hierarchically defined graphs. This version of the augmentation
problem has applications in VLSI circuit design. They obtained polynomial time algorithms
for the above problems. '

-

Watanabe and Nakamura [WN93, WN88, WN90] gave an O(n+(n+m)?) time sequential
algorithm for finding a smallest augmentation to triconnect a graph with n vertices and
m edges. Hsu and Ramachandran [HR91] gave a linear time algorithm for this problem.
(Independently, Jordén [Jor93b] gave a different linear time algorithm for the special case of
optimally triconnecting a biconnected graph.)

There is no polynomial time algorithm known for finding a smallest augmentation to
k-vertex-connect an undirected graph, for k > 4. Although no polynomial time solution is
known for this problem. Jordin [Jor93b] gave an approximation algorithm for undirected
‘graphs that uses no more than k — 3 edges to k-vertex-connect a (k — 1)-vertex-connected
graph. 'I‘here’ are also some results known for augmenting planar graphs and outerplanar
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graphs [Kan93].

The above results are for augmenting undirected graphs. For directed graph augmen-
tation, Masuzawa, Hagihara, and Tokura in [MHT87] studied this problem when the input
graph is a directed oriented tree. Their algorithm runs in O()-n) time where ) is the vertex-
connectivity of the resulting graph. Jordan [Jor93a] gave a polynomial time approximation
algorithm that uses no more than k extra edges for augmenting a (k — 1)-vertex-connected
directed graph to achieve k-vertex-connectivity. Very recently, Frank and Jorddn [FJ93] gave
a polynomial-time algorithm to solve the smallest vertex-connectivity augmentation problem .
on directed graphs exactly. Their algorithm increases the vertex-connectivity of a directed
graph by any given ¢ optimally.

2.2 Edge-Connectivity Augmentations

For the problem of finding a smallest augmentation for a graph to reach a given edge con-
nectivity property, several polynomial time algorithms and efficient parallel algorithms on
outerplanar graphs, hierarchically defined graphs, undirected graphs, directed graphs and
mixed graphs are known. These results can be found in [CS89, ET76, FBW89, Frad2,
Gab91, Gus87, Hsu93, KU86, Kan93, NGM90, Sor88, UKW88, Wats7, WN87, WYO91].

2.3 Augmenting a Weighted Graph

Another version of the pfoblem is to augment a graph, with a weight assigned to each edge,
to meet a connegtivity requirernent-using a set of edges with a minimum total cost. The
decision version of several related problems have been proved to be NP-hard. These results
can be found in [ET76, Fra92, FJ81, KT92, WHN90, WN93, WNN89].

3 Definitions

We use the following notations for performing operations on graphs. Let G=(V,E)bea
graph with the set of vertices V and the set of edges E, and let U be a set of vertices in G.
The graph G — U is the induced subgraph of G on V\ U. Let E' be a subset of edges of E.
G — (E'U U) is the resulting graph obtained from G — U after removing edges in E'.




We then give definitions used in this paper. They are used in characterizing tricon-
nected graphs.

Vertex-Connectivity

A graph G with at least k + 1 vertices is k-connected, k > 2, if and only if G is a complete
graph with k 4 1 vertices or the removal of any set of vertices with cardinality less than
k does not disconnect G. The vertez-connectivity of G is k if G is k-connected, but not
(k+1)-connected. Let ¢ be a minimal set of vertices such that the number of components in
the resulting graph obtained from G by removing I/ is more than the number of components
in G. The set of vertices U is a separating k-set.

Separating Triplet

Let U be a separating 3-set in a triconnected graph. If [U| = 3, it is a separating triplet.
Let com(G) be the number of connected components in a graph G. The degree d(S) of a
separating set S in G is com(G — 8) — com(G) + 1, which is at least 2. Note that if G is
connected, d(S) equals the number of connected cémponents in the resulting graph obtained
from G by removing S. Thus the minimum number of edges needed to add to G such that
S is no longer a separating triplet.

It is worthwhile noting that though this paper uses several properties of triconnected
graphs derived in [KTDBC91], the definition of a separating triplet given in [KTDBC91]
is different from what we have in this paper. In [KTDBC91], a separating triplet in a
triconnected graph G is a set Z = {7, 7,73} such that G — 2 is disconnected, where each
7, 1 < @ < 3, is either a vertex or an edge. Allowing edges in a separating triplet can
reduce the total number of separating triplets by a constant factor. The structure of the set
of all separating triplets is also easier to describe than the case when allowing vertex-only
separating triplets. In the above, Z represents all combinations of vertex-only separating
triplets of the form {vy,vs,vs}, where v; is an endpoint of 7; if 7; is an edge; v; = = if 7
is a vertex. For example, the two vertex-only separating triplets obtained from expanding
{(1, 2), 3, 4} in Figure 1 are {1, 3, 4} and {2, 3, 4}. The definition for separating triplets
given in [KTDBC91] and this paper is equivalent. We can “expand” each separating triplet
Z given in [KTDBCY1] (that might contain edges) to a set of vertex-only separating triplets
in constant time. For the rest of this paper, separating triplets contains only vertices unless
stated otherwise.

Using this above definition for separating triplets gives the following unwanted side




Figure 1: MMustrating a different definition of separating triplets given in [KTDB C91]. The set {(1,
2), 3, 4} is a separating triplet according to [KTDBCO1], but it is not a separating triplet according
to our definition. : '

effect that we want to avoid. Consider the graph G in Figure 1, 2 = {(1,2),3,4} isa valid
separating triplet as defined in [KTDBC91]. The resulting graph obtained by removing
Z contains 2 connected components. We can no longer have the desired property that by
adding d(2)—1 edges, the set of separating triplets represented by Z are no longer separating
triplets in the resulting graph. In fact, we must add at least two edges (e.g., (5, 6) and (7,
8)) to G to four-connect G- |

Redundant Separating Triplet

Let S; and S; be two separating triplets. Let {Ci,...,Cn} be the connected components in
G — & and let {Dx,... ,Dp} be the connected components in G — Sa. Let V(C;) be the set
of vertices in G, 1 < ¢ < h, and let V(D;) be the set of verticesin D;, 1 <1 <A If all of the
following conditions are true: (1) h = B (2) we can partition {Ci,...,Cn} into k' disjoint
subsets Sy, ..., S such that for all ¢ either Sy is {D;} or

¥

/

U V(cj)) \ V(D) € &,
Vjvcjes‘l

then Sy is superfluous with respect to S,. A separating triplet S is redundant in a set of

separating triplets X if & is superfluous with respect to a separating triplet in ® and each

degree-3 vertex in S is contained in a separating triplet in R.

Let R be a set of separating triplets in a triconnected graph G and let S be a redundant
separating triplet in R. Given a set of edges A, it is easy to see that if ¥ \ S contains no
separating triplet in GU A, then & is not a separating triplet in GU.A. Thus we do not have
to “worry about” & in four-connecting G if we can “take care of” the rest of the separating

triplets in R.




We use the following lemma to derive a set of maximal separating triplets without
redundancy in a triconnected graph.

Lemma 1 Given all separating triplets in o triconnected graph G as defined in [KTDBC91]
with possibly edges in each of the separating triplets, we can select separating triplets (con-
taining only vertices) obtained from expanding a separating triplet containing edges such that
there are no redundant separating triplets and all degree-3 vertices in G are contained in
ezactly one ezpanded separating triplet.

Proof: We expand all separating triplets that might contain edges and consider each ex-
panded separating triplet one by one. Let Z be an original separating friplet that includes
edges. |

Case 1: If there is only one edge (u,v) in Z, let Z = {(u,v),w,z}. The two possible can-
didates for vertex-only separating triplets are {u,w,z} and {v,w,z}. If both of them are
redundant, then we remove an arbitrary redundant one.

Case 2: If there are two edges (u1,us) and (v1,vs) in Z, let w be the vertex in Z. Assume
without lose of generality that u; and v; are connected in G — {uy,v1,w}. Thus u; and
vy are connected in G — {uz,v2, w}. The separating triplets {u;,v2,w} and {ug,v;,w} are
redundant. _

Case 3: If there are three edges (uy,us), (v1,v2), and (wi,wz) in Z. Assume without lose
of generality that us, v, and w, are connected in G — {uy,vy,w1}. Thus uy, vy, and wy
are connected in G — {ug, vy, wy}. Any cardinality-3 subset in {u1, us, v1,ve, w1, wa} except
{u1,v1, w1} and {uy,vs,ws} is a redundant separating triplet. i

For the rest of this paper, a separating triplet of a graph G is obtained from a maximal
set of sepa.ratil}g triplets by applying Lemma 1 unless specified otherwise. The previous
lemma states that it might be possible that a special 4-block leaf is inside two separating
triplets. The following corollary rules out this possibility.

Corollary 1 Any special 4-block leaf cannot be contained in more than one separating triplet.

Proof: Let S; and S; be two separating triplets that are expanded from the same phase

given in the proof of Lemma 1.
Case 1: There is exactly one vertex u in S; NS, and the degree of w is 3. Then u must
be adjacent to exactly one vertex v in one of the connected components in G — &;. Thus

81 =81 U {v}\ {u} is also a separating triplet. Qur expanding algorithm given in the proof




Figure 2: Tllustrating a wheel {nu{1,2,3,4,5, 6}. The degree of this wheel is 5, i.e., 4 (the number
of components we got after removing the wheel) plus 1 (the number of degree-3 vertices in the wheel
that are adjacent to the center vertex 7).

of Lemma 1 must have generated 8] and S instead of S and Ss.

Case 2: There are exactly two vertices u and v in Sy N So. If the degree of both u and v
are 3, then we can derive this corollary using case 1. It is impossible that {u,v} is a special
4-block leaf, since otherwise we can find a vertex w that is adjacent to both u and v such
that (81 U {w})\ 82 is a cardinality-2 separating set. O

Wheel and Flower

A set of at least three separating triplets with one common vertex ¢ is a wheel in [KTDBCY1].
A wheel can be represented by the set of vertices {e} U {s0,81,- - +»$q-1} Which satisfies the
following conditions: (§) ¢ > 2; (¥) Vi # 7, {c, s;,8;} is a separating triplet unless in the case
that j = ((i +1) mod ¢) and (s;, s;)7s an edge in G; (é41) c is adjacent to a vertex in each of
the connected components created by removing any of the separating triplets in the wheel;
(iv) Vj # (¢ +1) mod g, {e, s, s;} is a degree-2 separating triplet. The vertex c is the center
of the wheel [KTDBC91]. For more details, see [KTDBC91].

The degree of a wheel W = {c}U {5051, -,5g-1}, d(W), 1 the number of connected
components in G — {¢, 50, .- -5 $q—1} plus the number of degree-3 vertices in {so, 1, - ,Sq-1}
that are adjacent to ¢. The degree of 2 wheel must be at least 3. Note that the number
of degree-3 vertices in {sq,81,..- ,8¢-1} that are adjacent to ¢ is equal to the number of
separating triplets in {(c, si, 8(i+2) mod o)} 10 < < g, such that s(41) mod o is degree 3 in G}.
An example is shown in Figure 2.

A separating triplet is a flower [KTDBCO1] if its degree is greater than 2, or is not
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in any wheel. Let &; and S; be two separating triplets. We denote S1RS, if if §; and S,
are obtained from the same expanding phase as described in Lemma 1. Given a separating
triplet S, the flower cluster for S is the set of all separating triplets {S' | SRS’}. Note that
R defines a binary relation that is symmetric and reflexive, but not transitive.

Fach of the (non-redundant) separating triplets in a triconnected graph G is either
represented by a flower or is in a wheel. We can construct an O(n)-space representation
for all (non-redundant) separating triplets (i.e., flowers and wheels) in a triconnected graph
with n vertices and m edges using O(n - a(m,n) + m) time [KTDBCI1].

K-Block

Let G = (V, E) be a graph with vertex-connectivity k¥ — 1. The neighbor of a set of vertices
U in G is the set of vertices (not including any vertex in /) that are adjacent to a vertex in
U. A k-block in G is either (i) a minimal set of vertices B in a separating (k — 1)-set with
exactly k¥ — 1 neighbors in V' \ B (these are special k-blocks) or (12} a maximal set of vertices
B such that there are at least k vertex-disjoint paths in G between any two vertices in B and
B is not a special k-block (these are non-special k-blocks). Note that a set consisting of a
single vertex of degree k—1in G is a k-block by (é4). A k-block leaf in G is a k-block B; with
exactly k-1 neighbors in V'\ B;. Note also that every special k-block is a k-block leaf. Given
a non-special 4-block leaf B, the vertices in B that are not in any separating triplet that can
separate part of vertices in B from the rest of the vertices in G are demanding vertices. We
let every vertex in a special 4-block leaf be a demanding vertex. Intuitively, after adding an
edge between a demanding vertex of B and a vertex not in B or any separating triplet, B is
no longer a 4-block leaf.

The following claim states theﬁ; we can always find a demanding vertex in every 4-block
/
leaf.

Claim 1 Every {-block leaf contains at least one demanding vertez.

Proof: By definition, every vertex in a special 4-block leaf is a demanding vertex. Thus we
only have to prove this claim holds for non-special 4-block leaves. Let B be a non-special
4-block with more than one vertex. (If B contains only one vertex u, then u is a demanding
vertex by definition.) Let &’ be the neighbor of B. By definition, &’ is a separating triplet.
If for each vertex u in B, u is in a separating triplet S, such that the induced subgraph on
vertices B \ S, is a connected component in G - &,, then there is no demanding vertex in
B. We prove in the following cases that the above condition is impossible. In proving the
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following cases, we assume that B ¢ S, since otherwise B is a special 4-block leaf. Let v’ be
a vertex in B \ S ; .

Case 1: S, ¢ B and S.NS’ = 0. This implies S, \ B is a separating set with cardinality less
than 3. This contradicts the fact that G is triconnected.

Case 2: S, € B. fu' isalsoina separating triplet S" then S" € B. All paths from u to
' must pass through §”, and u and u' are not adjacent in G. Thus they cannot be in the
same 4-block.

Case 3: S, NS £ P and S, € BU S'. Tf u' is also in a separating triplet S then we have
reduce the case to case 2.

Case 4: §,NS' # B, S.NB #§,and Su & BUS'. Let Sy = {u,c,v} such that S.NS" = {c}.
Then S and &' form a wheel with the center ¢. Let w € S' such that the set of vertices
B\ {u} form a connected component in G — ({u,¢, wiU ). If o is also in a separating
triplet S”, then we can reduce this case to case 3. O

Using procedures in [KTDBC91], we can find all of the 4-block leaves in a triconnected
graph with n vertices and m edges in O(n - a(m,n) + m) time.

Four-Block Tree

From [KTDBCY1] we know that we can decompose vertices in a triconnected graph into the
following 3 types: () 4-blocks; (i) wheels; (¢41) separating triplets that are not in a wheel.
We modify the decomposition tree in [KTDBC91] to derive the four-block iree, 4-blk(G),
of a triconnected graph G as follows. We create an R-vertex for each 4-block that is not

special (i.e., not in a separating triplet), an F-vertex for each separating triplet that is not
in a wheel, and a W-vertex for each wheel. For each wheel W = {c} U {50,51,--- ,8q-1}>
we also create {he following vertices. An F-vertex is created for each separating triplet of
the form {¢, 5i, $(i+1) mod o} in W. An R-vertex is created for every degree-3 vertex s in
{30,81,.--,5¢-1} that is adjacent to ¢ and an F-vertex is created for the three vertices that
are adjacent to s. ’

'Let » be an R-vertex we created for the 4-block tree and let B, be its corresponding
4-block in G. Let f be an F-vertex we created for the 4-block tree and let Sy be its
corresponding separating triplet in G. We create an edge in the 4-block tree between f and
r if in the graph G, each vertex in Sy is either in B, or adja.cént to a vertex in B,. There 1s an
edge between an F-vertex f and a W-vertex w if the the wheel corresponding to w contains
the separating triplet corresponding to f. A dummy R-vertex is created and adjacent to
each pair of F-vertices f1 and f with the properties that they are not already connected
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G ) 4-bIK(G)

Figure 3: Illustrating a triconnected graph and its 4-blk(G). We use rectangles, circles and two
concentric circles to represent R-vertices, F-vertices and W -vertices, respectively. The numbers
beside each vertex u in 4-blk(G) represent the set of vertices corresponding to u. The W-vertex w
in 4-blk(G) corresponds to the wheel {7} U {1,2,3,4,5,6} in G.

and their corresponding separating triplets are in the same flower cluster. An example of a
4-block tree is shown in Figure 3.

Note that a degree-1 R-vertex in 4-blk(G) corresponds to a 4-block leaf, but the reverse
is not necessarily true. We do not represent certain special 4-block leaves (explained later)
and all degree-3 vertices that are centers of wheels in 4-blk(G). A special 4-block leaf {v},
where v is a vertex, is represented by an R-vertex in 4-blk{&) if v is not the center of a wheel
w and it is in one of separating triplets of w. The degree of a flower F in G is the degree
of its corresponding F-vertex in 4-blk(G). Note also that the degree of a wheel W in G is
equal to the number of components in 4-blk(G) by removing its corresponding W-vertex w
and all F-vertices that are adjacent to w.

Star Wheel / _

A wheel W in G is a star wheel if d(W) equals the number of leaves in 4-blk(G) and every
special 4-block leaf in W is either adjacent to or equal to the center of W. A star wheel W
with the center ¢ has the property that every 4-block leaf in G (not including {c} if it is a
4-block leaf) can be separated from G by a separating triplet containing the center ¢. If G
contains a star wheel W, then W is the only wheel in G. Note also that the degree of a
wheel is less than or equal to the degree of its center in G.

K-Connectivity Augmentation Number

The k-connectivity augmentation number for a graph G is the smallest number of edges that
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Figure 4: Mustrating three graphs where in each case the value derived by applying a simple lower
bound does not equal its four-connectivity augmentation number. '

must be added to G in order to k-connect G.

4 A Lower Bound for the Four-Connectivity Augmentation Num-
ber

We first give a simple lower bound for the four-connectivity augmentation number that is
similar to the ones for biconnectivity augmentation [ET76] and triconnectivity augmentation
[HR91]. We show that this above lower bound is not always equal to the four-connectivity
augmentation number [Jor92, KT91]. We then give a modified lower bound. This new lower
bound turns out to be the exact number of edges that we must add to reach four-connectivity
(see proofs in Section 5). Finally, we show relations between the two lower bounds.

4.1 A Simple Lower Bound -

/

Given a graph G with vertex-connectivity £ —1, it is well-known that max{ [%‘ﬂ, d—1}isa
lower bound for the k-connectivity augmentation number, where £, is the number of k-block
" Jeaves in G and d is the maximum degree among all separating (£ — 1)-sets in G [ET76]. It
is also well-known (see, for example, [ET76, HR91]) that for k = 2 and 3, this lower bound
éqga,ls the k-connectivity augmentation number. For k = 4, however, several researchers
[Jor92, KT91] have observed that this value is not always equal to the four-connectivity
augmentation number. Examples are given in Figure 4. Figure 4.(1) is from [Jor92] and
Figure 4.(2) is from [KT91]. Note that if we apply the above lower bound in each of the
three graphs in Figure 4, the values we obtain for Figures 4.(1), 4.(2), and 4.(3) are 3, 3, and
2, respectively, while we need one more edge in each graph to four-connect it.
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Figure 5: Mlustrating the seven types of augmenting graphs, their complement graphs and aug-
menting numbers that one can get for a separating triplet in a triconnected graph.

4.2 A Better Lower Bound

Notice that in the previous lower bound, for every separating triplet § in the triconnected
graph G = {V, E}, we must add at Jeast d(S) — 1 edges among vertices in V' \ S to four-
connect G, where d(S) is the degree of § (i.e., the number of connected components in G—S8);
otherwise, S remains a separating triplet. Let the set of edges added be A;(S). Recall that
we must add at least one edge into every 4-block leaf B to four-connect & otherwise, B
remains a 4-block leaf. Since it is possible that S contains some 4-block leaves, we need to
know the minimum number of edges needed to eliminate all 4-block leaves inside S. Let
the set of edges added be Ay(S). We know that A;(S) N A2(S) = §. The previous lower
bound gives a bound on the cardinality of 4;(S), but not that of A3(S). In the following
paragraph, we define a quantity to measure the cardinality of A,(S).

Let two 4-block leaves B; and B, be adjacent if there is an edge in G between every
demanding vertex in B; and every-’demandjng vertex in B;. We create an augmenting graph
for 8, G(S), ad follows. Let Qs be the set of special 4-block leaves that are in the separating
triplet S of a triconnected graph G. For each special 4-block leaf in Qg, we create a vertex
in G(8). There is an edge between two vertices v; and v, in G(S) if their corresponding
4-block leaves are adjacent. Let G(S) be the complement graph of G(S). The seven types of
augmenting graphs and their complement graphs are illustrated in Figure 5. p
Definition 1 The augrhenting number a(S) for a separating triplet S in a triconnected

graph is the number of edges in a mazimum matching M of G(S) plus the number of isolated
vertices in M.
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The augmenting numbers for the seven types of augmenting graphé are shown in Figure 3.
Note that in a triconnected graph, each special 4-block leaf must receive at least one new
incoming edge in order to four-connect the input graph. The augmenting number a(8) is
exactly the minimum number of edges needed in the separating triplet S in order to four-
connect the input graph, i.e., A2(S). The augmenting number of a separating set that does
not contain any special 4-block leaf is 0. Note also that we can define the augmenting number

a{{c}) for a set {c} such that ¢ is the center of a wheel using a similar approach. It is obvious
that a({c}) < 1.

We also need the following definition before we show our new lower bound for the

four-connectivity augmentation number.

Definition 2 Let @ be a triconnected graph with £ 4-block leaves. The leaf constraint
of G, 1c(G), is [£]. The degree constraint of a separating triplet S in G, dc(8), is
d(S) — 1 + a(S), where d(8) is the degree.of S and a(8S) is the augmenting number of S.
The degree constraint of G, de(G), is the marimum degree constraint among all separating
triplets in G. The wheel constraint of a star wheel W with center ¢ in G, wc(W), is
[i(-Z—V)-'] + a({c}), where d(W) is the degree of W and a({c}) is the augmenting number of
{c}. The wheel constraint of G, wc(@), is zero if there is no star wheel in G; otherwise it s
the wheel constraint of the star wheel in G.

Note that we only define wheel constraint for a star wheel. Intuitively, the value of the leaf
constraint is the minimum number of edges we need to add to eliminate all 4-block leaves.
The value of the degree constraint for a separating triplet is the minimum number of edges
we need to ass to eliminate the separating triplet as well as the A-block leaves within it. The
value of the wheel constraint for a graph with a star wheel is the minimum number of edges
we need to add to eliminate the star wheel from the graph. We now give a better lower
bound on the 4-connectivity augmentation number for a triconnected graph.

Lemma 2 We need at least max{1¢(G), de(G), wc(G)} edges to four-connect triconnected
graph G.

Proof: Let A be a set of edges such that G' = G U A is four-connected. For each 4-block
leaf B in G, we need one new incoming edge to a vertex in B; otherwise B is still a 4-block
leaf in G'. This gives the first component of the lower bound.
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For each separating triplet S in G, G — S contains d(S) connected components. We
need to add at least d(S)—1 edges between vertices in G— 8, otherwise S is still a separating
triplet in . In addition to that, we need to add at least a{S) edges such that at least one
of the two end points of each new edge is in &; otherwise & contains a special 4-block leaf.
This gives the second term of the lower bound.

Recall that G contains at most one star wheel and if there exists a star wheel, then it
is the only wheel in G. Given the star wheel WW with the center ¢, 4-blk(G) contains exactly
d(W) degree-1 R-vertices. Thus we need to add at least [2M)] edges between vertices in
G — {c}; otherwise, G’ contains some 4-block leaves. In addition to that, we need to add
a({c}) non-self-loop edges such that at least one of the two end points of each new edge is
in {c}; otherwise {c} is still a special 4-block leaf. This gives the third term of the lower
bound. O

It is worthwhile noting that if max{lc(G), dc(G), we(G)} is zero, then G is four-
connected.

4.3 A Comparison of the Two Lower Bounds

We first observe the following relation between the wheel constraint and the leaf constraint.
Note that if there exists a star wheel W with degree d(W), there are exactly d(W) 4-block
leaves in G if the center is not degree-3. If the center of the star wheel is degree-3, then
there are exactly d(W) + 1 4-block leaves in G. Thus the wheel constraint is greater than
the leaf constraint if and only if there is a star wheel with a degree-3 center. We know that
the degree of any wheel is less than or equal to the degree of its center. Thus the value of

we(G) s 3, if Wé(G) is greater than lc(G).

The following claim states the relation between the degree constraint of a separating
triplet and the leaf constraint.

Claim 2 Let S be a separating triplet with degree d(S) and h special {-block leaves. Then
there are at least h + d(S) 4-block leaves in G.

Proof: It is easy to see that there is a demanding vertex in each of connected components in
G —§. Thus we can find at least one 4-block leaf in each of the d(S§) connected components
in G — S. Hence the claim holds. O
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The following easily proved claim and its corollary states the relation between the
degree constraint of a separating triplet and the number of special 4-block leaves within it.

Claim 3 Let {a;,a2,a3} be a separating triplet in a triconnected graph G. Thena;, 1 <1<

3, is incident on a vertez in every connected component in G — {a1,a2,a3}. D

Corollary 2 The degree of a separating triplet S is no more than the largest degree among
all vertices in S. O

From Corollary 2, we know that it is not possible for a triconnected graph to have type
(6) or type (7) augmenting graphs as shown in Figure 5, since the degree of their underling
separating triplet is 1. We also know that thé degree of a separating triplet with a special
4-block leaf is at most 3 and at least 2. Thus dc(S) is greater than d(S) — 1 if dc(S) equals
either 3 or 4. Hence we have the following lemma.

Lemma 3 Let low1(G) be the lower bound given in Section 4.1 for a triconnected graph G
and let lowy(G) be the lower bound given in Lemma 2 (Section 4.2). Then

(2) low1(G) = low2(G) if lowy(G) € {3,4}.

(it) lowz(G) —lowy(G) € {0,1}. )

Thus the simple lower bound given in Section 4.1 extended from biconnectivity and tri-
connectivity is a good approximation for the four-connectivity augmentation number. The
difference between two lower bounds is at most one.

4

! ‘
5 Finding a Smallest Four-Connectivity Augmentation for a Tri-

connected Graph

We first explore properties of the 4-block tree that we will use to develop an algorithm for
finding a smallest 4-connectivity augmentation. Then we describe our algorithm.

5.1 Properties of the Four-Block Tree

Degree of Separating Triplets

We will prove a lemma that relates the degree constraint of a separating triplet to the total
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[} 4-HKG) +HI(G)

Figure 6: Ilustrating a triconnected graph G, its 4-block graph 4-blk(G), and the modified 4-block
graph 4-blk'(G). The added vertices in 4-blk'(G) are shadowed.

number of 4-block leaves in G. By doing this, we can identify graphs whose degree constraint
dominates the lower bound given in Lemma 2. To reduce the four-connectivity augmentation

number of these graphs by 1 by adding an edge, our algorithm only has to reduce the degree
constraint by 1.

Lemma 4 Let S, Sz, and S3 be any three separating triplets in G. Then 3o, do(S;) £ £+1,
where £ is the number of 4-block leaves in G.

Proof; The input graph G is triconnected. We modify 4-blk(G) in, the following way such
that the number of leaves in the resulting tree equals £ and the degree of any F-vertex
equals dc(S) + 1. Let the modified four-block graph be 4-blk/(G). For each W-vertex w
with a degree-3 center ¢, we create an R-vertex r, for ¢, an F-vertex f,. for the three vertices
that are adjacent to ¢ in G. We-add edges (w, f.) and (f., r.). Thus r. is a leaf. For
each F-vertex fvhose corresponding separating triplet S’ contains A special 4-block leaves,
we attach a(S’) subtrees with a total number of A degree-1 R-vertices. To do this, we might
have to add a few “glue” vertices. According to Corollary 1, we know that all 4-block leaves
is added once. From Figure 5, we also know that the number of special 4-block leaves in
any separating triplet is greater than or equal to its augmenting number. Thus the above
addition of subtrees can always be done. An example is illustrated in Figure 6.

The number of leaves in 4-blk'(G) is £. Let f be an F-node in 4-bik/(G) whose corre-
sponding separating triplet is S. We know that the degree of f equals de(S) + 1. Tt is easy
to verify that the sum of degrees of any three internal vertices in a tree is less than or equal
to 4 plus the number of leaves in a tree. 0




Massive Vertex, Critical Vertex and Balanced Graph
A separating triplet S in a graph G is massive if dc(S) > lc(G). If the corresponding

separating triplet of an F-vertex f is massive, then f is massive in 4-bik(G). A separating
triplet S in a graph G is eritical if dc(S) = Ic(@). If the corresponding separating triplet
of an F-vertex f is critical, then f is critical in 4-blk(G). A graph G is balanced if there is
no massive separating triplet in G. If G is balanced, then its 4-blk(@) is also balanced. The
following corollary of Lemma 4 gives the number of massive and critical vertices in 4-blk(G)
and can easily be verified.

Corollary 3 Let G be a graph with more than two non-special 4-block leaves. Then the
following three conditions are true.

(i) There is at most one massive F-vertez in 4-blk(G).

(iz) If there is a massive F -vertez, there is no critical F-vertex. _

(i) There are at most two critical F-vertices in 4-blk(G). |

Updating the Four-Block Tree

Let v; and vy be two demanding vertices. Let B; be the 4-block leaf that contains vy,
i € {1,2}. Let b;, ¢ € {1,2}, be the vertex in 4-blk(G) such that (1) if v; is in a non-special
4-block leaf B, then b; is the R-vertex in 4-blk(G) whose corresponding 4-block is B; (2) if v;
is in a special 4-block leaf that is contained in a flower, then b; is the F-vertex in 4-blk(G)

whose corresponding separating triplet contains v;; (3) if v; is the center of a wheel W, b; is
the W-vertex in 4-blk(G) whose corresponding wheel is W. The vertex b; is the implied vertez
for B;, i € {1,2}. The implied path P between By and By is the path in 4-bik(G) between b;
and by. Given 47blk(G) and an edge (v1, vz2) not in G, we can obtain 4-blk(G U {(v1,v2)})
by performing local updating operations on P. For details, see [KTDBCY1].

In summary, all 4-blocks corresponding to R-vertices in P are collapsed into a single
4-block. Edges in P are deleted. Every F-vertex in P is connected to the new R-vertex
created. We crack wheels in a way that is similar to the cracking of a polygon for updating
3-block graphs (see [HR91] and [DBT90] for details). We define that P is non-adjacent on |
a wheel W if the cracking of W creates two new wheels. Note that it is possible that a
separating triplet S in the original graph is no longer a separating triplet in the resulting
graph by adding an edge. Recall that special 4-block leaves in a separating triplet are not
represented in the 4-blk(G). Thus that it is possible that some special 4-block leaves in the
original graph are no longer special after adding an edge, in which case we must add their
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corresponding R-vertices to 4-blk(G).

Reducing the Degree Constraint of a Separating Triplet

We know that the degree constraint of a separating triplet by doing the following. Let B;
and B; be two non-speéial 4-block leaves in G and let b;, 1 < ¢ < 2, be the corresponding
R-vertex of B; in 4-blk(G). The path between b; and b, in 4-blk(G) passes through the
F-vertex corresponding to S. Let u;, 1 < i < 2, be a demanding vertex in B;. By adding an
edge between u; and u; in G, the degree constraint of § is reduced by 1. We also notice the
following corollary from the definitions of 4-blk(G) and the degree constraint.

Corollary 4 Let S be a separating triplet that contains a special 4-block leaf. Then the
following two conditions are true.

(2) We can reduce dc(S) by one by adding an edge between demanding vertices of two special
4-block leaves By and B, in S such that By and By are not adjacent.

(1i) Let B be a 4-block leaf not in S and let B' be a special 4-block leaf in S. Let &' be a
separating triplet corresponding to an internal verter in the implied path of 4-blk(G) between
B and B'. If we add an edge between a demanding vertez in B and a demanding vertez in
B', the degree constraint of ' is reduced by one. ]

Note that part (z) in Corollary 4 can be verified by observing all different augmenting graphs
for a triconnected graph (shown in Figure 5).

Reducing the Number of Four-Block Leaves
We now consider the conditions under which the adding of an edge reduces the leaf constraint
1c(G) by 1. Before giving the condition, we need the following definition.

4

! .
Definition 8 Let f be an F-vertex in 4-blk(G) and let S be its corresponding separating
triplet in G. The real degree of f is dc(S)+1. The real degree of a W-node with a degree-
8 center in G is 1 plus its degree in 4-blk(G). The real degree of any other node is equal to
its degree in 4-blk(G). '

Intuitively, the real degree of a vertex u is the degree of u in the modified 4-block tree given
in the proof of Lemma 4.

Definition 4 (The leaf-connecting condition) Let B; and By be two non-adjacent /-
block leaves in G. Let P be the implied path between By and By in 4-blk(G). Two f-block
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leaves By and Ba satisfy the leaf-connecting condition if at least one of the following
conditions is true.

(i) There are at least two vertices with real degree at least three in P.

(i1) There is at least one R-vertes with degree at least four in P,

(iii) The path P is non-adjacent on a W-vertez in P.

(iv) There is an internal verter with real degree at least three in P and at least one of the
4-block leaves in {By, Bz} is special.

(v) Both By and B are special and they do not share the same set of neighbors.

Lemma 5 Let By and By be two 4-block leaves in G that satisfy the leaf-connecting condition.
We can find vertices v; in Bi, i € {1,2}, such that 1¢(G U {(v1,02)}) = 1c(G)—1, if 1c(G) 2 2.

Proof: Let B, and B be the two 4-block leaves that satisfy the leaf-connecting condition.
If they satisfy parts (z) to (i74) of the leaf-connecting, proofs similar to the ones given in
[HR91] for finding a smallest triconnectivity augmentation can be used to prove this lemma.

Assume that B; and B, satisfy part (iv) or part (v) of the leaf-connecting condition.
Since we add an edge between B; and Ba, both By and B, are no longer 4-block leaves after
adding the edge. We have to show that the new 4-block created is not a 4-block leaf. If By
and B, satisfy part (¢v) of the leaf-connecting condition, without lose of generality, assume
that B, js special and is contained in the separating triplet represented by the F-vertex f.
The new 4-block created is adjacent to at least two F-vertices. One of them is the degree-3
vertex ¢ in P if ¢ is an F-vertex; otherwise it is an F-node adjacent to g. The other F-vertex
adjacent to the created 4-block is f- Thus the new 4-block created is not a 4-block leaf.

4

/

If B, and B, satisfy part (v) of the leaf-connecting condition and they are in the same
separating triplet, then no 4-block is created. Otherwise, the created 4-block is adjacent to
the two F-vertices whose corresponding separating triplets contain By and B,.

From the above discussion, we know that we can eliminate two 4-block leaves by adding
an edge. Thus the lemma holds. ' a

5.2 The Algorithm

We now describe an algorithm for finding a smallest augmentation to four-connect a tricon-
nected graph. Let § = dc(G) — 1c(G). The algorithm first adds 26 edges to the graph such
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that the resulting graph is balanced and the lower bound given in Lemma 2 is reduced by
24 in the resulting graph.

After the input graph is balanced, we use different strategies to reduce the lower bound
by 1 by properly adding an edge depending on which of the three constraints dominate the
lower bound. If 1c(G) # 2 or we(G) # 3, there is no star wheel with a degree-3 center.
Thus it is impossible for wc(G) to dominate the lower bound. We add an edge such that
the number of 4-block leaves is reduced by 2. We also make sure that the degree constraint
dc(G) is reduced by 1 if de(G) = le(G). Since there is no star wheel with a degree-3 center,
wc(G) is also reduced by 1 if we(G) = Ic(@). Each time we add an edge, the resulting graph
stays balanced and the lower bound is reduced by 1.

If 1¢(G) = 2 and wc(G) = 3, then there exists a star wheel with a degree-3 center. We
reduce wc(G) by 1 by adding an edge between the degree-3 center and a demanding vertex
of a 4-block leaf. Since lc(G) = 2 and we(G) = 3, de(G) is at most 2. Thus the lower bound
can be reduced by 1 by adding an edge. We keep adding an edge at a time such that the
lower bound given in Lemma 2 is reduced by 1. Thus we can find a smallest augmentation
to four-connect a triconnected graph. We now describe our algorithm in detail.

Input Graph is Not Balanced

We use an approach that is similar to the one used in biconnectivity [HR93] and triconnec-
tivity augmentations [HR91] to balance the input graph. Given a tree T and a vertex v in

T, a v-chain [RG77] is a component in T — {v} without any vertex of degree more than
2. The leaf of T in each v-chain is a v-chain leaf [RG77]. Given an unbalanced graph G,
let § = de(G) — Ie(G) and let 4-blk’(G) be the modified 4-block tree given in the proof of
Lemma 4. Let, f be a massive F-vertex. It is easy to show that there are at least 26 + 2
f-chains in 4-blk'(G) [RGT77, HR91). Let §; be a demanding vertex in the ith f-chain leaf.
We add the set of edges {(8;,fiy1) | 1 < i < 28}. It is also easy to show that the lower
bound given in Lemma 2 is reduced by 26 and the graph is balanced.

Input Graph is Balanced

We first describe the algorithm in Algorithm 1. Note that Algorithm 1 uses a subroutine

shown in Algorithm 2 to handle the special case when the 4-block graph is a star. Then we
give its proof of correctness.

Before we show the correctness of algorithm aug3to4 in Theorem 1, we need the fol-
lowing claim and corollaries.
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graph function aug3to4(graph G);
T := 4-blk{3); root T at an arbitrary vertex; £ := number of degree-1 R-vertices in T}
while 3 a 4-block leafin G do
if 3 a degree-3 center ¢ then
uy := the 4-block leaf {c};
1. if Ic(G) = 2 and we(G) = 3 then {+ The vertex ¢ is the center of the only star wheel in G. *}
let %2 be a a non-special 4-block leaf ’
else if 3 another degree-3 center ¢’ non-adjacent to ¢ then
let u; be the 4-block leaf {¢'} :
else if 3 a special 4-block leaf b non-adjacent to uy then let vz :=b
else if A (degree-3 center or special 4-block leaf) non-adjacent to u; then
let w2 be a a 4-block leaf s.t. 3 an internal vertex with
real degree > 3 in the implies path between uy and uz fi
else if 1c(G) # 2 or wc(G) # 3 then
if # > 2 and 3 two critical F-vertices fi and fz then
2. find two non-special 4-block leaves 11 and u» s.t. the implied path
between them passes through fi and f2
else if # > 2 and 3 only one critical F-vertex fi then
if 3 two non-adjacent special 4-block leaves in the
separating triplet 81 corresponding to fi then
3. let u1 and 22 be two non-adjacent 4-block leaves in &,
else if A two non-adjacent special 4-block leaves in the
separating triplet $1 corresponding to f; then
4. let v be a vertex with the largest real degree among all vertices in ' — {f1}; :
if real degree of v in T > 3 then |
find two non-special 4-block leaves w1 and wu |
s.t. the implied path between them passes through fi and v fi |
fi {* The case when the degree of v in T < 3 will be handled in step 8 of procedure star. %}
else if 3 two vertices v1 and vz with real degree > 3 then
5. find two non-special 4-block leaves u; and uz such
that the implied path between them passes through v; and v2
else if 3 an R-vertex v with degree > 4 then
6. find two non-special 4-blocK leaves #3 and uz such
thrgt the implied path between them passes through v
else' if 3 a W-vertex » with degree > 4 then
7. let u1 and uz be two non-special 4-block leaves such
that the implied path between them is non-adjacent on v
else {* The graph T is a star with the center v. *} star(u, vz, T
1i;
let yi, ¢ € {1,2}, be a demanding vertex in u; s.t. (1, ¥2) is not an edge in the current G;
G := GU {(y1,¥2)}; update T, £, 1c(G), we(G), and de(G)
od;
return G '
end aug3tod4;

Algorithm 1: Algorithm for finding a smallest four-connectivity augmentation of a triconnected
graph.
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{* The input 4-block tree T is a star. Find #; and uz in T
such that we can connect them and reduce the angmentation number. *}
procedure star(modifies vertex u;, uz, integer Z, tree ;
if there is one vertex v in T with degree > 3 then
8. find a vertex w that is closest to v in T s.t. w is a degree-1 R-vertex or
an F-vertex whose corresponding separating triplet contains a special 4-block leaf v;;
let w’ be a vertex that is closest to w s.t. either w' is a degree-1 R-vertex or an F-vertex
whose corresponding separating triplet contains a special 4-block leaf non-adjacent to v;;
find 4-block leaves #; and 22 whose implied path passes through w, w', and »
{* The above step ¢an be always done, since T is a star. *}
{* Note that T is a path for all the cases below. %}
else if 3 two non-adjacent special 4-block leaves in a separating friplet $ then-

9. let 43 and u2 be two non-adjacent special 4-block leaves in S
else if 3 two non-adjacent special 4 block leaves then
10. let w1 and 4, be two special 4-block leaves

else If 3 a special 4-block leaf u1 then
let w2 be a non-special 4-block leaf
else {* There is no special 4-block leaf and £ = 2. }
let u; and u2 be the two 4-block leaves
corresponding to the two degree-1 R-vertices in T
fi

end star;

Algorithm 2: A subroutine called by algorithm aug3to4 to handle the case when the 4-block graph
is a star.

Claim 4 If 4-blk(G) contains two critical F-vertices fy and f,, then every leaf is either in
an fi-chain or in an fo-chain and the degree of any other vertez in 4-blk(G) is at most two.

Proof: The proof of this claim is the same with a proof given in [RG77] for describing a
similar situation in finding a biconnectivity augmentation. 0

Corollary 5 Let f; and f; be two critical vertices in 4-blk(G) and let S;, i € {1,2}, be the
corresponding éepamting triplet of fi. If &, i € {1,2}, contains a special 4-block leaf, then
the augmenting number of f; is equal to the number of special 4-block leaves in S:.

Proof: It is easy to check that Claim 4 holds for the modified 4-block tree we give in the
proof of Lemma 4. We observe from Figure 5 that the augmenting number of a separating
triplet is at most equal to the number of special 4-block leaves in it. If we have more special
4-block leaves than its augmenting number, then the modified 4-block tree we built does not
satisfy the condition imposed by Claim 4. o

Corollary 6 Let f1 and fo be two critical F-vertices in 4-blk(G). If the number of degree-
I R-vertices in 4-blk(G) is greater than 2 and the corresponding separating triplet of f;,
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i € {1,2}, contains a 4-block leaf B;, we can add an edge between a vertez in B, and a vertez
in B, to reduce the lower bound given in Lemma 2 by one. |

Theorem 1 Algorithm aug3to4 adds the smallest number of edges to four-connect a tricon-
nected graph. '

Proof: We will prove in the following paragraphs that the lower bound given in Lemma 2
is reduced by 1 each time we add an edge in all possible cases. We keep on adding edges
this way until the lower bound is zero, in which case the graph is four-connected. Thus the
number of edges added is minimum and the resulting graph is four-connected.

We first observe that if the wheel constraint wc((G) dominates the lower bound, then
there exists exactly one wheel w. The wheel w is a star wheel and has a degree-3 center. We
also know that 4-blk(G) contains three non-special 4-block leaves and there is no critical F-
vertex. The pair of vertices found in step 1 satisfy part (iv) or part (v) of the leaf-connecting
condition. Thus step 1 of algorithm aug3to4 finds the right pair of vertices between which
a new edge is added if we(G) dominates.

If the degree constraint dominates, then there is at least one critical vertex. Steps 2,
3, 4, 8, and 9 make sure that the degree constraint of any critical vertex is reduced by 1 by
adding the new edge found. (Note that steps 8, 9, and 10 are in Algorithm 2.) Corollary 6
makes sure the implied path between the pair of vertices found in step 9 passes through all
critical vertices, if any. The pair of vertices found in steps 2 and 4 satisfy part (¢) of the
leaf-connecting condition. The pair of vertices found in steps 3 and 8 satisfy part (v) of
the leaf-connecting condition. THe pair of vertices found in step 9 satisfy part (v) of the
lea.f—connecting’, condition. Thus we reduce both d¢(G) and lc(G) by 1. Hence the lower
bound is reduced by 1 by adding an edge.

We now prove the case when the leaf constraint dominates. We have to make sure that
the pair of vertices found satisfy the leaf-connecting condition. In the following, we show
that in each step, the part of the leaf-connecting condition that is satisfied if the number of
4-block leaves is at least 4. Step 2: part (2); step 3: part (v); step 4: part (z); step 5: part
(i); step 6: part (4%); step 7: part (éiz); step 8: part (v) or part (v); step 9: part (v); step
10: part (v). If there are less than three 4-block leaves in G, we can add an edge between
demanding vertices of any arbitrary two 4-block leaves. Thus lc(G) is reduced by 1 each
time we add an edge. Hence the lower bound is reduced by 1 by adding an edge. o
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We now describe an efficient way of implementing algorithm aug3to4. The 4-block
tree can be computed in O(n - a(m,n) + m) time for a graph with n vertices and m edges
[KTDBC91]. We know that the leaf constraint, the degree constraint of any separating
triplet and the wheel constraint of any wheel in G can only be decreased by adding an edge.
We also know that 1c{G), the sum of degree constraints of all separating triplets, and the
sum of wheel constraints of all wheels are all O(n)}. Thus we can use the technique in [RG77]
to maintain the current leaf constraint, the degree constraint of each separating triplet, and
the wheel constraint of each wheel in O(n) time for the entire execution of the algorithm.
We also visit each vertex and each edge in the 4-block tree a constant number of times
before deciding to collapse them. There are O{n) 4-block leaves and O(n) vertices and edges
in 4-blk(G). We use a set-union-find algorithm to maintain the identities of vertices after
collapsing. Hence the overall time for updating the 4-block tree is O(n - a{n,n)). We have
the following claim.

Claim 5 Algorithm aug3to4 can be implemented in O(n - a{m,n) + m) time where n and
m are the number of vertices and edges in the input graph, respectively, and a(m,n) is the
inverse Ackermann function. O

6 Concluding Remarks

We have given a sequential algorithm for finding a smallest set of edges whose addition
four-connects a triconnected graph. The algorithm runs in O(n - a(m,n) + m) time using
O{n + m) space. We used the following approach to develop our algorithm. We first gave
a 4-block tree data structure for a triconnected graph that is similar to the one given in
[KTDBC91]. We then described a lower bound on the smallest number of edges that must
be added based on the 4-block tree of the input graph. We further showed that it is possible
to decrease this lower bound by 1 by adding an appropriate edge. The lower bound that we
gave here is different from the ones that we have for biconnecting a connected graph and
for triconnecting a biconnected graph. We also showed relations between these two lower
bounds. This new lower bound applies for arbitrary k, and gives a tighter lower bound than
the one known earlier for the number of edges needed to k-connect a (k—1)-connected graph.
It is likely that techniques presented in this paper may be used in finding the k-connectivity
augmentation number of a (k — 1)-connected graph, for an arbitrary k.
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