TR-~93-003

A Two-Level Approach to Information
Retrieval

Udi. Manber and Sun Wu

=& SHAEEE

 hiA

A Two-Level Approach to Information Retrieval

(Preliminary Version) |

Udi Manber!

Department of Computer Science
University of Atizona
Tucson, AZ 85721

and Sun Wu

Institute of Information Science
Acadernia Sinica
Taipei, Taiwan, ROC.

January 1993
ABSTRACT

A pew indexing and query schemes for information retrieval of medium-size natural langnage text
are presented in this paper. The novelty of the algorithms is that they use a very small index — in
most cases 2-4% of the size of the text — and still allow very flexible full-text retrieval including
the usual Boolean queries but also approximate matching. The ability to perform approximate
queries — to search for misspelled keywoards — is very powerful. Query times are typically
slower than w1th mverted files, but they are still fast enough for many applications, We also
describe a protbtype system, called a Personal Information Retrieval System (PIRS) that we
developed based on the new algorithms, Although the algorithms we present are general, PIRS
was especially designed for personal information as opposed to typical IR systems that are
designed for central collections used by many people. By personal information we mean informa-
tion generated and collected by single users for their purposes. It can include personal correspon-
deuce, articles of interest, e-mail messages, personal notes, bibliographic files, etc. The main
characteristic of such information is that it is very non-uniform and includes many types of docu-
ments. An IR system for personal information should support low overhead, many types of
queries, flexible interaction, and customization, all of which are important features of PIRS.

! Supported in part by an NSF Presidential Young Investigator Award (grant DCR-8451397), with matching funds from
AT&T, and by an NSF grant CCR-9001619. Part of this work wes done while the author was visiting the University of
Washington. .

e

1. Introduction

The most common data structure used in information retrieval (IR) systems is an inverted list
[SM83]. All occurrences of each word are stored in a table indexed by that word (using a hash
table). The only exception are common words, such as the and that, which belong to a stop list of
words that are not indexed. Toverted lists allow very fast queries: There is no need to search in
any of the texts, only the table needs to be consulted and the places where the word occurs are
retrieved immediately. Boolean queries and proximity queries are slower, but are still relatively
fast.

One drawback of inverted lists is their space requirement. The size of the index is usually
in the same order of magnitude as the size of the text. This may not be a major drawback for com-
mercial text databases, because disk space is relatively cheap, but it is a major drawback for per-
sonal information. Most users would not agree to double their disk cost for the benefit of index-
_ ing. Indeed today most personal file systems are not indexed. But, due to an increased availabil-
ity of digital information through networks, many personal file systems are large enough to require
IR capabilities. It is very common to forget the location of some information and not be able to
find it. Signatures files [Fa85, GB91] have been suggested as an alternative to inverted indexes.
Their indexes are only 10%-30% of the text size, but their search time is slower, and since they
are based on hashing their parameters must be chosen carefully (especially for many files of dif-
ferent sizes) to minimize the false drops probability.

The second weakness of inverted lists, and in fact of all other suggested IR schemes that we
are familiar with, is the need for exact spelling. If one is looking for all articles containing
Schwarzkopf for example, any article with a misspelling will be missed; not to mention that one
needs to find the exact spelling to form the query. The only way to find misspelled words in the
text is to try different possibilities by hand, which is frustrating, time consuming, and there is no
guarantee of sucCess. This problem is expected to become more acute as more information is
being scanned by OCR (Optical Character Recognition) devices which currently have an error rate
of 2-5% [BN91, RKN92]. -

Thie scheme presented in this paper overcomes both weaknesses of inverted lists. It requires
a very small index, in most cases 2-4% of the original text, and it supports arbitrary approximate
matching. The price we pay is speed. Our algorithms are slower that ones using inverted lists, but
their speed is still in the order of a few seconds, which is fast enough for single users. For some
applications, such as management of personal information, speed is a secondary issue. Most users
would rather wait for 10-15 seconds for a query than double their disk space. Even for IR sys-
tems, such as library card catalogs, where high throughput is essential, our scheme can be used as
a secondary mechanism to catch speliing errors. We found several spelling errors in our Library
catalog experiment (section 3.3). We believe that this capability is essential in all applications that
require a high level of reliability. For example, medical labs can miss information on patients due
to misspelling [MS93].

* We call our method two-level searching. The idea is a hybrid between full inverted lists and
sequential search with no indexing. It is based on the observation that with current computing
performance sequential search is fast enough for text of size up to several megabytes, Until
several years ago, sequential search of, say a IMB file, took a minnte or more of running time,
Therefore, inverted lists were essential. Today, on a.SUN SparcStation for example, using a fast
search such as our agrep program [WM92], we can search a IMB file in less than a second.
Therefore, there is no need to index every word with an exact location. In the two-level scheme
the index does not provide exact locations, but only pointers to a reasonably small area where the
answer may be found. Then, a flexible sequential search is used to find the exact answer and
present it to the user. (Some other IR systems, such as MEDLARS [SMS83], allow sequential
search as a postprocessing step to further filter the output of a query, but the search relies entirely
on iaverted lists.) Furthermore, the index itself, since it is reasonably small, can be searched with
sequential search, rather then by hashing methods. This provides additional flexibility, in particu-
lar it allows approximate matching, as we will discuss later.

Due to the need for some sequential search, the 2-level scheme, as it stands right now, is not
suitable for very large text collections. We found it very effective for up to 100 MBytes of text,
and less so for 250MB. We expect it to be too slow for over S00MB with current technology. As
CPU and YO speeds increase, so would the limit on the size of the texts. This is especially true
for parallel computers which the two-level scheme can use very well (by having different proces-
sors search different blocks). It is not unreasonable to expect io be able to handle one GBytes of
text in 2-3 years without specialized hardware. Some applications will o doubt grow in size just
as fast as computing power grows, but not all. There are quite a few applications that are
inherently limited in size, or have growth patterns that are significantly slower than the expected
growth of computing power. Such applications include various types of information about people
. (population growth is much slower than"computing power growth), geography (e.g.. description of
travel destinatidns, streets, and sites), and personal notes. For those applications, our two-level
approach is attractive because it requires much less space and it allows more fexible queries,

The two-level approach is described in detail in the next section. Section 3 describes PIRS,
the personal information retrieval system that we built based on the two-level approach, We also
discuss general issues in the design of personal IR systemns, and present some preliminary experi-
ments with PIRS. Section 4 concludes with suggestions for future work.

2. The Two-Level Query Approach

In this section, we describe our scheme for two-level indexing and searching. We start with the
way the index is built,

The information-spaoe is assumed to be a collection of unstructured text files. A text con-
sists of a sequence of words, separated by the usual delimiters (e.g., space, end-of-line, period,
comma). The first part of the indexing process is to divide the whole collection into smaller

pieces, which we call blocks. We try to divide evenly so that all blocks have approximately the
same size, but this is not essential. The only constraint we impose is that the pumber of blocks
does not exceed 28 =256, because that allows us to address a block with 8 bits or one byte. Again,
this is not essential, but it appears to be a good design decision.

We scan the whole collection, word by word, and build an index that is smnlar in nature to a
regular inverted index with one notable exception. In a regular inverted index, every occurrence
of every word is indexed with a pointer to the exact location of the occurrence. In our scheme
every word is indexed, but not every occurrence. Fach entry in the index contains a word and the
block numbers in which that word occurs. Even if 2 word appears many times in one block, only
the block number appears in the index and only once. Since each block can be identified with one
byte and many occurrences of the same word are combined in the index into one entry, the index
is quite small. Full inverted indexes must allocate at least one word (4 bytes), and vsually slightly
more, for each occurrence of each word. Therefore, the size of an inverted index is comparable to
the size of the text. But our index contains only the list of all unique words followed by the list of
blocks — one byte for each — containing each word. For natural langnage texts, the total number
of unique words is not too large and quite limited regardless of the size of the text. Experiments
with different types of texts are discussed in section 3.3.

The search routine consists of two phases. First we search the index for a list of all blocks
that may contain a match to the query. Then, we search each such block separately. Both phases
are done with sequential search using agrep, the pattern-matching program that we developed.
Agrep includes several new pattern-matching algorithms and it is described in detail in [WM92];
we only briefly list its main features here. Agrep can quickly search for many types of patterns
including ones with wild cards, with classes of characters, with complements, and even ‘arbitrary
regular expressions. A search can be exact or approximate. Substitutions, insertions, and/or dele-
tions can be allo,wed and the relative weight of each of them can be changed. Agrep can search
for all matches *mthm a specified number of errors, or find the matches with the minimal number
of errors. Patterns can include parts that must match exactly and parts that can have errors.
Boolean queries are supported. Matches are made to either lines (the default) or to user-defined
records (e.g.. paragraphs, e-mail messages, or whole files). Agrep’s source code is available by
anonymous ftp from cs.arizona.edu (as well as from 25 other ftp servers).

Even though the first phase can be done by hashing, we prefer sequential search because it
aliows us to perform approximate queries, subword queries (even a subword that occurs in the
middle of the word), and other complicated queries (e.g., containing wild cards). Using hashing,
the only keywords you get are those that were selected to be hashed. With sequential search we
can get the full power of agrep. Since the index is quite small we can afford sequential search.

Boolean queries are performed in a similar way to the regular inverted lists algorithm. Sup-
pose the query is for pattern] AND pattern2. We find the list of all blocks containing each pattern
and intersect them. Then we search the blocks in the intersection using agrep’s efficient Boolean
query algorithm (which scans the text only once and searches for all partis of the query

concurrently). Notice that even if we find some blocks that contain patternl and pattern2, it does
not mean that the query is successful, because pattern] may be in one part of the block and pat-
tern2 in another,

Approximate queries are handled by first using agrep to find all words in the index that
match approximately with the pattern. Then the corresponding blocks are searched, using agrep
again, to find the particular matches. The same procedure holds for other complicated patterns
such as ones that contain wild cards (e.g., Model2...Z), a set of characters (e.g. AB[0-91CD, where
[0-9] stands for any digit), or a negation (e.g., ['0-91[A-DJEND, which stands for 2 word whose
first character is not a digit, its second character is A, B; C, or D, and the next characters are E, N,
and D). These kinds of patterns cannot be supported by the regular hashing scheme that looks up
a keyword in the table, because such patterns can correspond to hundreds or even thousands of
possible keywords,

The main weakness of our scheme is that some queries may match many biocks requiring a
sequential search of a large portion of the information space. One common reason for such
queries is that they are not specific enough, in which case any scheme will lead to a huge output.
The only time our scheme is unusually inefficient is when there are only a few matches to the
query, but they are dispersed among the blocks. We believe that this is not common, because the
blocks usually contain related pieces of text. For example, if the text is a library catalog the
blocks correspond to ranges of call numbers. A typical query is limited to a few call numbers,
thus it will involve only few blocks. Few queries will have matches in many different call
wumbers and only few matches for each. One way to minimize this problem is to use clustering
techniques [JD88] when we partition the information space. We have not yet implemented any
clustering algorithms for PIRS, and have not yet studied them sufficiently. Another possible
option is a waming to the user that a query match many blocks and therefore its completion may
require a longer delay. In that case, the user can either refine the query or check the list of
matched blocks and select the ones that seem more promising. We can determine the identity.of
the potential matches directly from the index without having to do extensive sequential search,

In summary, we list the strengths and weaknesses of our two-level scheme compared with
the regular inverted lists;

Strengths

1. Very small index.

2. Approximate matching is supported.

3. Easy to modify the index due to its small size. Therefore, dynamic texts can be supported.
4. No need to define document boundaries ahead of time. It can be done at query time. |

5. Easy to customize to user preferences. . ‘ g

6. Easy to adapt to a parallel computer (different blocks can be searched by different proces- . -

S0rS).

= [~ o ' S

7 No nesd to extract stems. Subword queries are supported automatically (even subwords

that appear in the middle).

8. Queries with wild cards, classes of characters, and even regular expressions are partially
supported.

Weaknesses -

1. Slower compared to inverted lists for some queries. Not suitable for applications where
speed is the predominant concern.

2. Too slow, at this stage, for very large texts (mbfe than 500MB).
3. Speed is not uniform. In some bad cases, a query can take a very long time.

4. Requires extra work, when the index is built, to partition the information space.

3. PIRS — A Personal Information Retrieval System

3.1. The Need for Personal IR Systems

There are a large number of programs and small devices called personal information managers or
similar names. These are typically designed for very specific tasks, such as scheduling, calendar,
limited amount of personal notes, etc. They are not suitable for large amount of information.
There are also several software packages, mostly for personal computers, that search hard disks
for information. The ones we experimented with did not use an index; they essentially search the
disk sequentially taking a lot of time for disks containing a large amount of text files.

We are not familiar with work dealing with personal information management in the context
of unstructured large mumber of text files; which leads to the obvious question. Why do we need
personal IR systéms? Can't people organize their information so that they know where things
are? Organizing one’s data has always been a hard problem for some people, and with the growth
of available information it will soon be too hard for almost everyone. Below we list five reasons
for the need of personal IR systems:

1. Until recently computers were used only for work purposes and mostly for specific tasks,
but their use is now ubiquitous. Information of interest includes many topics and in many
cases there is significant overlap, so that storing a piece of information in one place pre-
cludes finding it when it is relevant to another topic. For example, e-mail messages may
contain personal and professional information in the same message; a topic that belongs to
two (or more) different projects may be put in the area for one of them; a new topic may
originally be filed under miscellaneous, and only later be important (where did I put the
notes of that interesting colloquium two years ago?). -

2. Memory fades with time. It's hard, even with a good organization, to remember things from
a few years back. After a while, not only the content of a piece of information can be for-
gotten, but also the existence of that information. In only the first week of experimenting

with PIRS one of us found pertinent information related to a current project that was wriiten
(in a different context) several years ago and forgotten.

The size, and more important the complexity of information is growing too fast.
4. Some people are messy. They need help too.

5. People have access to information that was gathered by other people who are not neces-
sarily librarians. You don’t know the logic behind their organization of the data, and even
when you do, you usually want to adapt it to your sense of it.

These reasons and others have motivated extensive research in several areas including cog-
nitive science, database design, and hypertext systems. A personal IR system as we suggest here
will not solve the probléms by itself, but it can be of great help. Most people currently do not
have too much *‘personal information’” to maintain and thus do not require sophisticated search

facilities. But with cheap disk cost, easy access to networks, on-line services, increased e-mail
usage, and other technological advances in the dissemination of information, personal IR systems
will be essential.

3.2. The Current Prototype of PIRS

PIRS is written in C under the UNIX operating system. It is a collection of many separate pro-
grams of a-total of about 7500 lines of code. The current implementation is geared towards index-
ing a part of the file system. The user can indicate which directories should be indexed or can
simply index everything in the home directory (which will include going down the tree to all the
files). Before indexing a file, the program checks whether it is indeed a text file. If the file is
found to have too many non-alphanumeric characters {e.g., an executable or a compressed file), it
is not indexed. Other formats are excluded too. For example, ‘uuencoded’ files and ‘binhexed’

files* are excluded Determmmg whether or not a file is a real text file is not easy. Texts of
languages that ilse special symbols, such as an umlaut, may look like binary files. There are tools
that do a good job of identifying the type of file, for example [HS93], and we will eventually
incorporate there in PIRS, On the other hand, some files that are text files for all syntactic pur-
poses should not be indexed. A good example is a file containing DNA sequences. We actually
have such files (we do research on pattern matching in DNA) and found them to cause the index to
grow significantly, because they contain a large mumber of essentially random words. We should
note that the two-level scheme is not suitable for typical biological applications, because those
require more complicated types of approximate matching. Another example are files that contain
mainly numeric information. Initially, we did not index numeric *‘words,”” but found the ability
to use dates and other identifying numbers to be very useful (e.g., find all e-mail messages from a
certain person during July 1991). We currently allow the user to choose whether or not to index
numbers. But files with numeric data will make the index large unnecessarily. One possible

uuencode and binhqx are programs that translate binary files into an ASCII file for transmission through e-mail.

solution is to identify the files that contribute too many words to the index, exclude these files
from the index, and notify the user so that he/she can add these files.

The partition into blocks is currently done in a-straightforward way. The total size of all
text files is computed, and an estimate on the desired size of a block is derived. Files are then
combined until they reach that size, and a new block is started. We plan to improve this scheme in
the future in two ways: 1) the partition should be better adapted to the original organization of the
data, and 2) the user should have the ability to control how the partition is done. '

The user interface we currently employ is identical to that of agrep, except that no file name
is given by the user. So, whereas agrep information file name will output all lines |
containing information-in the file file name, find information will output all lines in ail
indexed files that contain information; find -1 -d ’ "From ’ HardToSpell will find all
occurrences of HardToSpell with one spelling error, and will output all mail messages containing
any such occurrence (mail messages are separated by the pattern From with starts at the beginning
of a ling); find -B Schwarzkopf will give all occurrences of the best match to
Schwarzkopf.

3.3. Preliminary Experiments

We experimented with three types of data, the personal file system of the first author, the Telecom
archives, maintained at MIT, containing information related to telecommunications, and the
' library card catalog of the University of Arizona. Even though PIRS was originally designed for
the first type of data, it worked very well for the second one and moderately well for the third one.
None of the experiments was comprehensive and they are presented here just to get a very rough
idea of the performance of PIRS. In particular, the timings depend on the load of the system as
well as other factors, and they varied sometimes up to 40% on repeated tries. Since we expect to
improve PIRS qguite a bit in the near future, there is no reason to test the current version

thoroughly.

The file system we indexed contained 36MB of text in 3538 different files. The index size
was 1.OIMB, which is 2.8% of the total. A typical search takes from 2-20 seconds. For example,
a search for Biometrics took 2 seconds (0.2 seconds of user time); there was only one match.
(These and all other numbers listed here were obtained through the UNIX time facility.) A search
for Scandinavia found 17 matches in 13 seconds. A search for fingerprint took 25 seconds
because there were 111 matches. These three searches took virtnally the same amount of time
when one spelling error was allowed! A Boolean search can be slower, but again it depends on
the number of matches. The search for "protein AND maiching” took 24 seconds yielding 6
matches; the search for "Griswold AND Andrews" took 16 seconds, finding again 6 matches; A

search for “information retrieval AND WAIS" took 28 seconds finding 2 matches.

The Telecom archives contain about 100 files and 70.2MB. Because the number of files is
quite small and they are already of the right size the index construction was very efficient and took
less than 4 minutes. The index size was 1.46MB, which is 2% of the total. A search for
Schwarzkopf allowing 2 errors (which were needed) tock 3 seconds (only one match). A search
for MultiQuest took 6 seconds finding matches in 4 different blocks. A search for Sacramento
allowing one error took 49 seconds, because there were 168 matches in 64 blocks (more than half
the blocks). That search, however, found 3 misspellings. If the information is already organized
in files of the right size (about IMB), then PIRS is much more efficient. Most searches were just
as fast as in the previous example although the information base is twice as big,

The library catalog is a two-year old plain text version that was obtained from the Iibrary
tapes. The size of the text file is 258MB describing approximately 2.5 million volumes, We
divided the large file into 413 smaller files according to the first two characters of the call
numbers. The index occupies 7.1MB, which is 2.8% of the size of the text. A search for an
author, for example Manber, which yields one match, took 9 seconds of elapsed time. This is an
example of an efficient query because there was only one match in one block. A search for Salton
took 31 seconds of elapsed time yielding 17 matches (divided evenly between author names and

books about the Salton sea®). A search for UNIX yielded 70 matches in 8 blocks, and it was still
reasonably fast; it took 8.4 seconds of user time, 15.4 seconds of systetn time, and 41 seconds of
elapsed time to output all matches. The search for retrieval, on the other hand, took 1:09 minutes
of elapsed time due to the fact that 173 books on retrieval were found with 32 different call
numbers prefixes. It was very interesting, however, to try to match retrieval allowing one spelling
error. The search took 1:32 minutes of elapsed time, but it found nine additional books. The title
of seven of them was truncated (the text we have stores titles in a fixed-size record of 40 charac-
ters) to show retrieva, and two others had retrievable in the title. A worse example was found by
looking at the keyword algorithm allowing oné error, and finding it misspelled alogorithm for one
entry. With twe errors, I also found alogrithms.

4. Future Plans

We list here briefly some avenues that we are currently exploring.

? This search requires that "information retrieval” appears together 2s cne patiem and WAIS appears anywhere on the line.
Three terms - information, retrieval, and WAIS - are searched in the index and then cnly two terms, "information retrieval,
and "WAIS" are searched in the actual files, Such a combination would not be nermally supported by an IR system.

* There is no inherent reason for us not to divide the text and index to categories such as author names, titles, and call
numbers, allowing more structured queries. Jt just requires more processing work, and this is just a preliminary experi-
ment,

10

4.1. Improving the query time

The rupping times reported in section 3.3 come from a prototype that can be greatly improved.
One way to cut the query time is to divide the index into a list of words and one pointer (into
another index that has the list of blocks) per word. This way the first-level search, which consists
of a sequential search of the index file, will have a smaller file to search. We are also working on
improving the performance of Boolean queries using a slightly larger index.

4.2. Incremental Indexes

The two-level index is easier to modify and adapt to a dynamic environment than a regular l
inverted index, because it is so much smaller. To add a new file to the current index, we first add
the file to an existing block or create a new block if the file is large epough or important enough to
deserve it. Then we scan the index and add each word in the new file that does not already appear
in the block. Since the index is small, reading it from disk and writing it back can be dome very
fast. Deletion of a file is slightly more time consuming because for each word we need to check
the whole block to determine whether that word appears somewhere else (and thus should not be
deleted). Fortunately, agrep contains a very powerful algorithm for multi-pattern matching. It can
search for a large collection of words (up to 30,000) concurrently. We will need to extend agrep, -
however, because it currently reports all the maiches, while we need it to mark the words that had
amatch. But this is not too difficuit to do.

Incremental indexing will be essential for indexing newsfeed. We are considering adapting
PIRS to read usenet netnews messages by context. Currently, the total size of typical usenet
server is from 500-800MB. Quite a bit of it is not text but images and programs, so it is definitely
a size we can handle. The problem is that this kind of newsfeed consists of a large number of
small files (individual email messages) Stored at random places on the disk. A better data organi-
zation will prob’ably be required.

4.3. More User Control

There are several ways to let the user improve the index by customizing. The user should be able
to exclude files from the index by putting their name in a special file. The user can supply a list of
stop words that should not be indexed; we currently index everything. The user should be able to
decide whether certain patterns are indexed or not; for example, oumbers, or words that include
non-alphanumeric characters may or may not be indexed. Another option is to partition the col-
lection of files into categories and build separate indexes for each (e.g., correspondence, mforma-
tion from servers, program source codes). There should be a way for the user to make those deci-
sions in a convenient way, for example, by supplying a list of choices. We also plan to support
special access to any special structure or additional information associated with the text. For
example, some searches may want to specify that the desired information starts at column 30 on
the Tine or in the second field. The user may want to specify that the search will include only
small files (say, below 20KB), recent files (say, after August 1992), or files that contain only e-

1

mail messages. There should be more ways to conirol the output. For example, for queries that
give many maiches the user may be interested first in a rough idea of where those matches are
(e.g.. only directory names). (We currently have an option [-c] to list only the files containing a
match along with the number of matches.) All these options can be incorporated in PIRS rather
easily.

4.4. Text Compression

If the text is kept in a compressed form, it will have to be decompressed while the sequential
search is performed. This will generally slow down the search considerably. But we are develop-
ing new text compression algorithms that may actually speed up the search. The first algorithm
allows agrep (and most other sequential search algorithms) to search the compressed file directly
without having to decompress it except when a match occurs and an output is generated, and then
only a small neighborhood of the output is decompressed. (Essentially, instead of restoring the
text back to its uncompressed form, we modify the pattern to fit the compressed form. The details
are beyond the scope of this paper.) The search takes the same amount of time as a regular search
in an uncompressed file of the same size, but the since the file is smaller than the original (being
compressed), the search is faster. In preliminary tests, we achieved compression rates of about
30%, which are not competitive with good text compression methods, but are still useful for our
purposes. In particular, we intend to compress the index used in the two-level scheme, because it
is searched all the time. The second approach we are working on is designing a mew text
compression scheme with very fast decompression time (but siower compression times), so that
decompression can be done on the fly during the search.

4.5. Interface to Other Systems

We are currently working on adapting the two-level approach and interfacing PIRS with distri-
buted applications. For example, PIRS can be interfaced with WAIS servers [KM92], extend the
archie servers [ED92), or be used in connection with the Essence program [HS93]. This work is
Jjust starting.

References

[BNO1]
Bradford R., and T. Nartker, ‘‘Error correlation in contemporary QCR systems,”” Proc. of
the First Int. Conf. on Document Analysis and Recognition, (1991), pp. 516-523.

(ED92]
Emtage E., and P. Deutsch, “‘Archie — An electronic directory service for the Internet,”’
Proc. of the USENIX Winter Conference, San Francisco (January 1992), pp. 93-110.

[Fag5]
Faloutsos C., *“Access methods for text,” ACM Computing Surveys, 17 (March 1985}, pp.
49-74,

[GB91]
Gonnet, G. H. and R. A. Baeza-Yates, Handbook of Algorithms and Data Structures (Chap.
7.2.6) Second Edition, Addison-Wesley, Reading, MA, 1991

[HS93]
Hardy D. R., and M. F. Schwartz, *“Essence: A resource discovery system based on seman-
tic file indexing,”” to appear in Proc. of the U/SENIX Winter Conference, San Diego (January
1993).

[ID88]

Jain, A. K., and R. C. Dubes, Algorithms for Clustering Data, Prentice Hall, Englewood
Cliffs, 1988.

[KM92]
Kahle B., and A. Medlar, **An information system for corporate users: Wide area informa-

tion servers,” ConneXions — The Interoperability Report, 5 (11) (November 1991), Interop
Inc., pp. 2-9.

[MS93]
Manber U., and J. Small, ‘“Using approximate matching in a pathology lab to handle
misspellings of names,” in preparation.

[RKN92]
Rice, S. V., J. Kanai, and T. A. Nartker, ‘A report on the accuracy of OCR devices,”
Technical Report, Information~Science Research Institute, University of Nevada, Las
Vegas, 1992.

[SM83] ,
Salton G., and M. J. McGill, Introduction to Modern Information Retrieval, McGraw-Hill,
New York, 1983.

[WM92] ,
Wi S., and U, Manber, ‘‘Fast Text Searching Allowing Errors,” Communications of the
ACM 35 (October 1992), pp. 83-91.

