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Abstract

In this paper, a bar code recognition system using neural networks is propoéed. It is well
known that in many stores the laser bar code reader is adopted at check—out counters. How-
ever, there is a major constraint when this tool is used. That is, unlike traditional camera-
based picturing, the distance between the laser reader (sensor) and the target object is close
to zero when the reader is applied. This may result in inconvenience in store automation be-
cause human operator has to take care of either the sensor or the objects (or both). For the
purpose pf store automation, human operator has to be removed from the process, i.e., a ro-
bot with visual capability requires to play an imp-ortant role in such system. In this paper,
we propose a camera-based bar code recognition system using backpropagation neural net-
works. The ultimate goal of this approach is to use camera instead of ldser reader such that
store automation can be achieved. There are a number of steps involved in the proposed
system. The first step the system has to perform is to locate the position and orientation of
the bar code in the acquired image. Secondly, the proposed system has to segment the bar
code. Finally, we use a trained backpropagation neural network to perform bar code recogni-

tion task. Experiments have been conducted to corroborate the proposed method.

/ 1. Introduction
With the advent of store automation, the existence of standard bar code for information
exchange is indispensable. Inmany point of sales, the laser bar code reader is used in conven-
tion. However, there is a major constraint on the laser bar code reader. That is, unlike tradi-
tional camera-based picturing, the distance between the laser reader and the object is nor-
mally close to zero when this tool is applied. This may resultin inconvenience because humﬁn
operator must take care of either the sensor or the object. For the purpose of store automa-

tion, human operator has to be removed from the process.

Due to the effects of lens distortion and noises, the acquired bar code image may deviate

from the ideal one more or less. However, if the deviation is not significant, the recognition




system should still be able to deal with it. Having the capability of recovering correct result
from partial evidence, the Back-Propagation Neural Network (BPNN) [1-4] is thus selected
as a tool to perform the recognition task. The proposed system starts with performing some
preproceséing procedures to reduce the size of the raw image into 'a reasonable oné. Then,
segmentaﬁon process is performed so that the bar code is located. There are a number of
se gmentation algorithms available in the literature [8—12]; Under the requirement that the
operation speed should be as fast as possible, we devise a heuristic segmentation technique
to locate the bar code. After the position and orientation (pose) of the bar code is located,
we traverse along the perpendicular direction of the bar code stripes. Those active pixels that
coincide with the direction of bar code stripes are counted column by column. When the
number of active pixels in'a column is greater than a threshold, then a ‘1’ is reported, other-
wise ‘0. A sequence of binary numbers js therefore generated. The binary sequeﬂée is then
fedinto a trained BPNN for final identification. If the output of the BPNN is less than a preset
threshold, the candidate is rejected, otherwise the correct bar code is reported. Figure 1

shows the block diagram of the proposed system.
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Figure 1. Block diagram of the proposed system



The rest of the paper is organized as follows. Section 2 introduces the encoding rules
of the bar code. Section 3 describes the procedures of the proposed system in detail. In Sec-
tion 4, some experimental results are reported. Finally, conclusion and discussion are made

in Secton 5.

2. Encoding Rules of Bar Code

In modern society, bar code is extensively used on most of the commodity. The bar code
for commodity is just like the identification number for a person. Conventional bar code is
composed of two parts: one is the group of stripes, the other is the numbers under the stripes.
There are two different types of bar code depending on where it is marked. The first type
is recognized as “source marking”. The bar code of this type is marked on the product during
manufacturing i)rocess. The second type is recognized as “in-store marking”. Products of

this kind are only sold in some particular stores. In this paper we take European Article Num-

ber (EAN-13) standard as an example, because it is extensively used by most of the commer- T

cial pfoducts. Figure 2 shows a sample bar code with EAN-13 standard.

There are totally 13 digits in an EAN-13 code. The center pattern and the guard pattern
consist of auxiliary characters. In this standard, each digit is composed of 7 modules. The
center pattern and the guard pattern contain 5 modules and 3 modules, respectively. Figure
3 shows the cof;lbinations of the center pattern and the guard pattern. The firs_.t three digits
of an EAN-13 code are country prefix. They are used to identify the nationality of the organi-
zation issuing the bar codes. Their four successive digits represent thé manufacturer number.
Then, the five successive digits represent the specific product item number. The last digit
of an EAN-13 code is a check digit. There is another commonly used standard called EAN-8
that contains only 8 digits in length. The latter is used only when the total surface area of

a product is less than 120 cm? . Figure 4 shows examples of the EAN-13 and EAN-8 code.
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Figure 3. Guard pattern and center pattern in EAN-13 standard

For illustrative purpose, we use EAN-13 as an example. In this standard, a code consists
of 7 modules. Different combinations of 0/1 will represent different numbers under this for-

mat. There are totally three encoding rules for the so—called A, B, C types, respectively.
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Figure 4. The standard and short version of the EAN code

Figure 5 shows the three encoding formats for the integer number 2. Table 1 illustrates the
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Figure 5. Number ‘“2” encoded by three different rules.
encoding rules for the A, B, C types, respectively. Based on these encoding rules, we can
decode a bar code into its corresponding digits easily. |
In the EAN-13 standard, the selection of encdding rule thoroughly depends on the first
digit of the country prefix. Table 2 illustrates the encoding rules of the six digits which are
successive to the first digit. For example, when the rule is applied to a bar code started by
the country prefix “4”, then its twelve successive digits are A, B, A, A, B, B,C, C,C, C, C,

C (Figure 6). The complete set of encoding rules is shown in Figure 7.




numbell A type B type C type
0 0001101 0100111 1110010
1 0011001 0110011 1100110
2 0010011 0011011 1101100
3 0111101 0100001 1000010
4 0100011 0011101 1011100
5 0110001 0111001 1001110
6 0101111 0000101 1010000
7 0111011 0010001 1000100
8 0110111 0001001 | 1001000
9 0001011 | ° 0010111 1110100

Table 1. The list of oriented—modules on logic of 0-9 for A, B, C types

3. The Bar Code Recognition System

3.1 Locating the Position of Bar Code

When an 1mage is acquired, the first thing we have to do 18 to locate the position of the
bar code in the image. There are several steps involved in tlus procedure. We first perform
edge detection: Then, the four neighbors of each pixel are searched. The main purpose of

this step is to locate the contour of each bar code stripe and remove some noises.

After the boundary of each.stripe is locﬁted, we then detect the corner points using curva-
ture characteristics. Pairs of corner points including those points between them are assembled
to fit a line segment. The least-squares error method is applied here to guarantee the best
line fitting result. After the line fitting process, the image becomes a set of straight line seg-
ments. Because of the intricate background, the set of line segments can be in any directions

in the image. The orientation from 0° to 180° is the range of the angles between these line



The first The encoding rules applied
digit  to the 6 subsequent digits
0 A A A A A A

1 A A B A B B

2 A A B B A B

3 A A B B B A

4 A B A A B B

5 A B B A A Bl

6 A B B | B A A

7 A B A B- A B

8 A B A B B A

9 A B B A B A

Table 2. Encoding rules applied to the
6 successive digits of the first

segments to the x-axis. In each degree, we compute the number of line segmentsin that direc-
tion. The direction that contains the maximum number of line segments will be selected as
}

the orientation of the bar code.

3.2 Grouping the Bar Code

Now we describe the method for deriving the bounding rectangle of bar code. Since the
texture of bar code tends to a specific direction, the height of the bounding rectangle can be
easily calculated. As to the width of the bounding rectangle, we can calculate it as follows.
Since the bar code stripes of the same orientation have been clustered, the positions of the
first line and the last line (from left to right scan) in the current orientation can be confirmed.

Based on these two lines, the width of the bounding rectangle can be determined.
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Figure 6. An example of EAN-13 encoding rule

In this phase we do not attempt to determine the exact start and end of the bar code.
If the background is not too complex, the bounding area should be equal to the size of bar
code. However, the background is usually not so simple. Therefore, further segmentation
on the bounding rectangle is required. Under the circumstances, we have to calculate the
maximum value of lines that have the same orientation. If the background is monotonic and
happens to own the same orientation as the bar code stripes, the segmented area will not be
correct. Another potential problem is that part of the existing texture of other object contains
the same orientation as the bar code stripes and is very close to these stripes. The area of
the bounding rectangle in this case will be larger than the original size. The first problem
is easy to solve. We can construct a loop to examine the statistic of orientation from 0° to

180°. The orientations with the values larger than a threshold will be selected. Based on

this candidate set we can obtain different areas for testing. This procedure will stop whenever
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0 AAAAAA 0 0001101 | 0100111 | 1110010
1 AABABB 1 0011001 | 0110011} 1100110
2 AABBAB 2 0010011 | 00110i1| 1101100
3 AABBBA 3 0111101 0100001 1000010
4 ABAABB "4 |70100011| 0011101} 1011100
5 ABBAAB 5 0110001 | 0111001] 1001110
6 ABBBAA 6 0101111 | 0000101 1010000
7 ABABAB 7 0111011 | 0010001 ] 1000100
8 ABABBA 8 0110111 | 0001001 | 1001000
9 ABBABA 9 0001011 | 0010111 1110100

Figure 7. Encoding rule of EAN-13 standard.

a satisfactory result is found. For the second problem, it is difficult to deal with. This is due

to the area dfter segmentation is larger than normal size and it may result i in incorrect bar

code number or even cannot be recognized.

3.3 Recognition Using BPNN
In this section we will introduce how to use the BPNN as a tool for bar code recognition.

We introduce the architecture and learning procedure in BPNN firstly. Then, the recalling

process for bar code recognition will be detailed in the second subsection.

3.3.1 Learning Procedure in BPNN
This subsection will focus on the BPNN training phase. Firstly, weintroduce the architec-

ture of BPNN and describe. its learning law. This include how to calculate the errors, and

how to propagate these errors for weight adjustment. We will also explain the effect of input

10




patterns to the errors and the way the system outputs approxxmate the desjred outputs.. Her

we adopt a three-layered backpropagation net [13] as a tool. The tralmng Process as we
as the recalhng process are both based on this model. Figure 8 shows the architecture of a

three-layered BPNN. In this model, each unit in a layer receives its input by summing up the

layer 2 '

(output layer) J=1ltP

layer 1 -

(hidden layer) l=1t N
| layer 0 k=1to M

(input layer)

Figure 8. The architecture of BPNN

weighted output signals from all units of its previous layer. Assume the first layer (input lay-

er), the second layer (hidden layer), and the output layer contain M, N, and P neuron ﬁnits,

respectively. Let d; be the desired outputs. Some basic notations are defined as follows:
Y= 1,.,M (Outputs of layer 0)

yfl),z = 1,.,N (Outputs of layer 1)~

yf?'), =1,..,P (Outputs of layer 2)

net(l) = 1,...,N (Inputs to layer 1)

net,(z),i = 1,...,P  (Inputs to layer 2)

wg) k=1,...M!=1,.,N (Weights between layer 0 and layer 1)

wjg]z), I=1,.,Nj=1,..,P (Weights between layer 1 and layer 2)

11




wighk = 1,...,M,l = 1,.,N  (Weights between layer 0 and layer 1)
(2) l =1,....,N,j = 1,...,P (Weights between layer 1 and layer 2)

In different layers, all neurons are of the same type. The neurons in layer 0 fan out the
copies of the inputs obtained from the outside world. The fanned out copies multiply the
weights between layer 0 and layer 1 eventually becoming the inputs to the hidden layer. The

inputs to the hidden layer can be represented by a compact form as follows:

' M
net}l) = kzlwf,]c‘)y,go),l <j<N @)

By the same token, the output y ( )multiplies the weights between layer 1 and layer 2 will

finally become the inputs to layer 2,
net( ) = Z w,%)y,(cl} ,1<s1=<P (2)
k=1 :

In this architecture, neurons only play the role as transfer units.

. For the training process, we adopt the generalized delta rule [14] to update WA and

W@ such that the accumulated errors E can be reduced to satisfy a preset value as soon as
possible. The accumulated error E is defined as follows,
18 2)\2
E=23 (a5 ) ©)
i=1 ,
Each time when we get the errors, we adjust the weights such that the errors decreased in

the next run.
In order to explore how the weights affect the errors, partial derivative of E is taken with

respect to the weight wj(,z ) firstly. By chain rule, we have

- oFE oFE anet()
awﬁf) anet(z) aw(z)

12
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oF ay]( ) anet} )

- ayj@ anetJ@ aw}f)

' 28 (1
= - (4 p e

222y 1
- 6}2)]‘(2) (net}z))yg )

where 5}2) = d; yj(z).

Since we know how w},z) (weights between the hidden and output layers) affect the error,

)

we also examine how the weights between the hidden and input layers affect the erTor. Again,

partial derivative of E is taken with respect to w )and we have the following derivation.

8E _ OE onefV

) el o)

one

_E Y e
" el
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Equation (5) can be further simplified by the following derivations,

@
E  oE
j o = a(z) 2 5 =~ S et
onet; dy;”" onet;

anet( )

1
ayP

— @0 _ W
- (1) z n Yn 'l
1 n=1

0 ,
2l o= A (netz(l))
anetl

i3

(5)

(©)

7

(8)
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Substitute the results of equations (6), (7), (8), and (9) into equation (5), a more compact form
is derived as follows,

oF
- [z Do e )

Wik

Based on the results of equations (5) and (10), WA and W® can be updated systemati-

cally. When the training phase is terminated, the system is able to perform recalling process.

33.2 Recoghition phase

Since the training of BPNN is completed and the bounding rectangle of bar code is ob-
tained, the next step is to perform the recognition task. Although the area of bar code may
not be so exact on the actual beginning and ending lines, it will still be processed in this phasé.
First of all, we perform histogram analysis in the bounding rectangle. By traversing along
the perpendicular direction of the bar code stripes, we calculate the number of active pixels
column by column (column is Qarallel to stripes). If the number of active pixels in a column
is larger than a preset threshold, then that column is assigned value 1, otherwise 0. That 18,
the content within the bounding rectangle is converted into a one dimensional bit array.
When we count the number of active pixels of each column, the maximum number can be
obtained. Examining these values column by column, we take half of the maximum value

as a threshold.

According to the encoding rule of the EAN-13 standard, the start and end character both
consist of 3 modules—“101”. By measuring the distance between the start and end charécters,
we can determine the length of the bar code. This process is started by checking the bit array
and look for the transitions of 0 —> 1 and 1 —> 0. Then, we group 3 transitions as a unit

and normalize its length. The content of each unit is fed into a trained backpropagation neu-

14
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ral network and the unknown bar code will be recognized by recalling the trained wei ght ma-
trix in the neural network. Through this process, it is obvious that scale of the image would

not affect the final result. That is, the system is able to deal with any bar code with different

sizes.

As to the larger bounding rectangle problem, we examine the length between the start
and end characters. If the{e are several pairs of start and end characters, we calculate each
of their length. Then, the bit array between each pair is fed into the trained BPNN for correct-
ness check. This process continues until a valid pair is found. ¥ a valid bar code number

cannot be found, we simply reject the bar code.

The real scale of the BPNN for experiment is descnbed as follows.. The designed BPNN
mcludes 56 neurons in its input layer, 48 neurons in 1ts hidden layer, and 40 neurons in its
output layer. After converting the content of 3 transitions into a 56-bit length bit array, we
use it as input to the BPNN. The BPNN is pre-trained by different types of encoding rules.
In our experiment, we use A, B, C, and reverse A types as standards to perform training task.

Fig. 9 shows the reverse A type encoding rule.

After the training phase has been completed, the weight matrix is fixed and the system
is ready for recalhng process. At this time we input the grouped comblnatlons and snnply

wait for the result

4. Experimental Result
In the experiments we perform bar code recognition on several real images using SPARC
2 workstation. These bar codes are obtained from a variety of commercial products in our
daily life. From Figures 10 — 16, part (a) show the original images. These images contain
different orientations and backgrounds. Some of them are pure and monotonous, while
some are complicated and damaged by paint. After performing preprocessing and line fitting,
the intermediate results of these samples are shown in part (b) of Figures 10 — 16. The high-

light lines in these figures are the lines after fitting. Next, we try to locate the position and

15




Digit Thé reverse A type
0 1011000
1 1001100
2 1100100
3 1011110

1100010
5 1000110
6 1111010
7 1101110
g 1110110
9 0001011

Figure 9. The reverse A type encoding rule e

orientation of the bar code based on its texture. The located bounding rectangles are shown
in part (c) of Figures 10 - 16. It is obvious that the bqunding rectangle encloses the bar code
stripes correctly when the background is simplé. However, it ispossible to have larger boﬁnd—
ing rectangle when the 1olackgrcn_l‘nt:! isintricate. After tﬁe position of the baf code is located,
the grouping process collects the normalized bar code into digits and feed them into a trained
BPNN. From Tablé 3 to Thble_‘é, the correct recalled results of bar codes in part (a) of Figures

10 - 16 are shown, respectively.

Due to scale and complexity differences in the bar code images, the execution time is case
dependent. For the preprocessing part, it takes about 18 ~ 35 seconds to process an image
of size under S0K. However, in the recalling process the average execution is about 0.3 sec-

ond.

16
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Figure 10. The results after line fitting and segmentation
of bar code 1
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Figure 11. The results after line fitting and segmentation
of bar code 2
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Figure 12. The results after line fitting and segmentation
of bar code 3
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Figure 15. The results after line fitting and segmentation
of bar code 6 :
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(c) The bouding rectan of
(a) after segmentation

Figure 16. The results after line fitting and segmentation
of bar code 7
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order input digit | result

1 |00000001111111111121111111111111000000011111111111111118) 7 {0.889119

2 |00000000111111111111111000000000000000011111111111111111) 1 |0.975827

3 000000G0000000000000000001111111111111111000000011211111f 0 |0.969128

4 |00000000D11111111111111111111111111111111000000000113111| 3 [0.975551

5 |00000000000000000000000000000000001111111060000000111111| 6 (0.649445

6 00000000000000000011111100000000000000000000000000111112) 7  ]0.986205

7 [11111111111111111000000011111111111111100000000000000000( 2 [0.887893

8  |11111100000000011111111111111111111111100000000000000006f 4 |0.981922

9 |11111100000000000000000111111111111111111111111100000000f 5 }0.829875

10 [11111111111311111111111000000000000000000111111100000000| 0  (0.968288

11 |11111110000000000000000000000000000000000111111000000000| 2 {0.984319

12 [11111111111111100000000111111111111111111000000000000000 3 [0.902215

Table 3. The input data code after grouping and normal-
ization and the result after recalling process of Fig.10 (a)

order input digit result
1 pD00D0011111111111111111111111111100000011111111111111212f 7 | 0.748442
2 00000001111111111111111100000030000000011111111111111111 1 [0.954561
3 (000000000000000000000001111111111111111110006000011111111 0 |[0.953487
4 7 |00000000000000000111111111111111000000000000000001111112f 1 | 0.984115
5 00000000000000011111111000000000000000000000000011111111 7 [ 0.971351
6 00000001111111113111111100000000000000011111111111111111f 1} 0.954561
7 11111111111111111000000000000000111111111111111110000000] 1 | 0.896941
8 11111111000000011111111000000000000000000006000000000000] 6 | 0.935989
9 1111111100000000000000000000000000000000111111100000000( 3 | 0.989588
10 {11111111111111111000000001111111111111111100000060000000{ 2 |0.913110
1 11111111100000000000000000000000000000011111111210000006) 3 {0.852262
12 |11111113111111111000000111111111111111111000000000000000] 2 | 0.888881

Table 4.

The input data code after grouping and normal-

ization and the result after recalling process of Fig.11 (a)

24
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order input digit result
1 00000001111111111111111111111111000000011111111111111111] 7 |0.889119
2 00000001111111111111111100000000000001111111111111311111f 1 {0.765757
3 00000000000000000000000111111111111111111100000111211111) 0 [0.765777
4 00000000000000000000000111111111111111110000000021111112f 0 [0.982378
5 00000000000000001111111111111111111111110000000011111111] 4 [0.989974
6 00000000000000111111111000000000000000000000000001111111) 7  |0.874645
7 111111110006000000000000111111111111111111111111000000000 5  |0.980606
8 11111111111111111111111000000000000000001111111110000000) 0 }0.972374
9 11111111600000600000000011111111100000000000000000000000] 8  |0.974937
10 |11111111111111110000000000000000011111111111111111100060] 1 0.785016
11 [11111111111111111111111110000000111111111000000000000000) 9  0.963501
|12 }11111110000000000000000111111111100000000000000000000000] 8  0.934681
Table 5. The input data code after grouping and normal-
ization and the result after recalling process of Fig.12 (a)
order mput digit result
1 00600001111111111111111111111111100000111111111111111111 7 | 0251669
2 00000001111111111111111000000000000000111111111111111111] 1 | 0.915056
3 00000000000000000000001112111111111111110000000111111111 0 | 0.830220
4, |00000000000060000000000111111111111111110000000111111111 0 | 0.944430 .
5 |00000000000000111111111111111111111111110000000111111111] 4 0.962110
6 00000000000000111111111110000000000000000000000111111111F 7 | 0.722378
7 11111111100000000400000111111111111111111111111110000000] 5 | 0.909748
8 11111111111111111100000000000000011111111111111110000000, 1 | 0.787203
9 11111111111111111000000000000000111111111111111110000000{ 1 | 0.896941
10 [11111111111111111111111000600000000000001111111110000000{ 0 | 0.972374
11 {11111111100000000000000111111111111111111211111110000000] 5 | 0.909748
12 |11111111111111110000000000000000011111111111111110000000; 1 | 0.844794
Table 6. The input data code after grouping and normal-

ization and the result after recalling process of Fig.13 (a)
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order input digit result
1 00000111111111111111111111111111100000011111111111111111 | 7 |0.874357
2 00000001111111111111111110000000000000011111111111111111 | 1 [0.778243
3 00000000000000000000000001111111111111111000000001111111 | 0 ]0.916252
4 00000000000000000111111100000000000000011111111111111111 | 2 |0.958840
5 00000000000000011111111111111111111111111000000001111111 | 4 |0.815128
6 00000000000000000000000001111111100000000000000001111111 | 8  |0.871937
7 11111111111111111111111110000000000000000111111110000000 [ 0 {0.959800
8 11111111111111111111111110060000000000000111111110000000 { © (0.959800
9 11111111111111111111111110006000000000000111111110000000 | 0 |0.959800
10 | 11111111100000000000000006000000000000000111111110006000 | 3  [0.975122
11 | 11111111100000011111111110000000000000000000000000000000 | 6 0952874
12 '"i1111111111111111000000000000000011111111111111111100000 1 jo.879887
Table 7. The input data code after grouping and normal- |
ization and the result after recalling process of Fig.14 (a)
order input digit Tesult
1 00000000000000001111111110000000011111111111111111111111 7 |0961151
12 00000001111111111111111000000000000000001111111111111111) 1 |{0.972687
3 00000001111111111111111000000000000000001111111111111111] 0 | 0.972687
4 | 00000001111111110000000000000001111111111111111111111111) 9 |{0.794892
5, 00000001111111111111111110000000000000001111111111111111| 0 [0.914309
6 00000001111111111111111600000000000000111111111111111111} 8§ 0.915056 -
7 | 11111110000000000000000011111111000000000000000000000000 - 1 | 0.992650
8 11111111111111111111111110000000000000001111111110000000{ 1 {0.825428
9 11111111111111110000000001111111100000000000000000000000| 0 | 0.969836
10| 11111111100000001111111111111111100000000000000000000000) 1 10965772
11| 11111111111111111000000000000000111111111111111111100000f 1 |0.828231
11111111111111111100000111111111111111111111111110000000] 9 [0.249744

Table 8. The input data code after grouping and normal-
ization and the result after recalling process of Fig.15 (a)

5. Conclusion and Discussion
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In this paper, we have proposed a bar code recognition system usiﬁg backpropagation

style neural networks. Since the system adopts camera as its sensor, there are some difficul-




order input Higit resuit

1 00[}00011111111111111111111111110000001111111111111111111 7 10.188477
2 00000011111111111111111110000000000000011111111111111111 1 10741531

3 0000000000C000000000000111111111111111111000001111111112 ] @ 0.508362

4 00000011111111111111111116000000000000000000000111112111 5 |0.727534
5 00000000000000011111121111111111211111111000000111111111 | 4 0.979855
6 (0000011111111111000000000000000000000000000000111111211 | 3 0.771845
7 11111111111111111110000000000000011112111111111111000000 | 1 0.516930
3 11111111111111111110600000000000011111111111111111000000 | 1 0.516930
9 11111111111111111100000011111111111111111110000000000000 [ 2 0.941698
10 111131111111111111111111110600000000000000111111111000000 0 10.718023
11 11111111000000000000000000000001111111110000000000000000 | 7 0.983769

12 11111111160000000060000000000000000000000111111100000000 | 3 £.974279

Table 9. The input data code after grouping and normal-
ization and the result after recalling process of Fig.16 (a)
ties in capturing clean bar code images. However, the texture of the bar code will make up

this deficiency by introducing some heuristics to resolve the aforementioned problem,

In the proposed system, the role of the backpropagation net is a powerful tool for bar
code recogmtlon In fact, a trained backpropaga’aon net is able to retrieve correct counter-
part of the mput (unknown) data from the database even when the input data only contain
partially dlstmgmshable information. That is, a trained backpropagation net is capable of
dealing with inexact matching problems. As to bar code segmentation process, if the back-
ground is not too complicated and there is no texture which is similar to bar code, then the
derived bounding rectangle will be right on the bar code. However, if the aforementioned
problems happen and hence resultin a larger bounding rectangle, then we may acquire sever-
al ambiguous candidate start-and-end code pairs. Under the circumstances we have to tIy‘
the recalling process repeatedly until a correct number emerges. Finally, one of our ultimate
goals is to develop the capability of recognizing bar codes on cans. Since the bar code on

a can is bended, one has to estimate the de gree of distortion and recover it before the se gmen-
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tation process is performed. The bended bar code recovering process involves a number of
interesting issues like: lens analysis, curve fitting and parameter estimation, etc. These issues

will be addressed in the future work.
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