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Abstract

It has been observed by many researchers that the discrete cosine transform {DCT) has wide
applications in speech and image processing, as well as telecommunication signal processing for
the purpose of data compression, feature extraction, and filtering. In this paper, we present a
new method to design fast recursive algorithms for the DCT. The proposed method is based
on certain recursive properties of the DCT coefficient matrix, and can be generalized to design
recursive algorithms for the 2-D DCT.

It is worthwhile to show that the recursive algorithms we design are able to decompose
the DCT into two balanced lower-order subproblems in comparison to previous research works.
Therefore, our algorithms are especially suitable for the parallel computation. We have pro-
posed two parallel algorithms, which can reduce the parallel computation steps from linear
order déwn to logarithmic order. In addition, when converting our algorithms into hardware
implementations, we require fewer hardware components than other DCT algorithms.

*¥¥% A preliminary version A New Method to Design Recursive Algorithms for Computing the
1-D and 2-D Discrete Cosine Transforms is presented in the Fifth Digital Signal Processing
Workshop, Starved Rock State Park, IL., September, 1992.
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1 Introduction

This paper is concerned with designing fast recursive algorithms for the discrete cosine transform
(DCT). Ahmed and Rao [2], Elliott and Rao [10], Jain [18], Rao and Yip [32], and other researchers
pointed out that the DCT is especially suitable for implementing data compression, feature ex-
traction, and filtering. This is because the DCT performs much like the theoretically optimal
Karhunen-Loeve transform for the first-order Markov stationary random data [2] [11] {18] [32]. For
the applications of the DCT in image processing, speech processing, and filtering, consult 13] [8]
[14] [21] [22] [31] [33] [34].

In order to compute the DCT efficiently, fast algorithms have been intensively studied. In
general, they can be classifled into two approaches: indirect computation; and direct computation.
Indirect computation algorithms adopt the fast Fourier transforms [1] [13] [26] [30] [37] [39] or the
fast Hartley transforms [16] [27] [28], or convert the DCT’s into circular convolutions which can be
computed very efliciently using distributed arithmetics {25]. On the other hand, direct computation
algorithms use techniques such as matrix factorizations 7] [35] [40] {41] [42] [43], divide and conquer

~method [?3], recursive decomposition [17], prime-factor decomposition {24], and small odd-length
DCT modules which are derived from Winograd’s small modules of real-valued discrete Fourier
transforms (DFT’s) [15] [44]. ‘

In general, indirect computation algorithms took advantage of using existing fast a.lgorithms;
However, additional operations were often involved in the computation steps. On the other hand,
direct computation algorithms generally required fewer computation steps than indirect computa-
tion algorithms; however, it was tedious to prove their correctness. Moreover, it was often not easy

to give a clear procedure to describe their computation.

Hardware implementations also have been proposed. Jalali and Rao [19] designed a processor,
which was based on a matrix factorization algorithm developed by Chen, Smith, and Fralick [7].
Vetterli and Ligtenberg [38] designed a Fourier-Cosine transform chip based on Vetterli and Nuss-
baumer’s algorithm [39], which could compute an N-point DCT by an N-point DFT and several

rotations. Cho and Lee [9] proposed two different implementations for computing the DCT on



the existing VLSI DFT architectures. Chakrabarti and JaJa [4] designed a DCT systolic architec-
ture, which was based on their discrete Hartley transform systolic architecture. Chang and Wu
[6] proposed a systolic array; which could recursively generate coefficients of the DCT matrix; the
systolic array performed operations similar to implement a matrix-vector multiplication. Sun, Wu,
and Liou [36] used bit-serial and bit-para.llel data structures to implement vector inner products;
their architecture did not require multipliers, instead, a large table was required to store cosine
coefficients in binary form. In general, the requirements for the hardware implementations they
emphasized included regular functional units, regular data flows, minimum number of multipliers,

and fast throughput. However, these requirements could not be satisfied at the same time.

2-D DCT algorithms also have been studied. The conventional approach for their fast com-
putation is the row-column method. - This method requires Ny sets of Ny-point and N; sets of
Ny-point 1-D DCT’s for the computation of an (N1 X Na)-point DCT. Makhoul [26], by applying
the similar idea in Haralic [13], derived a 1-D DCT algorithm which was essentially identical to
that of Narasimha and Peterson [30]; however, the input data points could be even or odd. Then,
by generalizing his 1-D derivation method, he showed how an (Ny X N3)-point DCT could be
computed using an (N1 X Ng)-point real DET. However, the 22D DFT was still computed by the

row-column method.

Besides, there also existed algorithms working directly on the 2-D input data set and not
separately on rows and columns. Kamangar and Rao [20], who arranged the 2-D input data and
output data int{) 1-D arrays in lexicographical order, wrote the needed 2-D transform coefficients
as the Kronecker product of the two 1-D DCT coefficient matrices and yielded the sparse matrix
factorization for that 2-D coefficient matrix. Their algorithm performed fewer multiplications and
additions than that of Makhoul’s algorithm. In the Haque’s algorithm [12], an (Ng X Ng)-poiﬁt
DCT was decomposed into four (-"’%1 X —"\—rzz)-point subproblems. Each of the subproblems was a linear
combination of four (%L X %)—point DCT and scaled by two diagonal matrices, whose diagonal
entries were all fractions in the form of one over a certain cosine coefficient. His algorithm might
be regarded as an extended 2-D version of Lee {23]; however, both of them suffered from the same

problem of numerical instabilities because of the round-off error. Based on Hou’s 1-D algorithm

[17}, Chan and Ho [5] proposed an 2-D algorithm, in which the numbers of multiplications and
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additions were the same as that of Haque’s algorithm; however, unlike Haque’s algorithm, their

algorithm was numerically stable.

Generally, the above algorithms are efficient, if we only count the number of multiplications
and the number of additions required. However, there are other important operations in the
aigorithms, for instance, the memory reference operations and the shift operations. In effect, none
of the above algorithm designers have considered the complexities of the effort for arranging data
in appropriate memory locations; in addition, ;10ne of them have considered the complexities of
doing shift operations. Although the memory reference operations or the shift operations may be
unimportant in conventional computers, they must be considered if we want to design hardware

implementations.

There are other important issues for designing a good DCT algorithm. Besides proving the
correctness of the algorithm, the procedure of the algorithm must be clear. Furthermore, the
algorithm should be easily generalized to solve higher-order proBlems, provided we have ‘solved
lower-order problems. This property is especially attractive when we considef hardware impiemen-
tations, because it allows us to use regular components to synthesize hardware to solve ﬁjgh-order

problems.

It is our goal in this paper to present a recursive DCT algorithm, Wl_]jch can be used to solve a
higher-order problem from lower-order problems. In addition, these algorithms can be easily gen-
eralized as a ?—D DCT recursive algorithm. Moreover, these algorithms should be easily converted

/
into hardware implementations.

Although Hou [17] also designed a 1-D DCT recursive algorithm previously, his method was
quite different from ours. Based on the work of Narasimha and Peterson [30], Hou wrote the
angle of the DCT kernel as the angle of the DFT kernel plus a variable phase angle. Then, by
using this particular form of the kernel, he permuted rows and columns in a certain order and
proved the recursive property for the DCT coefficient matrix. Unlike his method, we investigate
the recursive property of the DCT coefficient matrix directly from the definition of the DCT ker-
nel. Moreover, we can derive our recursive algorithm directly from the recursive properties of the

DCT coefficient matrix. In our algorithm, the inpﬁt data are arranged in the following order:
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the even indexes are first placed In increasing order, then the odd indexes are arranged but in
decreasing order. This order was also suggested in [30] and used by Hou. However, our interme-
diate steps for arranging data into appropriate memory locations require shuffle-exchanges, rather
than Hou’s bit-reversed shuffling. Finally, our algorithm is more balanced than Hou’s algorithm
when decomposing the DCT into several functional submodules. Therefore, our algorithm is more
attractive than his a.lgonthm when performing a parallel computation. In effect, when compa,rmg
the hardware implementations, our algorithm requires fewer hardware components than that of
Hou’s implementation. In addition, the parallel computation time of our. implemenf.ation is also

less than that of his implementation.

Detailed analysis of our algorithms’ complexities is also provided in this paper. The complexity
criteria discussed in this paper include the numbers of multiplications, additions, shifts, and mem-

ory references. For the 1-D DCT implementation, the number of multiplications and the number

.of additions of the proposed algorithm are the same as that of Hou’s algorithm. However, for thé

2.D DCT implementation, the number of multiplications required in our algorithm is less than
that of Chan and Ho’s implementation 5], which is based on Hou’s 1-D DCT algorithm; while
the number of additions required in our algorithm is the same as that of their algorithm. Detailed

comparisons of the numbers. of operations required are given in Section 6 and Section 8.

We also propose parallel algorithms and hardware implementations for the DCT. In order
to reduce the parallel computatién"steps, we introduce two parallel algorithms: one is based on
the recursive }d;:nubling technjque, the other is based on the cyclic reduction technique. These
two algorithms, which- show the trade-offs between cost and performa.ﬁce, can reduce the parallel
computation steps from linear order down to logarithmic order. In addition, they can be easily

converted into hardware implementations.

The rest of this paper is organized as follows. In Section 2, we will explore the recursive
property of the DCT coefficient matrix. In Section 3, we derive the 1-D DCT algorithm, and we
give a formal procedure to describe the algorithm. In Section 4, ‘analysis of the DCT algorithm
is given. In Section 5, we propose parallel algorithms and hardware implementations of the DCT.
In Section 6, we generalize our method to derive a 2-D DCT recursive algorithm. Finally, some




concluding remarks are given in Section 7.

2 Properties of the DCT Coefficient Matrix

For a given input data sequence ,,0 < n < N —1, the DCT output sequence X;, 0 < k< N -1,
is defined by

/2 gl (2n + 1)k
Xp = v (k) né% T COS(———F7—— SN ), (1)
where
L fork=0;
- Vol H
k) {1, for 1< k<N -1 @

‘Equation (1) can be written in a matrix-vector multiplication form X = Cy x, where X = (X, X3, -
e X, x = (0,24, ...;xN_l)T, and the N x N DCT coefficient matrix Cy = [Cn(k,n)],
0<%k, n <N -1, which is defined by

\/%% cos(TERFLEY  fork=0,0<n< N —1;

Cn(k,n) = 3
(k) {\/%cos(ﬂ%}vi)i), for I<Ek<N-1,0<n<N-1 ®

In this section, we want to derive a recursive formula for the DCT coefficient matrix. For
convenience, we assume throughout this paper that N has a value of 2 to a power. We will remove
¢(k) and the normalization factor /& for every entry Cn(k,n) defined in Equation (3), since they

can be done in a separate step. Therefore, from now on, we deal with a’ simplified DCT version X

= Cpn x, where - _ ,
/ Cn(k,n) = cos(w—(—%;;——l)—k) , for0<k, n<N-1. (4)

‘We now analyze the DCT coefficient matrix Cp. We will arrange both columns and rows in
a certain order so that the resulting coefficient matrix has a recursive structure. First, we notice
that in each of the even rows an entry is equal to the reflected-symmetric one, i.e., each row has
mirror image terms which have corresponding values, While in each of the odd rows an entry is

equal to the reflected-symmetric one but with an opposite sign.

Lemmal : For0<n<N-1,

3 Cn(k,N—1-n), ifk is even;
Cn(k,n) = { ~Cn(k,N—1=n), ifk is odd.




Proof: From Equation (4),

r(AN - 1—n) + Dk
2N )
w{2n + 1)k
2N )
_ { Cn(k,n), if kis even;
- —Cn(k,n), if kis odd. n]

Cy(k,N—-1-n) = cos(

= cos(kr —

We now introduce two auxiliary matrices which are used to construct the recursive formula of

the DCT coefficient matrix.

Definition:

1. Let Py be the column permutation which arranges columns of a N X N matriz in the order
of
0,2 4,6, ...,N-2, N-1, N-3,...,7,5 3, L

Define Cny = Cn Py, and whose (kyn)-th entry is Cn(k,n).
2. Let S;{} be the row permutation which arranges rows of a N x N matriz in the order of
0,2,4,6,..., N-2,1,35,7 .., N-1

Define Cy = S?:r Cn, and whose (k,n)-th entry is Cn(k,m).

-

We prefer to us¢ Sy 5% to denote the row permutation matrix, because when performing SITV on
a vector, the opera.tlon is an unshuffied exchange The symbol Sy is reserved for performing a
shuffle exchange operation. In the following, we show the relationship among Cn, Cn, and Cn.

Lemma 2 can be obtained immediately from the definitions of Cy and Cn.

Lemma 2 :
1, For0<n¥ % -1, Cn(k,n) = Cn(k,2n),
Cnk,n+3)=Cn(k,N—1— om).
2, For0<k< % -1, Cr{k,n) = Cn{(2k,n), _
Cn(k+ %, n)=Cn(2k + 1,n). m}
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Lemma 3 : ForOSkS%—landOSng%{—l,

Cn(k,n) = Cn(k,n+ X)), and
Cn(k+&,n) = -Cn(k+ E,n+ 5.

Proof:

For0<k<—_1a,nd05n5%—1,

Cnlk,n + ¥y = Cn(2,n+%) . (from Lemma 2)
= Cn(2k,N ~1-2n) (from Lemma 2)
= Cn(2k,2n) (from Lemma 1)
= Cn(2k,n) (from Lemma 2)
= Cn(k,n) (from Lemma 2)
Cnk+X,n+ 4y = Cn(2k+1,n -l—%-) (from Lemma 2)
= Cn(2k+1,N~1-2n) (from Lemma 2)
= —Cn(2k+1,2n) (from Lemma 1)}
= —Cn(2k+1,n) (from Lemma 2)
= —Cn(k+%,n) (from Lemma 2) a
We now consider the %L-x % upper-left corner submatrix of Gy, and we find that it i& equal to
Cu.
2
Lemma 4 : ‘
,1' [CN(k’n) {)Sks%_]_ =C_§1\;
o<n<foq

Proof: We first prove that Cn(k,n) = Cn(2k,2n). Then we prove that C’g(k, n) = Cn(2k,2n).
For0<k, n< %r-—l,weha,ve

Cn(k,n) Cn(2k,n) (from Lemma 2)

= Cn(2k,2n) (from Lemma 2).
On the other hand, for 0 < &k < % —land 0<n < G y_q,

C’%(k, n) = Cn(k 2n) (from Lemma 2)
= cos(w) {(from Equation (4))
C N(2k 2??.)

7
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Andfor0<k<——land 5 -1,
g(k n) = g( (“”4)“'%{") .
= _}_\r_(k N_1-2n-1%))  (from Lemma 2) il

= C N(k N —-1-2n) '
= COS(W) (from Equation (4))
= OB (ﬂl—ﬁ_)—:?-l-:; )

= Cn(2k,2n). ' u!

Furthermore, if we denote the submatrix

N
Chik+5ml g < g ¥ -1
o<n<_1

as D n, then from Lemma 3 and Lemma 4 we obtain the following theorem.
2

. C
CNS[D ] O

In Theorem 5, Cx can be arranged to get C n. However, in order to get a recursive algorithm,
2 2

Theorem 5 : _
C
-D

oz vl
vz oz

Dx must be converted into a certain form related to either C%; or Cy. In the following lemma,
2 2
we show that D x can be decomposed into the product of three matrices, including one regular

lower triangular matrix Ly, one C% , and one diagonal matrix  ~.
2 2

Lemma 6 : 7

D

w7

=Ly C
2

Wl
O
ol

where L is a lower triangular matriz defined by

-1 2 -

-1 0 00 0
1 2 00 0
1 -2 20 0
Ly = 2 2 0

-1 2 -2 2 ... 2
and
Q%_ = diagonalfcos(#,)),
= Undr fro<ng ¥ -1




Proof: It is sufficient to prove the following general form:

For some fixed n, we have

D%(k, n) = (L%r_(k, 0), Lz?v(k, 1),.. .,L%(k, k))(C’,zg (0,n), C’%r(l,n), .. g(k n)) cos{t,),
fork=0,1,..., 5 -1,
where ;
rgd={ 0, Hizven

First, we can write the values of both C_’J_zv_(k, n) and D%(k, n) in terms of 8,. For 0 < k, n <
g
C_'%(k,n) = Cn(k,n) (from Theorem 5)

Cn(2k,n) (from Lemma 2)

Cn(2k,2n) (from Lemma 2)

cos(%}l%) (from Equation (4))

cos(2k6y,).
Ca(k+ 5, n) (from Theorem 5)

Cn(2k +1,n) (from Lemma 2)
Cn(2k+1,2n)  (from Lemma 2)
cos(fﬁ’ﬁ'—lx%—""u) (from Equation (4))

cos((2k + 1)8,,).

0ol

]

D_J:_(k,n)

ey

Having the above two relations, we can begin to prove the validity of the general form by

induction on k.

-

1. For k < 0, since L%(0,0) = C_’%(O, n) = 1, we have
D¥(0,n) = cos(6y,) = L%(0,0) C'%(O, n) cos(fn).
2. Suppose that it is true for k = m. That is,

Dy(m,n) = (Ly(m,0),Ly(m,1),...,Ly(m,m))(Cy(0,n),Cy(L,n),...,Cox(m,n))7 cos(6n)
= [(-D™ C'g (0,n) + (-1)™"12 C_‘_zzg(l,n) +oeet (1) 2 C‘g(m, n)] cos(6,).

3. When k =m 4+ 1,

D_;;_r(m +1,n) = cos((2m + 3)6,) = 2 cos(2(m + 1)8,) cos(8,) — cos((2m + 1)8,).




In the above equation, we have utilized the trigonometric identity:

cos A = 2cos(A-l2-B)cos(A;B) — cos B,

where A =2m +3 and B =2m + 1.
Therefore,

Dy(m+ 1,n) = ZC_’%(m-l— 1,) co8(8s) + (—1) D (m, )
= (-1)[(-)™ C’%(O,n) +(-1)m-12 C'%'(l,n) 4o (-1 2é§(m, n)] cos(6y)
+ 2C¥(m+ 1,n) cos(fn)
= [(-)* Cu(0,n) + (=1)tmt1)-19 C’zg(l, n)+ <-4 ()= 2 Cp(m, )
+ (—ll)(""'“)"(m"‘l) 25'_,}(771, +1,n)] cos{f)
= (L%(m-l- 1,0),L1?\r(m+ 1,1),...,Lg§(m+ 1,m),L_zzg(m+ 1,m+1))
(C‘%(O, n), C’_;_r(l, M)y C—‘g(m, n), C—'zz_v(m + 1,2))T cos(8y)-
The proof is completed. a

The following theorem shows the recursive structure of the coefficient matrix, and we will use

it to design our DCT recursive algorithms.

Theorem 7 :

Proof: Immediately follows from Theorem 5 and Lemma 6.. 0O
3 The DCT Recursive Algorithm

In this section, we will provide our DCT recursive algorithm. Before that, we first explain the
relationship of C, G, and C when performing the DCT. We know that Cn = Cn Py and Oy =
ST Cn. We start with the simplified DCT version X = Cy x in Equation (4). First, apply the

column permutation Py and the row permutation S T to the matrix C. Because Py is orthonomal,
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PE = Pyt. We have

[§e]=SJQGX:SJECNX:SIECNPNP;X:CNP%X:CN[ziJ (5)
Qo [+]
Xe T :Ee
where x| means (Xo, X2y .00y XN—2, X1, X3, ... y Xn-1)" and ° | means (29, %2, ...,ZN_2,
Q o

TN-1,--- £3,21)*. We will use the subindex ‘e’ to represent the even entries of a vector, ‘o’ the

odd entries, and ‘0’ the odd entries but in reversed order. Therefore, from Theorem 7 and Equation

(5) we have
X. Su Cu SxCx Te

Xe

Il
)
ol
Qe
w2
—
8
©
+
8
o,
o
=
f=
e
It
b~
wlz
i
vz
(@Y
ol
O
oz
—~
8
@
|
]
2.

In order to compute the simplified DCT version X = Cp x, two more multip]jéations are needed.

7]

First, before computing Equafion (6), we compute P§ x, which is [ Te } Second, because [ i” J
(4]

= 8% X, therefore, after computing Equation (6), we compute Sy §° ], which is X. In the
7]

following, we describe the procedure for computing the DCT.

DCT recursive algorithm:

Step 1: Cor'[,vpute [ Zf } = PLx;

o

Step 2: /* Recursively compute [ X ] =Gy | ], where
.Xo Tz

X. = S%P_ é%r_ (zet+z5)and X, =1L Szﬂ Cng_zv_ (ze — z5). */

1 le L}

2.1 if N is 2, then compute [ Xe } =G, T
.Xo T3

2.2 else perform Steps from 2.2.1 to 2.2.8:

} directly;

2.2.1 compute (z. + z5), and let the result be uy;
2.2.2 solve C xu recursively, and let the result be uy;

2.2.3 compute Sy ug, then the the result is X,;
2

11




2.2.4 compute (Ze — z5), and let the result be vy}
2.2.5 compute y v, and let the result be vg;

2.2.6 solve é% v recursively, and let the result be vs;
2.2.7 compute S x V3, and let the result be vy;

2.2.8 compute Ly v4, then the result is X
2

Step 3: compute X = Sy [ §" } O
. .

In the DCT recursive algorithm, Step 2, which implements Equation (6), is a recursive proce-
dure. In general, an N-point DCT problem will be decomposed recursively until V = 2. Note that,
the 2-point DCT is regarded as a basic computation block and will not be decomposed further.
Step 2.1 tests the condition whether N = 2; if N = 2, then computes the 2-point DCT problem
directly. Step 2.2 first decomposes the problem into two lower-order subproblems, and then solves
them independently. Fig. 1 shows the general signal-flow graph for the implementation of Step
2.2.

In the following, we illustrate our DCT recursive algorithm with three lower order examples.

For v = 2,
X= ng

(5] [t o] [2]=[cefz?2]]
X1 | 7| cos(]) —cos(%) zy | | cos(§)zo—z1) |

In this case, two additions (or subtractions) and one multiplication are required; see Fig. 2-(a)

which implies

for the signal-flow graph for N = 2.

Yor N =4,
X= C4X.

From Equation (6),
[ Xe } B 52 Gy 52 Co [ Te ] 52 Cs (2 + 75)
Xo L25:C2 Q> =Ly 52 C2 Q2 L5 Ly 83 C2Qa (2 ~ 25) .

12




Since ég = C3 and S = I, we have

Xe _ 02 (xe + 936)
[Xo J B {'L202Q2($e—:n5) ' (7)

In this case, first, four additions are required for computing u; = (.'::'..3 +z5) and v, = (2. — z5).
Second, two multiplications are required for computing v = Qg v;. Third, for computing either

Xe = Cauy or v3 = Cy vg, each one requires one multiplication and two additions, as was in the

case when IV = 2. And fourth, one shift and one addition are required for computing X, = L, vs.
Therefore, we require four multiplications, nine additions, and ome shift for computing Equation

(7); see Fig. 2-(b) for the signal-flow graph for N = 4.

For N =8,
X= Csx.

From Equation (6),

[Xc]__l: 54Cyq 554Gy :er]_[ 55 Cy(ze + 25)

) : - X . (8
Xo Li54CsQs —Lg54CaQy LsS54CyQy(ze — 25) -

T

In this case, first, eight additions are required for computing u = (2. +25) and v; = (2, — z5).
Second, four multiplications are required for computing v = Q4v;. Third, for computing either
us = Cyuq or vz = Cy v, each involves four multiplications, nine additions, and one shift, as was
in the case when IV = 4. Fourth, eight memory references are required for computing X, = S5 us
and vy = 54 vé'. And Fifth, three shifts and three additions are required for computing X, = L4 vq.
Therefore, we require twelve multiplications, twenty-nine additions, five shifts, and eight memory

references for computing Equation (8); see Fig. 2-(¢) for the signal-flow graph for N = 8.

4 Analysis of the Algorithm

In this section, we will analyze the complexities of the DCT algorithm. The DCT algorithm
contains four steps. Step 1 and Step 3 are concerned with data arrangement, and each can be done
with N memory references. Step 4 deals with multiplying constant factors to each of the data

entries, which can be done with N multiplications.

13

|




We now consider the complexity of Step 2. Step 2.1 deals with the basic 2-point DCT case. As
shown in Sect&ionl 4, the basic 2-point DCT problem can be solved by using one multiplication and

two additions. Step 2.2 includes eight substeps:

o Steps 2.2.1 and 2.2.4 are concerned with two vector additions (or subtractions), which can

be done with IV scalar additions (or subtractions).

o Steps 2.2.2 and 2.2.6 are concerned with two lower-order subproblems, which can be solved

recursively.

¢ Steps 2.2.3 and 2.2.7 deal with data arrangement, which can be done with N memory refer-

ences.

e Step 2.2.5 deals with a matrix vector multiplication @ x v1. Because @ x is a diagonal matrix,
4 2

this step can be done by uéing %’- multiplications.

¢ Step 2.2.8 also deals with a matrix vector multiplication L% v4. Because of the regularity of
the matrix L v, this step can be done with —‘} —1 shifts and % — 1 additions. This is because

2
the operation of multiplying a number by a constant factor 2 can be dome by using a shift

operation in the computer.

Theorem 8 : Let v = (vg,1,. . .,'0_21_1)1', which is a vector of length % Then, y = L% v can be

computed with % — 1 shift operations und % — 1 additions.

]
J
;

Proof: Because of the regularity of the matrix L N, the resulting vector y can be computed in the
following way:

Yo = %o;

v = 20— i1, for1<i<E -1
Therefore, & — 1 shift operations and & 1 additions (subtractions) are enough for computing

y=L,_;r_v. O

We now analyze the exact numbers of operations, including multiplications, additions, shifts,

and memory references, required for computing Step 2.
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1. Multiplications.

As shown in Section 4, when N = 2, one multiplication is required. From Steps 2.1, 2.2.2,

2.2.6, and 2.2.5, the recursive formula for the number of multiplications Tequired is

M(2) = 1, and
M(N) = 2M(ZY+ 4, for N > 2

which implies
' M(N) = %log N, for N> 2.

. Additions.
As shown in Section 4 that, when N = 2, two additions are required. From Steps 2.1, 2.2.2

?

2.2.6, 2.2.1, 2.2.4, and 2.2.8, the recursive formula for the number of additions required is

A(2) = 2, and
AN) = 24(8)+8N -1, for N >2;

which implies
A(N) = gNlogN -N+1, for N>2.

. Shifts, _
As shown in Section 4 that, when N = 4, one shift is required. From Steps 2.2.2,2.2.6,and

2.2.8, the recursive formula for the number of shifts required is

S(4) = 1, and _

SW) = 25(I)+ X 1, for N> 4
which i-i;ap]jes

S(N)zgr—logN—N+1, for N > 4.

. Memory references.
As shown in Section 4 that, when N = 8, eight memory references are required. From Steps
2.2.2, 2.2.6, 2.2.3, and 2.2.7, the recursive formula for the number of memory references

required is

R(8)
R(N)

8, and
2R(E)+ N, for N > 8

il

which implies
R(N)= Nlog N —~2N, for N > 8.
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7, 23, 35]
Our method [39, 41] 7] i27] [29] [40]

N X + S R X + X + X + X + X +

2 1 2 ] 0

4 4 g 1 ] 4 9 6 8 5 9 5 9

8 12 29 5 8 12 29 16 26 12 31 13 35 13 29
16 32 81 17 32 32 81 44 T4 34 85 33 95 35 83
32 80 209 49 96 80 209 116 194 88 211 81 251 91 219
64 192 513 129 256 192 513 292 482 218 509 193 615 227 547
128 448 1217 321 640 |- 448 1217 708 1154 520 1187 449 1467 547 1315
256 || 1024 2817 769 | 1536 || 1024 2817 |} 1668 2690 || 1210 2717 || 1025 3399 | 1283 3075
512 | 2304 g401 | 1793 | 3584 || 2304 6401 }| 3844 6146 | 2760 6115 1| 2305 7739 (| 2947 T043

1024 || 5120 | 14337 | 4097 | 8192 5120 | 14337 || 8708 | 13826 || 6202 13597 || 5121 | 38459 || 6659 | 15875

Table 1: The comparison of the numbers of operations required for computing the DCT. ‘X’ means
‘number of multiplications’, ‘+’ means ‘number of additions or subtractions’, ‘5’ means ‘number
of shifts’, and ‘R’ means ‘number ‘of memory references’.

Table 1 shows the numbers of multiplications, additions, shifts, and memorf references required
for the DCT algorithm, when N = 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024. The numbers of
multiplications and additions are the same as those required in the best and well-known algorithms
of [17} [23] [35] [39] [41]. In addition, the number of multiplications is less than that required in [7]
[27] [40]. The comparison of the numbers of operations is shown in Table 1, although the numbers

of shifts and memory references. are not provided in other research papers.

5  Parallel Implementations and Hardwaré Considerations

7
§
’

In previous sections, we have studied our sequential DCT algorithm. In this section, we first analyze
the bottleneck in the parallel computation, then we propose parallel algorithms and hardware

implementations for the DCT.
5.1 Parallel DCT Implementations

Suppose that we have sufficient processing elements to implement the DCT. We now analyze the

complexities for the parallel computation. In the sequential DCT algdrithﬁ: '
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¢ Steps 2.2.1 and 2.2.4 are concerned with two vector additions, which can be done in one unit

of time with two parallel additions simultaneously.

¢ Steps 2.2.2 and 2.2.6 are concerned with two lower-order subproblems, which can be solved

independently.

o Steps 2.2.3 and 2.2.7 deal with data arrangement, which can be done in one unit of time

using two shuffle-exchanges simultaneously.

» Step 2.2.5 deals with a matrix-vector multiplication @ ¥ 1. Because @ v is a diagonal matrix,
2

this step can be done in one parallel multiplication.

¢ Step 2.2.8 also deals with a matrix-vector multiplication I ¥ . However, as shown in The-
orem 8, the computation involves a first-order linear recurrence. Therefore, it also requires

% — 1 units of time in parallel computation for shifts and additions.

It is clear that to compute L%r_ vy in Step 2.2.8 is the bottleneck for the parallel computation,

This is because it incurs linear time steps for shifts and additions in the parallel computation. We
now introduce two fast parallel algorithms, which can compute the general problem y = Ly v in

only one parallel shift step and O(log N) parallel addition steps.

From Theorem 8, y = Ly v can be computed in the following way:

-

v Yo = Mo

Y = 20— Yy, for 1 <i< N -1,
Let w be a vector of length N, and

Wy =  Tp;

w = 2y, forl1<i< N-1.
Then, we have

Yo = Wo

% = wi—Yi, for1<i<N-L (9)

17




Vector w can be obtained in only one step by doing a parallel shift w; = 2v; foral1<i< N -1
We now show that Equation (9) can be computed by only O(log N) steps of parallel additions. For

convenience, let us call the problem in Equation (9) to be the prefiz difference problem.

The first algorithm, which uses the recursive doubling technique, can compute the prefix dif-
ference problem in only log N parallel addition steps.

Recursive doubling algorithm for the prefix difference problem:

Step 1: 3o = wo, and

forall1<i< N -1, doy=wi—wi-; ’

Step k: (for 2< k <log N)

for all 2= < i < N =1, doy =+ Yak-1-

Fig. 3 shows a signal-flow graph that when N = 16, the problem Ly v can be computed in
only one parallel shift step and log N (= 4) parallel addition steps based on the recursive doubling

algorithm.

Theorem 9 : When given sufficient processing elements, the recursive doubling algorithm can
compute the prefiz difference problem of size N in onlylog N parallel addition steps.

Proof: We show by induction on Step k that if 2(k—1) < § < 2F—1, then after step k, y; = w; —w,-_1'
+ g (—l)iwc; if § > 2F—1, then after step k, 1 = wj—wWi—1 + Wi-2° - —Wi_(2k_1)- Therefore,

after log IV steps, the prefix difference problem is solved.

Denote y(k) to be y; after step k.

i

When k = 1, 28 -1 = 1. As shown in Step 1 that yél) = wp and y}l) = w; — w1 for
1<i<N-1

When k > 1, y(k) = ygk"l) + y(kﬂlk)_l , for 2(-—1) ‘5 i < N — 1. There are three cases:
i i §=2(k—1)

(]) _ (k=)

1. ¥ i < 2(51) y; is not changed. Therefore, y; ¥

18
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2. If 2(5=1) < § < 25 — 1, then 0 < ¢ — 2(F—1) < 9(k=1) _ 1, By induction, y,(k"l) = w; — Wi
k— - (k=
+ Wige— Wi (a(k—1)_1)3 and yf_z(l,?_l, = Wi _ok-1) — Wy _g(k—1)_q T (—1)(' Ak J'))’wcj.

Therefore, y,(k) = Wi — Wiy + Wi~z -+ (—1)'wp.

3. If i > 2% — 1, then ¢ — 2(F-1) > 2(k-1) _ 1, By induction, y(k_l) = Wi — Wiy + Wimg - —

k]
k-1 :
W;_ (atk~1)_yy; and y,g_z(k)—x) = Wisglk-1) = Wi_glk-1)1 + *** — W;_g(k-1)_((k~1)_7). Therefore,

ygk) =w;— Wi+ - Wi (2k-1)- ) o

The second algorithm, which uses the cyclic reduction technique, can compute the prefix dif-
ference problem in only 2(log N') — 1 parallel addition steps. ‘

Cyclic reduétion algorithm for the prefix difference problem:
Step 1: yp = wo, and
forall 0 <i< &, do ys = wy — wyiy;
Step k: (for2< k< (logN)—1) i
for all0 < i< %, do Yok = Yiok + Yigk _g(k-1);
Step k+1log N: (for 0 < k < (logN) — 2)
for all 0 <4 < 2%,  do yjp(0s M8y o008 M=k-1) = Ya(Cos N)=k)j2((og M)—k~1) + Yip((log N)—5)}

Step 2(logN) —1: for all 0 < i & &, do yoips = warys — yui;

J

Fig. 4 shows a signal-flow graph that when N = 16, the problem Ly v can be computed in only
one parallel shift step and 2(log N') — 1 (= 7) parallel addition steps based on the cyclic reduction
algorithm.

Theorem 10 : When given sufficient processing elements, the cyclic reduction algorithm can com-

pute the prefiz difference problem of size N in only 2(log N) — 1 parallel addition steps.

Proof: We briefly sketch the idea of proving this theorem. If we ignore the operations of computing

2

y(;ﬁ) in step k, for all 1 < k& < log V, the algorithm is to compute two subproblems of size %- They
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i e e T —

are

(1) w = wo and v = wi — ¥i-1, for 1< i< and (10)

(2 yy = vy and ¥ = Wi — Yi-1, for%{-+1£i<N. ' (11)

However, yy = Wy —~ WX, 4= wo is computed only in Step 1 through Step log N. Tn addition,
2 2

yx is used (on the right-hand side of the assignment) only after Step log N. Therefore, if we

include the operations of computing yx, we can Teplace ¥ x =Wy by y'_g; =wx—WE_y 4---—wo

in Equation (11). Thus, the algorithm computes the prefix difference problem correctly.

For formally proving the theorem, we could further divide each of the problems in Equations
(10) and (11) into two subproblems, and repeatedly use the same techniques as shown in the last

paragraph. Because of the space limitation, we omit it in this presentation. ad

The recursive doubling algorithm and the cyclic reduction algorithm in actuality show the
- trade-offs between cost and performance. Although the recursive doubling algorithm only requires
log N steps, it requires in total. N (log N)=N+1 additions. On the other hand, the cyclic reduction
algorithm requires 2(log V) — 1 steps; however, it only requires 2N — (log N)—2 additions. In any
case, both algorithms can reduce the parallel addition steps for solving Ly v from O(N) down to
O(log N)-

In the following, we show the complexities for the parallel computation.
1

J

¢

1. Parallel multiplication steps.
The recursive formula for the number of parallel multiplication steps required is

M@2) = 1, and
M(N) M(Ey+1, for N>2

i

which implies
M(N)=logN, for N>2.

9. Parallel addition steps.
The recursive formula for the number of parallel addition steps required is

A(2) = 1, and
A(N) = A(-J;L)-l-O(logN), for N > 2;

[
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which implies
A(N)=O(log’ N), for N > 2.

3. Parallel shift steps.

The recursive formula for the number of parallel shift steps required is

S(4) = 1, and
S(N) = S(E)+1, for N >4

which implies

S(NY=logN -1, for N > 4.

4. Parallel memory reference steps.

The recursive formula for the number of parallel memory reference steps required is

R(8) = 1, and
R(N) = RE)+1, for N>8;

which implies
R(N)=logN -2, for N >8.

5.2 Hardware Implementation Considerations -

We now consider the hardware implementations of our DCT algorithm. Fig. 1 shows the general
signal-flow graph for the implementation of Equation (6). The block L x, which performs shifts
and additiong, can be implemented by either the recursive doubling algorithm as shown in Fig. 3

or the cyclic reduction-algorithm as shown in Fig. 4 depending on the cost-performance trade-offs.

In practice, in order to save hardware without slowing down the processing speed, we can use
only one Cy and Sy as shown in Fig. 5 instead of two C %’s and two S‘—:— ’s as shown in Fig, 1.
2 . 2

Note that Su is a shuffle-exchange network of size -];r—
2

In Fig. 5, the hardware is divided into four parts: one coefficient multiplier Q ¥, one ¢ x, one
shuffle-exchange network S x, and one shift and adder L . A multiplexer is used to multiplex the
top and the bottom halves of thelsignal flow. Input data are read from the host computer and
are executed in a pipelined fashion. The top half of the signals will pass through the C x and the
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11l213|a4ls5|6f7|8]9j10}il}l2
Qy | B* B? B3 Bt BS
é%r_ T | pt|T%|B| T :B3 74| B*| T® | B®
Sy mlpg|r|p2|Te|B|T¢|B|T°|B°
Ly B! B? B3 B* BS

Table 2: Five sets of input data are pipelined entering into the bhardware: € ¥, CN S 5, and LN,

and are executed in a pipelined fashion in twelve units of time. T* means the k-th top -half mput
signals, B* means the k-th bottom-half input signals.

S ¥ functional units first; while the bottom half will first perform coefficient multiplications by a
coefﬁc1ent multiplier @ » X, _then pass through the ¢ ¥ and the SN functional units, and finally pass
through the shift and a.dder processor L,v Table 2 shows that succeedmg sets of input data can
enter the hardware and can be executed in a pipelined fashion. Note tha.t the functional units € x

-

and Sy are at full utilization.
2 r

Tt is worthwhile illustrating that our hardware implement.ation is better than the implementa-
tion proposed by Hou [17]. In addition, we propose fast hardware implementation for computing
L K 4, and we require fewer hardware components than Hou. In our implementation, we only
require one shuffle-exchange network, rather than two bit-reversed shuffling networks proposed by
Hou. This is because our algorithm is more balanced than Hou's algorithm when decomposing
the DCT into several functional submodules. Therefore, our algorithm is more attractive than his -
algorithm when performing the parallel computation. In effect, the parallel computation time of '

our implementation is also less than that of his implementation.
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6 2-D DCT

For a given input data matrix xn; xN, = [Enyng)s 0 £ 21 S N1 - 1,0 < nz < Ny — 1, the 2-D DCT
output matrix Xy xn, = [Xiy k)]s 0 < by £ Ny —1,0< by £ Np — 1, which is defined by

' N1 Mot 7r(2n1 + 1)k Tr(zn2 + 1)1;:2
Kby = \/—\/* E(kl) E(k2) nIZ_:D nzz_:o Tnyjmg © 2N, )COS( ) ’ (12)
where
L fork; =0
J =4 V2! '
(ks) { 1, for1<k<N;-1 (13)
and i = 1l or 2.

Similar to the 1-D case, we will also ignore ¢(k;) and the normalization factor ﬁ for

convenience. Therefore, from now on, we deal with the simplified version of Equation (12):

1 —1 Np=1 . ’
_ 1r(2n1 + 1)k1 7('(2‘]’&2 + 1)]62
Kk = MZ=0 n22=0 Tny ng COS( 2N, )cos( 2N, ) . (14)

According to the conventional row-column method, we can express the simplified 2-D DCT -

version in Equation (14) as the following matrix form:

Xy xN, = Cny (O X3, vy )T = Cw, Xy vy G- (15)

Again, we assume throughout this paper that Ny and N, have values of 2 to a power.

¥
J

6.1 The 2-D DCT Recursive Algorithm

We now construct our 2-D DCT recursive formula. We start with the simplified 2-D DCT version
in Equation (15). First, by arranging appropriate row permutations and column permutations, we

have

T
XN]_ xNe = CN1 le XNy CN2

= SN1 SI{'H Cw, P, Pgl KN x Ny (SNz SI{B Cwn, Py, PJE;)T

= SN‘I éf\ﬁ P§1 XNy x Ny (SNz éNz Pli\;z)T

~ T ~T ol
= SN1 CN1 -PN1 XNy x Ny PNz CN; SNz

23
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where Sn;» S%}i, Px;, and Pﬁ. are similarly defined as in Section 3, for i = lor 2;in addition,
Sn, 5%, = Fm PE = Iy, and SN §%. = P, PL = In,. Next, multiply S%, and SN, o ‘both-

sides of the above equation, and we have

5% Xmxe SN = 5%, Sm &n, P XNy xN: P (o} ¥4 A
= CN1 (Pﬁl XNy x Nz PNz) f_‘,‘%:,z (16)

We now consider the structures of the two matrices: PE, XNyx, Py, and 5%, XNy Sn,. Let
z, represent the submatrix formed by the even rows of XN, xN2» and z5 represent the submatrix

formed by the odd rows of XNy x N, but in reversed order. Then,

T i
PN1 lexNa = { wi l .
° Ny XNz

Let Z.e represent the submatrix formed by the even columns of Tey Zes represent the submatrix
formed by the odd columns of . but in reversed order; ZTse represent the submatrix formed by
the even columns of z5; and a5 represent the submatrix formed by the odd columns of Tz but in

reversed order. Then,

ST T T Tesd
P, X x s P = { o ] Py, = { g } : (17
7] Qe o0
N1><N2

Similarly, let X represent the submatrix formed by the even rows of Xy xNa» and X, represent

the submafrix formed by the odd rows of XNy xNp+ Lhen,

1 x
S%l XN xN; = [ Xe ] .
° N1XN2

Let X.. Tepresent the submatrix formed by the even columus of X.; Xeo represent the submatrix
formed by the odd columns of X¢; Xoe represent the submatrix formed by the even columns of Xo;

and X,, represent the submatrix formed by the odd columns of X,. Them,
- ' X X, X -
5% X v = | S 1 Swm=1x. €0 . : 18
S
Therefore, from Equations (16), (17), and (18), we have S
Xee Xeo _ Tee Ted ~T V ‘
{ Xoe Xoo =Cm Tge Too CNz. (19)
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Equation (19) is our basic 2-D DCT recursive formula. Now, by applying Theorem 7, we have

‘Xee Xeo

_Xoc Xoo

I S&C& Sw Cwy 2o 25 ] | O ST Qe CT ST L%,
2 2 2 'z 2

L_21 el E;LQ_L —LELS%LC%LQEL Tge 3‘66] CT 52_1‘}2, —Q CN SN LT

b 2 2

By expanding the matrix multiplications on the right-hand side of the above equa.tlon, we obtam

the following four equations:

Xee = 51 [Cw (See + Zes + 2o + ) (“JE;Z] Sﬁzz; (20)
Xeo = 813 [Con (ee — 5o+ 200 — 200) @ Ol ] SF, L%}%; @
Xoe = Ly Sm [fJg:L Q0 (Tee + Tes — T3 — xoo)C ]3 (22)
Xoo = Ly S [Om Qu (%ee = 3o = 350 + 2a5) Q0 Chy ] STy 1 (23)

Note that, the terms inside the bracket of the above four equations are four subproblems with
a reduced size "-Vil- X —Néz- of Equation (19). By applying the same procedure repeatedl¥; we can
decompose each of these reduced-size subproblems until N3 = N; = 2, and we obtain the desired

recursive algorithm.

In order to design a fast algorithm, some optimizations are considered. First, reduce the number
of matrix additions.
r
lJ .
Theorem 11 : The four matrices ¥4 = Tee + Tes + Toe + Tozy Tb = Lee — Teg + Tse — Too, To =
Zee + Loz — Tze — Tagy GNd Ty = Tee — Tes — Tae + Tz can be computed by using only eight matriz

additions.

Proof: We show eight matrix additions to compute the four matrices: z,, s, ., and z4.

1. U1 = Tee + Tegy, 2. 12 = Tee — Teg, 3. 13 = Tge + Ty 4. 14y = &5, — T3,
5. $a=t1+t3, 6. ﬂ:b=t2—]-t4, 7. $c=t1—t3, 8. g =19 — 4. O

Second, reduce the number of multiplications. We now consider the term Qx; z4@Q »,, which
2 2

is required to compute X,, in Equation (23). Note that, @~ and @ », are diagonal matrices, and
2 2
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T4is 2 %1- X 52 N matrix. Let a2 be the vector in the diagonal of Q , and w0 be the vector in the
diagonal of @ »; Nz - Then, Q ~ M g Q = (g~ M q Ez) ® x4, where '@’ means pointwise multiplications
of two ma.tnces Since . and q& are a.lrea.dy known by its definition, we can compute gx n q

and store the results in the memory in advance. Therefore, we can compute Q T4 Q in only

%L X —1%1 scalar multiplications.

Theorem 12 : If the value of gy qg_rz is stored in the memory in advance, then Qr, zqQm, con
2 2 . 2 2

be computed in only Hzl X %Z scalar multiplications. O

In the following, we give the procedure for computing the 2-D DCT.

2.D DCT Recursive algorithm:

Tea

ge Tzs

Step 1: Compute [ Tee ] = P§1 XNy x N2 PNz

Xee X - Tee Tez | A
Step 2: /* recursively compute | % L7 | =C e Ted L L *
P / 8 v e [ Xoe Xoo M Tge ZToa Na /
2.1 if Ny is 2 or Ny is 2, then thisis a special case and we omit details here;
2.2 else perform Steps from 2.2.1 to 2.2.5:

2.2.1 /* compute Za, Tb, Te, and z4 in Theorem 11. */
tl = Tee + Zes, f’2 =-Tee — Teds t3 = Epe + L5534 t4 = Tge — T3,
%—tl-l-ts, gp=ta+ts, Tc=h— t, zg = Iz — la;

2.2.2 recursively compute X = .5' (CN T _2_) ST ;

2.2.3 recursively compute X0 = S;ﬁ_ (C x(,Q )S% L{r ;

2.2.4 recursively compute Xoe = Ly Sgl_ (C N To ._z) .S'T ;

2.2.5 recursively compute Xoo = L_::r:zi Sg} (CN% Q% T4 Qyzl G %2) SI\} L{,ﬁz;

Xee. Xeo ] ST

Step 3: compute Xz xN; = S [ Y. X
oe []4]

In the 2-D DCT recursive algorithm, Step 2, which implements Equation (19),- is a recursive
procedure. In general, an (N1 X Nz)-point DCT problem will be decomposed recursively until Ny
= N, = 2. Note that, in our opinion, the (2 x 2)-point DCT problem should be regarded as a basic
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computation block and should be computed directly with the optimized operation count. Step 2.1
tests the condition whether Ny = 2 or Ny = 2; if this is true, then handles this special case until

N1 = N2 = 2. Note that, this special case does not need to be illustrated due to space constraints;

however, this has been verified. Step 2.2 deals with the four subproblems, which can be solved
independently. Fig. 6 shows the general signal-flow graph for the implementation of Step 2.2.

In the following, we illustrate our 2-D DCT recursive algorithm with three simple examples.

For Ny = Ny = 2,

T
Xax2 = Ca2x2x2C3

which implies
| Xoo Xot _ [ 1 1 - Zoo ZTol 1 COS( %)
X0 X1 | cos(f) —cos(%) Tio 1 1 —cos(%)

(zoo + 210) (zo1 + z11) ] [ 1 cos(

ENEYNE

| cos(§)(zoo — #10) cos(§)(zo1 — 1) 1 —cos(

]

(%o + Zo1 + 10 + %11)  cos(E) (oo — To1 + T10 — 213)
| cos(E)(woo + zor — Z10 — T11) 3(zoo — To1 — T10 + &-“11)_ )

In this case, eight additions as shown in Theorem 11, two multiplications, and one shift are

required; see Fig. 7-(a) for the siggal-flow graph for Ny = Np = 2.

4

For Ny = Ny = 4,

Xixa = Cyxqx4 CT.

From Equation (19),

[ Kee Xeo ]

Xoe Xoo | 24)

558, 553G, [:r: z] CTST  Q.CTSTIT
L352C2Q2 —I128:C,Q- CIsT -Q,CTSTIT .

Zie Ta3

Since € = C5 and Sy = 8T = I, we have

Xce = C2 (zee + Te5 + Tz + 366) C’-zr;
Xeo = Co (mee — Ze5 + Tpe — xﬁﬁ) Q2 Cg Lg‘:
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Koe = Ly Cy Q2 (E.ee 4+ ZTepg — Loe 376‘6) Cg;

Xoo = Lq Cs Q2 (ﬂieg — Te5 — Lie + 5'353) Q? Cg‘ Lg'

In this case, first, eight 2 X 9 matrix additions are required for computing Za, Tbs Les and T4 as
shown in Theorem 11. Second, for deriving the terms uy = Zp @2, U2 = Q2 @, and Uz = Qoz4C2,
each requires 2 X 2 multiplications. Note that we can compute QozaQ2 in 2X 2 multiplications
as shown in Theorem 12. Third, for computing either Xee =' Co g C'{, or ug = Cotq C%', or
ug = Cg U2 CT, or ug = Ca U3 CT, each one requires two multiplications, eight additions, and one
shift, as was in the case when Ny = No = 9. Fourth, computation of Xeo = Us L%' needs one shift
and one addition twice; determination of Xee = Lo us embodies one shift and one addition twice;
derivation of Xeo = L2 s L%' requires one shift and one addition four times. Therefore, we require
twenty multiplications, seventy-two additions, and twelve shifts for computing Equation (24); see

Tig. 7-(b) for the signal-flow graph for Ny= Ny =4
For Ny = N2 =38, ]
Xaxs = CsXaxs ct.
TFrom Equation (19),
[Xc, Xeo l _ \ Sy 5,04 } {a: Tes l [é;{s;{ Q4CTSTLY } 25)
Xoe Xoo L454CaQs ~L:5:C4Q4 Tge Lo cTsy —Q4CTSTLY

-

We have /

X = S54[Ca(Fee + 2es + Toe + 25) &115%;
Xoe = LaSa [Cs Qa4 (Tee + Tes — Toe — z35) Ci) 515

%o = Ly Sa(CaQa(Bec — e — e+ 725) Qu Cil S§ Li-

In this case, first, eight 4% 4 matrix additions are required for computiﬁg Tay Thy Tey and z4 as shown
in Theorem 11. Second, for computing either 41 = Zb Q4, of ug = Q4Te, OT U3 = QatdQas each
one requires 4 X 4 multiplications. Third, for denvmg the terms %4 = Guz, CT, us = Gy CF,
Ug = Cius Cf, and u7r = Cyus C{, each requires twenty multiplications, seventy two a.dditions,

and twelve shifts, as was in the case when N1 = Nz = 4. Fourth, eight 4 X 4 memory reference
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operations are required for computing X, = 54 u4 .S':f , Ug = Sy U Sff , Ug = S4lg Sf , and uqg =
Squr Sff . Fifth, computation of X,, = ug L] needs three shifts and three additions four times;
derivation of X,e = L4 us embodies three shifts and three additions four times; and determination
of X,0 = Lauyg Lg requires three shifts and three additions eight times. Therefore, we require 128

multiplications, 464 additions, 96 shifts, and 128 memory references for computing Equation (25).
6.2 Analysis of the 2-D DCT Algorithm

In this subsection, we will analyze the complexities of the 2-D DCT algorithm. The 2-D DCT
algorithm contains four steps. Step 1 and Step 3 are concerned with data arrangement, and each
can be done in 2(V; X N3) memory references. Step 4 deals with multiplying constant factors to

- each of the data entries, which can be done in N7 X N; multiplications.

We now consider the complexity of Step 2. For simplicity of this presentation, we only discuss
the case when Ny = Nz = N. Therefore, Step 2.1 deals with the basic (2 x 2)-point DCT. As
shown in Section 6.1, the basic (2 x 2)-point DCT can be solved by using two multiplications, eight

additions, and one shift. Step 2.2 includes the following operations:

¢ Eight & x ¥ additions are required for computing z,, zs, 2., and z4 as shown in Theorem
g 2 2 D g ?

11,

¢ Three %r X % multiplications are required for computing uy = 2, Qn, uz = Qu 2., and
2 2

¢ Four subproblems, which include u4 = Cy 2, C%, us = Cx 1 ("31;, ug = Cn ug CF, and
2 53 2 z 2 5

u7 = Cn ug G , can be solved recursively. °
2 7
e Eight -f%’- X —’,j- memory reference operations are required for computing X.. = § X g S TN.:
2

ug = S’_zzgus S}r!', Uy = Sz_:_ 'u.gSi, and u1g = S_zzgu75'f}.
2 2

e Four times of %(% — 1) shifts and additions are required for computing X., = us L%,
2

Xoe = Ly ug, and Xoo = Ly u10 L% .
2 2 5




We now analyze the exact numbers of operations, including multiplications, additions, shifts,

and memory references, required for computing Step 2.

1. Multiplications.
As shown in Section 7, that when N = 2, two multiplications are required. The recursive

formula for the number of multiplications required is

M(2) = 2, and
M(N) = 4aM(§)+5N?, for N > 2;

which implies
M(N) = %NQ log N — iNg, for N > 2.-

2. Additions.
As shown in Section 7, that when N = 2, eight additions are required. The recursive formula

for the number of additions required is

A(2) = 8, aund
AN) = 4AY)+3N%2-2N, for N > 2

which implies

A(N)=3N%log N —2N®+ 2N, for N >2. ’

3. Shifts.
As shown in Section 7, that when N = 2, one shift is required. The recursive formula for the

number’ of shifts required is

1, and
4S(¥) £ N2~ 2N, for N > 2;

5(2)
S(N)

l

which implies
S(N) = N?log N — ZENZ +2N, for N>2.

: 4, Memory references.
't As shown in Section 7, that when N = 8, 128 memory references are required. The recursive
il

s formula for the number of memory references required is

R(8) = 128, and
R(N) = 4R(¥)+2N?, for N >
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Row-Column -
with 1-D DCT
Our method f23, 17] [20] (5, 12] |
NxN x -+ 3 R % + X + % +
2x2 2 8 1 0 4 8
4x4 20 T2 12 0 32 T2 28 66 24 T2
8x8 128 464 96 128 192 464 || 128 | 430 144 464
16 x 16 T04 2592 608 1024 1024 2592 768 2592
32 x 32 3584 13376 3392 6144 5120 13376 3840 13376
64 x 64 17408 65664 17536 32768 24576 65664 18432 65664
128 x 128 81920 311552 86272 | 163840 || 114688 311552 86016 311552
256 x 256 || 376832 | 1442304 | 410112 ; 786432 || 524288 | 1442304 393216 | 1442304

Table 3: The comparison of the numbers of operations required for computing the 2-D DCT. *x’
means ‘number of multiplications’, ‘+’ means ‘number of additions or subtractions’, ‘S’ means
‘number of shifts’, and ‘R’ means ‘number of memory references’.

which imphes
' R(N)=2N%log N — 4N*?, for N > 8.

Table 3 shows the numbers of multiplications, additions, shifts, and memory references re-
quired for the 2-D DCT algorithm, when N = 2, 4, 8, 186, 32, 64, 128,’aa1d 256. The numbers of
multiplications are less than those of [5] [12] [20] and the conventional row-column method. The
numbers of additions are the same as those of [5] [12] and the conventional row-columi method.
The Compa,rison of the numbers of operations is shown in Table 3, although the numbers of shifts

and memory references are not provided in other research papers.
-

¥
J

6.3 Implémentation Considerations for the 2-D DCT

Suppose that we have sufficient processing elements to implement the 2-D DCT. It is clear that
the parallel operation complexities for the 2-D DCT are the same as those for the 1-D DCT.
That is, the complexity for the parallel multiplication steps is O(log V), the complexity for the
parallel addition steps is O(log® V), the complexity for the parallel shift steps is O(log V), and
the complexity for the parallel memory reference steps is O(log N'). Note that, in the 2-D DCT
parallel computation, we use more processing elements than those for the 1-D DCT. However, their

complexity order for the parallel operations are the same.
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Tn the following, we consider a hardware implementation which computes Equation (19). We
show how to use only one copy of functional units to implement the 2-D DCT in a pipelined
fashion. In Theorem 12 (in Section 6.1), we show that @ M % Qx N, can be done by a ‘pointwise’
matrix multlphcatmn. In effect, 25 @ 5y N and Q 2, also can be done by using pointwise matrix
multiplications, provided we have prepared necessary coeflicient matrices in the memory in advance.
Therefore, we use ¢ Ny to represent the functional unit for implemenfing the three pointwise

matrix multiplications.

Let (x) represent the current input —L % M2 gubmatrix. Then, Fig. 8 shows the proposed
hardware implementation. In Fig. 8, the hardware is divided into five pa.rts one p01ntw1se matrix
multiplier Q « 22, ORE o m (x) C ,one S Ny (x) 5% X , one LN (x), and one (x) LT Input data
are read from the host computer and are executed in a plpehned fashion. Ta,ble 4 shows that
succeeding sets of input data can enter the hardware and can be executed in a pipelined fashion.

Note that the functional units Cy (X) C and S~ (x) ST, are at full utilization.
2 2

7  Conclusions

A systematic method for designing the DCT recursive algorithm has been presented in this paper.
The method is based on certain recursive properties of the DCT coefficient matrix that are proved
in the paper. This method can be. generalized to design the 2-D DCT recursive algorithm. Since
the DCT is ofthonormal [1] [2], the inverse DCT transform can be realized by taking the transpose

of the forward transform.

An important contribution of this paper is to derive a more balanced recursive formula when
decomposing the DCT into several functional submodules. This allows us to design fast parallel
algorithms. It also allows us to design fast hardware implementations but with fewer hardware

components than other designers.

Detailed analysis of the algonthms is provided in this paper. We consider operation complexities
including those for multiplications, additions, shifts, and memory references, 'because all of these

must be considered if we want to design parallel algorithms and hardware implementations. For the
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Qum,» |D'|C'|B D% | C? | B2 D3| c3| B
2

Al Dt Bt A2 | p2| 2 Bz A3 | p?l 3| e

.aL,z’ﬂ

Sm (x)S%, Al | D' |C' | B* | A |D?|C? | B | A% |D3|C?| B
2 2
L (%) Dt D%y C? D3| Ce
2
(x) L%, Dt Bt D? | B? D3| B®
F

¥
Fd

_1\[2:
S M (x)S%,, L 2 (x), and (x) L , and are executed in a pipelined fashion in fourteen units of

tlme Note tha.t initially, let A = xa, B = 2y, C = 2., and D = z4. After passing through the
hardware, X.e = A, Xeo = B, Xoe = C, and X, = D.

Table 4: Three sets of input data are pipelined entering into the hardware: ¢ M M, C ¢ M (%) C
2 2
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sequential algorithms, we Tequire %Iog N multiplications, %N log N — N + 1 additions, % log N —
N +1 shifts, and N log N —2N memory references, for computing an N-point DCT. The numbers of
multiplications and additions are the same as those required in the best and well-known algorithms

of [17] [23] [35] [39] [41].

For the sequential 2-D algorithms, we require 2N%log N — $N? multiplications, 3N 2log N —
9N? + 2N additions, N2log N — ZN? + 2N shifts, and 2N?log N — 4N 2 memory references, for
computing an (N x N)-point DCT. The number of multiplications is less than those of [5] [12] [20];

while the number of additions are the same as those of [5 [12].

We also consider the parallel computation. We propose two parallel algorithms: one is based on
the recursive doﬁbling technique, the other is based on the cyclic reduction technique. These two
algorithms, showing the trade-offs between cost and performance, can reduce the parallel computa-
tion steps from linear order down to logarithmic order. Suppose that we have sufficient processing
eleinents for the parallel computation. We require O(log N} parallel multiplication steps, O(log® V)
parallel addition steps, O(log V) parallel shift steps, and O(log N) parallel memory reference steps,
for computing both the 1-D and the 2-D DCT. Note that, in the 2-D DCT parallel computation,
we 1se more processing elements than those for the 1-D DCT. However, the complexity order for

the parallel operations of these two are the same.
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