- TR-93-004

Compiling Efficient Programs for Tightly-
Coupled Distributed Memory Computers

PeiZong Lee & Tzung-Bow Tsai

PRERTEED

NIIHWIIIHIIWIINHIIIIUIIIHWIIIWHVNIIHIWIHWWHIMIH

T —————

Compiling Efficient Programs for Tightly-Coqpled
Distributed Memory Computers*

PeiZong Lee! Institute of Information Science, Academia Sinica, Taipei, Taiwan, R.O.C.
' Tzung-Bow Tsai, Dept. of EE, Chung-Cheng Univ., Chia-Yi, Taiwan, R.O.C,

April 8, 1993

Abstract

It is widely accepted that distributed memory parallel computers will play an important
role in solving computation-intensive problems. However, the design of an algorithm in a
distributed memory system is time-consuming and error-prone, because a programmer is forced
to manage both parallelism and communication. In this paper, we present a systemiatic method
for compiling programs on distributed memory parallel computers. We will studv the storage
management of data arrays and the execution schedule arrangement of Do-loop ograms on
distributed memory parallel computers. First, we derive a dynamic programming »igorithm for
data distribution. Second, we improve the communication time by pipelining data. Third, we
use data-dependence information for pipelining data. Jacobi’s iterative algorithm, a successive
over-relaxation iterative algorithm, and the Gauss elimination algorithm for linear systems are
used to illustrate our method.

-

*#% A preliminary version of this technical report is accepted to be presented at the 22nd

International Conference on Parallel Processing, St. Charles, IL, U.S.A., Aug. 16-20, 1993.

“This work was partially supported by the NSC under Grant NSC 81-0408-E-001-505 and NSC 82-0408-E-001-0186.
"PeiZong Lee: leepe@iis.sinica.edu.tw, TEL: +886 (2) 788-3799, FAX: 4886 (2) 782-4814.

0

1 Introduction

This paper is concerned with compiling efficient programs for tightly-coupled distributed memory
parallel computers. It is widely accepted that distributed memory parallel computers will play an
important role in solving computation-intensive problems, because a distributed memory system
can be easily scaled up to a very large number of processors to solve larger problems, such as Grand
Challenge Problems [6]. However, the design of an algorithm in a distributed memory system is
time-consuming and error-prone, because a programmer is forced to manage both parallelism and

communication.

It is our gbai in this paper to present a systematic method for compiling programs on distributed
memory parallel computers; ‘We will study the storage management of data arrays and the exe-
cution schgdule arrangément of Do-loop programs on distributed memory parallel computers. If
dependent data only influence neighboring data, an efficient component-alignment algorithm can
be used to partition and distribute data arrays in the distributed memory {14]. If dependent data

influence a large number of data, then broadcasting techniques or pipelining techniques are used.

In the following, we briefly sketch the scope of this paper. First, we want to derive a dynamic
programming algorithm for data distribution. Previously, Li and Chen [14], Gupta and Baner-
jee [8] formulated the component alignment problem from the whole source program. The data
distribution schema they derived may result in a larger communication overhead. Unlike their
methods, we déa.l with each nested Do-loop independently. Data distribution schema 1.between two
nested Do-loops may be different and may require some data communication between them. A
dynamic programming algorithm can compute the minimum cost order of data distribution schema

for executing a sequence of nested Do-loops in distributed memory computers.

Second, we want to improve the communication time by pipelining data. Because mamny sciep-
tific computation algorithms are regular, they can be compiled as an iterative loop, whose body
includes the following three steps: (1) parallel computation step; {2) reduction step; and (3) updat-

ing step. The reduction step normally uses a lot of communication time and results in the idleness

of processors. However, it is possible to pipeline data for implementing a reduction operation, and

thus, the communication time can be saved. In addition, if the hardware supports overlaying the

computation and the communication, the total execution time may reduce further.

Third, we want to use d@ta.—dependence information for pipelining data. In many cases, the
method of using the component alignment algorithm for distributing datais not sufficient to provide
enough information for generating efficient communication operations. However, if compilers can
detect all data-dependence vectors, it is possible to distribute data according to the iterative sba.ce.

Tt also allows compilers to generate efficient communication codes for pipelining data.

QOur research work is influenced by the pioneering efforts of compiling programs on distributed
memory systems. Callahan and Kennedy showed that message passing programs on cﬁstributed
memory systems can be derived from sequential shared memory programs along with directions
on how elements of shared arrays are distributed to processors {4]. Hiranandani, Kennedy, and
Tseng developed an enhanced version of Fortran called Fortran D, which allowed programmers to
specify data decomposition {9]. Koelbel and Mehrotra proposed the global name-space in which
the compiler then permitted programmers to express their a.lgorithms; using the global name-space
and to specify them at a high level [13]. Balasundaram, Fox, Kenned‘y, and Kremer designed an
interactive environment for guiding data partition and distribution, and for estimating performance
(1, 2]. Other similar works, which allow programmers explicitly to specify the data decomiposi-
tion using language extensions and can generate all the communication instructions by compilers,

include ASPAR [11], ParaScope [12], AL [16], SUPERB {19], and others.

Chen, Choo, aﬁd Li studied compiling a functional programming language — Crystal — on
various distributed memory systems, such as the iPSC, the nCUBE, and the Connection Machine
[5]. They showed that it is possible to use compiler techniques for automatically transforming
shared memory programs to message passing programs on distributed memory gystems. They
invented a component-alignment algorithm for data distribution [14], and derived an algorithm
fbr matching syntactic reference patterns with appropriate aggregate commurication primitives
[15). Gupta and Banerjee, on the other hand, have generalized the above compiler techniques for
dealing with Fortran. They especially discussed the contiguous or cyclic data f)afi:itioning method_‘

and emphasized finding optimal communication costs at compile time (7, 8]. -

The rest of this paper is organized as follows. In Section 2, we introduce the schema of data
pa,rtition‘a.nd distribution, and the communication primitives. In Section 3, we show an example
of how to distribute data using the compénent alignment algorithm. In Section 4, we derive a
dynamic programming algorithm for data distribution. In Section 5, we show how to improve
the communication time by pipelining data. In Section 6, we show how to use data.-depéndence

information for pipelining data. Finally, some concluding remarks are given in Section 7.

2 Background

In this paper, we are concerned with distributed memory systems. The abstract target machine
wé adopt is_a q-D grid of Ny X Ng x -+ x N, processors, where D stands for dimensional and ¢
is less than or eqi;#ll toAthé'deepest level of the Do-loop program. A process;)r on the ¢-D grid is
represented by the tuple (P1, P2+ -5 Pg), Where 0 < p; < NV; —.1 for 1 £ ¢ < ¢. Such a topology
can be easily embedded into almost any distributed memory machine. For example, the ¢-D grid
can be embedded into a hypercube computer using a binary reflected Gray code [10]. Gupta and
Banerjee suggested that g is the maximum dimensionality of any data array used in the program
[8]. However, it is possible to use higher dimensional grids for achieving faster ;omputatioﬁ. For
example, we can use a 3-D grid for computing the 3-nested-loop matrix multiplication algorithm,

although each data array used in the algorithm is 2-D.

The pa,ra,]l?l program generated-’from a sequential program for a grid corresponds to the SPMD
(Single Progrém Multiple‘ Data) model, in which each processor executes the same program but
operates on distiﬁct data items [8] [9] [15] [16]. More precisely, in general, a source program
has sequential parts (which must be executed sequentially) and concurrent parts (which can be
executed concurrently). Each processor will execute the sequential parts individually; while all
processors will execute the concurrent parts altogether by using message passing communication
primitives. In practice, scalar variables and small data arrays used in the program are replicated

on all processors in order to reduce communication costs; while large data arrays are partitioned

and distributed among processors.

2.1 Data Partition and Distribution

In this subsection, we show how to represent the data partition and distribution of a large data
array among processors. Let the kth dimension of a data array A be Ax. Each array dimension
A will be mapped to a unique dimension map(Ay) of the processor grid, where 1 < map(4x) < ¢ '
The partition and distribution of each data array can be represented by a distribution function. As
in this paper we only consider 1-D or 2-D data arrays, in the following, we show two distribution

functions for distributing 1-D or 2-D data arrays, respectively.

Case 1: 1:D data. a.rray The distribution function of a 1-D data array entry A(¢) is of the form

fA(%) o .l_éﬂm';%"’ﬂj[mod Noap(ay] if A is partitioned
if A is replicated,

where d € {—1, 1} and the square parentheses surrounding “mod Np,p(4)” indicate that the ap-
pearance of this part in the expression is optional. fa(i) returns the location in the dimension
map(A) of the processor grid where A(4) is stored. This dJStI‘lbllthIl function, which is a general-
ization based on [8], can specify the following parameters: (1) method, of distribution — whether
the data array is partitioned across processors or replicated; (2) method of partition — contiguous
or cyclic; (3) method of indexing — increasing or decreasing; (4) the grid dimension to which the
data array is mapped; (5) the block size for distribution; and (6) the displacement applied to the

subscript value for mapping.

s
i

Case 2: 2-D data array. The distribution function of a 2-D data array entry A(z", 7)is of the form

(z1, z2) if the distributions of A; and As are independent
fali, i) =1 (21, (d121 + dawz) mod Nyap(ay)) if Agls rotated according to A,
((diz1 + d2zs) mod Npnap(ay), ¥2) If Ay is rotated according to Aq,

where 2z, and z, are obtained from the 1-D distribution function, d; and dp arein {-1, 1}. fa(s, j)
returns the locations in the dimensions map(4;)} and map(Asz) of the processor grid where A1, 7)
is stored. This 2-D distribution function is a generalization from the 1-D distribﬁtion functioﬁ, and
therefore, it is more general than the one in [8}, in which the distributions of 4; and A; must be
independent. For example, the data distribution schefna, of A, B, and C in a version of Cannon’s
matrix multiplication algorithm 4 = B x C can be represented by the schema in Fig. 1-(a), (b'),.
and (c), respectively [3). -

00 o1 | 02| 03 00| 03] 02 01 00 {3122 13 00, 01, 02, 03
10 | 11 12 {1 13 13 12| 11 | 10 30 | 21|12 03 10,11, 12, 13
20 | 21 22 | 23 22| 21| 201 23 200 11§02 33 20,21, 22, 23
30 1311 32| 33 31 30| 33| 32 10101]| 32] 23 30,31,32,33
(a) (k) (c) (d)
09 00| 01{oo!| o1
01
02
03 03 101 11 10 11
03 |02] 01 (00
% 00| o1 | oo| o1
01
02 10} 11 10 11
o1 03
(e) (f) (g g (h)

Figure 1: Data layouts for various data distribution schema

In Fig. 1, (a) - (d) show some data distribution schema possible for a 16 x 16 data array

on a 4 X 4 processor grid, and (e) - (h) show some schema on a four-processor machine. As in

Fortran, the data array subscripts are assumed to start with the value 1. For convenience, we

assume map(A;) = 1 and map(4s) = 2.

(a)
(b)
(c)

(d)

()
()
g)

(k)

Ny=4, No=4:
Ny ='4, Ny =4
Ny =4, Ny = 4
N = 4, No = 4:
Ny =1, Ns =4
Ny=4, N, =1:
N]_ = 4, N2 =1:
N1 = 2, Nz =2z

Fali) = (1552, 1324 _

Fa(h)= (5], (=152 - 152]) mod 4)
fa(,7) = ((=L5F2] = [52]) mod 4, [Z2))
fA(i,j) = (l.l-:i_l.]’ X)

fa(s,3) = (0, | =Ly

fa(i,3) = (1332 mod 4, 0)
falé,7) = (I*3*] mod 4, 0)

fa(if) = (|3] mod 2, |531] mod 2)

If the dimensionality g of the processor grid is greater than the dimensionality 7 of a data array,

we need to specify the distribution across the remaining (g — r) dimensions. As in [8], we restrict

the distribution in each remaining dimension either to a specific location or to be replicated along

that dimension.

2.2 Interdependence of Communication Generation and Data Distribution

The following set of communication primitives is borrowed from (7] and [15].

o Transfer: send a message from a processor to the other processor.
o Shift: circular shift of data among neighboring processors along the specified grid dimension.

¢ OneToManyMulticast: send a message to all processors on the specified dimension(s) of the

processor grid.

e Reduction: reduce data using a simple associative and commutative operator over all the

processors lyiﬁg on the specified grid dimension(s).

e AffineTransform: send data from each processor on the specified grid dimension(s) to a

distinct processor according to an affine transform.
e Scatter: send a different message to each processor lying on the specified grid dimension(s).
o Gather: receive a message from each processor lying on the specified grid dimension(s).

o ManyToManyMulticast: replicate data from all processors on the specified grid dimension(s)

to themselves.

Table 1 shows thé communication costs of these primitives on the hypercube computer. The pa-
rameter m denotes the message size in words, seq is a sequence of identifiers representing the
processors in various dimensions over which the collective communication primitive is carried out.
The function num applied to such a sequence simply returns the total number of processors in-

valved.

Li and Chen noticed that a data distribution scheme must be given before analyzing commu-
nication costs [15]. However, fo examine whether a data distribution scheme is good or not really
depends on which communication primitives are involved. Gupta and Banerjee suggested the fol-
lowing two steps to break this cyclical dependency. First, assume Ny =Ny =...= N, then a

data distribution scheme can be determined by using the component-alignment algorithm. Second,

| Primitive | Cost on Hypercube |

Transfer(m) O(m)

Shift(m) O(m)
OneToManyMulticast{m, seq) | O(m *lognum(seq))
Reduction(m, seq) O(m = log num(seq))
AffineTransform(m, seq) O(m * log num(seq))
Scatter(m, seq) O(m = num(seq))
Gather(m, seq) O(m * num(seq))
ManyToManyMulticast(m, seq) | O(m * num(seq))

Table 1: Costs of communication primitives on the hypercube computer.

formulate the total execution time including the computation time and the communication time;

then the values of ¥y, Ng; .« g can be determined by requiring the optimal total execution time.

3 Distributing Data Using the Component Alignment Algorithm

In this section, we show an example of how to distribute data arrays using the component alignment

algorithm. Given a program, we first construct a component affinity gra',ph from the source program

[14]. It is a directed weighted graph, whose nodes represent dimensions (components) of arrays and

whose edges specify affinity relations between nodes. Two dimensions of arrays are said to have an

affinity relation, if the difference of the two subscripts of these two dimensions is a constant value.

The weight with an edge is equal t¢"the communication cost and is necessary if two dimensions of
;

arrays are distributed along different dimensions of the processor grid. The direction of an edge

specifies the direction of the data communication according to the owner computes rule.

The component alignment problem is defined as partitioning the node set of the component
affinity graph into ¢ (¢ is the dimension of the abstract target grid) disjointed subsets so that the
total weight of edges across nodes in different subsets is minimized, with the restriction that no two
nodes corresponding to the same array are in the same subset [8] [14]. In this paper, we assume

that the abstract target grid is 2-dimensional, therefore, ¢ is equal to 2.

Consider the following Jacobi’s iterative a.lgorithi:n for linear systems A, xm Xm = B

C3

Figure 2: Component affinity graph of Jacobi’s iterative algorithm

{* X(i) has been assigned an initial value before the computation. *}

1 DO 10 k = i, MAX_ITERATION

2 DO06i=1,m

3 V(i) = 0.0

4 D06 j=1,m

5 V(i) = V(i) + A(i,7) = X(3)

6 CONTINUE

7 DO 9 i=1,m

8 X(1) = X(i) + (B() — V() / A, D

9 CONTINUE j
10 CONTINUE ‘ 4

There is an iterative loop from line 1 to line 10, whose body is from line 2 to line 9. Fig. 2

shows the corresponding component affinity graph. The edge weights of the graph are as follows.

ManyToMa,nyMulticast(_%z-, N) (line 5)

[5] =

¢, ‘= ManyToManyMulticast(3, N1) + OneToManyMulticast{m, N2) (line 5)
s = Nyx OneToManyMulticast(3, N2) (line 8)

cs = N+ OneToManyMulticast(7%-; Vo) (line 8)

Along with each term, we indicate the line number in the program to which the affinity relation
appears. The data size for array A is m?, the data size for arrays V, B, and X each is m. The total
number of processors is denoted by N, while Ny and N, refer to the number of processors along
which various array dimensions are initially assumed to be distributed. Note that ¢; is greater than
C4- Therefbre, applying the component alignment algorithm on this graph, we get the following
disjointed sets of d_imenéions: set 1 includes Ay and V: set 2 includes Az, B, and X. These two

sets are mapped to dimensions 1 and 2, respectively, of the processor grid.

Next, we determine the partition strategy. As the iteration space is rectangular, the distribution

8

| Ny xX N,] Computa.tion Time f Communication Time _]
Ni=1,N,=N (2* & +3*v)*tf (2% m *log N) * £,
Ni=N,Ns=1 (2*—+3*m)*tf (m4+mxlogN)*t,
NMi=VN,N=VN | (242 +3%)ty (%*m*logi\f*(ﬁ_-]-l))*tc

Table 2: Computation time and communication time on three processor grids

functions for all array dimensions are determined to be contiguous:

fA(a,j)—([m/NJ Lm/NJ) Fr(i) = |- /NJ fx(J)—fB J)"L%- (1)

We now determine the value of Ny and N,.. The total execution time including both the
- computation time and the communication time of an iteration from line 2 to line 9 is formulated
as follows.

Time = 2% Nfﬁ\fg *t7 + Reduction(zt, N2) (line 5)
+ 3% Fwip+ Ny# OneTo\/[anyMultlca,st(;\’," , N3)
(or 'Vl . Transfer(77) if Np = 1) (line 8)
+ OneToMany\/[ultlcast(T—, N1) (line 5 and line 8) -
(communication cost because of the loop-carried dependence of X).

We assume that the average time of a floating point operation is t; and the average time of
transferring a word is ¢;. The optimal execution time can be obtained by substituting all possible
Ny and Nj into the formula, where N = Ny N3. Table 2 shows the execution time on three
processor grids. The costs of communication primitives are based on Table 1. The case when
Ny=1and Nr; = N is better than the other two cases for the computation time. However, this
distribution scheme cannot be satisfied, as it requires more communication time than the other

two cases, Therefore, we will show a better one in the next section.

4 A Dynamic Programming Algorithm for Data Distribution

Consider Jacobi’s iterative algorithm again. The body of the iterative loop contains two Do-loops:
L1 and Ly. I, is from line 2 to line 6; L5 is from line 7 to line 9. Suppose that we compute
Ly and L, separately using the component alignment algorithm. Then the total execution time

for computing an iteration should include not only the execution time for L, and I, but also the

9

Execution time for L1

Communication cost of changing data layouts for L1 to L2

Execution tirne for L2

Communication cost because of the loop-carried dependence

Figure 3: The total execution time for computing two Do-loops in an iteration.

communication time for changing data layouts for Ly to L, and the communication time because

of the loop-carried dependence, see Fig. 3.

Fig. 4 shows the component alignment for L; and L. In Ly, 44 and V and Bl are mapped to
dimension 1 of the processor grid; A and X are mapped to dimension 2. In Lo, 4; and V and B
and X are mapped to dimension 1; Ay is mapped to dimenéion 2. Suppose that the execution time
for Ly is Time; and for Lg it is Time,; the communication time for changing data layouts for £y
to Lo is CTime; and the communication time because of the loop-carried dependence is CTimes.

Then,

Time; = 2% iy *ts +-Reduction(F, N2) (line 5)

Time; /= 3§+t (line 8)

CTime; = O (in this algorithm)

CTime; = ManyToManyMulticast(fz, V1) + OneToManyMulticast(m, Ny)

(loop-carried dependence of X from line 8 to line 5).

Note that, it is not necessary for sending or receiving data among processors for changing data
layouts for Ly to Ly in this algorithm. The optimal execution time for L, is 2 * -’%2- * 1y when
Ni = N and Ny = 1. The optimal execution time for Ly is 3 * 5 * iy when Ny = N and Ny = 1.
The communication cost for 'upda.ting‘ array X because of the loop-carried dependence is m * tc.r
Therefore, the total execution time for computing an iteration is (2 « ’I‘—:— + 3% F) xty + mrt,

which is better than the one using a different data distribution scheme in the last section.

Since this is our preferred implementation, we briefly describe it in below. Table 3 shows

10

C1

Al——vV | B Aleeseees >V B
C4 3
——____—-G--__-‘- ------- - -_____-.':.-'._‘\
h Y
2 \
A2 = X A2 : X
(@) ' (b)

Figure 4: Component alignment for (a) lines 2-6 and (b) lines 7-9 of Jacobi’s iterative algorithm

processor 0 Au Alg A13 A14 Vl Bl zYl (X1 ;Yg 4Y3 .X:;)
processor 1 .‘121 Azg A23 A24 Vg ;Bz Xg (JY]_ Xg Xg _Y4) l
processor 2 A31 !—l32 A33 A34 V‘} .83 X3 (_Xl _Xg .X3 .:Y4)
PI‘OCBSSOf 3 A41 A42 A43 A44 V;; B4 .{Y4 (X}_ JYQ JY3 .X‘;)

Table 3: Data layouts of the parallel Jacobi’s iterative algorithm for implementing linear systems
A4x4 X4 = By on a four-processor linear array.

the data layouts of the corresponding parallel Jacobi’s iterative algorithm for implementing linear
systems Ayyy Xy = By on a four-processor linear array. The ith row of data array A and the ith
elements of data arrays V, B, and X are stored iﬁ processor ¢ — 1. V({) and X(t) are computed in
processor @ — 1. After computing a new version of data array X, it broadcasts to all processors for

further computation. -
7

In general, a program contains s Do-loops or an iterative loop contains s Do-loops, and the
problem of finding the optimal execution time or the minimum cost order of data distribution
schema can be obtained by the following dynamic programming algorithm. Let Ly, Lo, ..., L,
be s Do-loops in sequence in the program. Let M;; be the cost of computing the sequence of
loops Li, Lizy, ... Liyj—1 using the component-alignment algorithm, and F; ; be the distribution
scheme, for 1 <t < sand 1 < j < s—1i+ 1. Define T;,; to be the minimum cost of computing the
sequence of loops Ly, Lo, ..., Liyj-1 with the restriction that the final data distribution scheme

after computing T; ; is Pij. Clearly, Ty ; is equal to My ;.

Algorithm 1. A dynamic programming algorithm for computing the minimum cost order of data

11

distribution schema of executing a sequence of s Do-loops on the distributed memory computer.
Input: M;; and P;;, where L<i<sand1<7j <s=—i+ 1.

Output: The minimum cost of executing s Do-loops on the distributed memory computer.

for ¢ := 2 to s do
forj:=1ltos—i+1do _
Tij = MINycrei(Tick,x + Mi, j + cost(Fiok, k> B) ;
 /* cost(Pi—k, &, P, ;) returns the communication cost of changing
data layouts from Pi_g ¢ to P; ;. */
Minimum_Cost = MINlSkSs(T —k+1,k T+ loop_carried_dependence(Ts_gi1,k)) -
/* loop_carried dependence(Ts—k+1,) returns the communication cost
~ incurred by the loop-carried dependence, if a sequence of

©m NP e R W

distribu;cion schema is used for computing Ts_g41,5- */
5 Improving the Communication Time by Pipelining Data

Consider the following successive over-relaxation {(SOR) iterative algorithm, which can converge

faster than Jacobi’s iterative algorithm, for linear systems Amxm Xm = B,,.

{* X(i) has been assigned an initial value before the computation. *}

1 DO 9 k = 1, MAX_TTERATION

2 /jp08i=1,m

3 © V(i) = 0.0

4 DO 6 j=1,m

s V(i) = v(i) + AG,J) + X(3)

6 CONTINUE

7 X(i) = X(1) + OMEGA * (B(i) — V(i)) / A(i,i)
8 CONTINUE -

9 CONTINUE

The corresponding component affinity graph of this algorithm is the same as the one of Jacobi’s

iterative algorithm in Fig. 2, although the edge weights as shown below are different.

12

processor 0 A11 A21 A31 A41 B1 X] V1 (Vl Vg I/E; V4)]
processor 1 A12 Agz A32 A42 Bg)(2 Vz (Vl Vg V;:, V4)
processor 2 | A13 A2z Asa Ags Bz Xz Vi (1 Va Va V)
processor 3 A14 A24 A34 A44 34 X4 V4 (Vi Vg Vé V;-l)

Table 4: Data layouts of the parallel SOR iteration algorithm for implementing linear systems
Ayxa X4 = B4 on a four-processor linear array.

ei = m?«x Transfer(1) (line 5)

e m * OneToManyMulticast(1, N) (line 5)
¢3 m % Transfer(1) (line 7)

€4 m % Transfer(1) (line 7)

I

Applying the component alignment algorithm to this graph, we get the following disjointed sets
of dimensions: set 1 includes 4; and V; set 2 includes 4, B, and X . These two sets are mapped
to the dimensions 1 and 2, respectively, of the processor grid. The partition strategy is the same
as the one in Equation (1) in Section 3. We now determine the .va,lue of N7 and Ny, The total

,execution time including both the computation time and the communication time of an iteration
from line 2 to line 8 is formulated as follows.

Time = m* [2% 3% xiy + Reduction(1, Vy) (line5)
+ 4 * ty + Transfer(1) (Line 7)
+ OneToManyMulticast(1, N1)] (line 5 and line 7)
' (communication cost because of the loop-carried dependence of X).

When N; = 1 and N, = N, the execution time, (2 * %,2— +4xm)*rty +mx(logh + 1) ¢,
is minimal. T:?ble 4 shows the da,t; layouts of the corresponding parallel SOR iterative algorithm
for implemenfing linear systems A4x4 X4 = By on a four-;irocessor linear array. The jth column
of data array A and the jth elements of data arrays B and X are stored in processor 7 — 1. Data
artay V is replicated on all processors. A naive implementation can be as follows: at step 7 in an
iteration, each processor computes V(i) using local data; then, a reduction_ operation is used to

compute the complete V(7); finally, X(7) is updated according to B(i) and V(7) in processor i — 1.

The above naive algorithm reveals a clue that at step ¢ in each iteration, X (¢) is updated and
will be used in the continuous steps to update V(j), for i < § < m then 1 < j < i, until at
step 7 in the next iteration. In this case, it is possible to improve the communication time by

pipelining variable V(j) for all 1 < j < m. Fig. 5 shows the pipelining implementation for solving

13

PROCESSOR 0 | PROCESSOR 1 | PROCESSOR 2 | PROCESSOR 3
1 1 1
B(l) B(2) B(3) B(4) . B(5) B(6) B(7) B(8) 5B(9) B(10) B{11) B(12) 55(13) B(14) B(15) B(16)
step (X)) X@)y X3) X&) :LX(S) X XM X(8) ' Xy X(10) X(11) X(12) jX(lS) X(14) X(13) X(16)
1 |ann a2 agd A0s : : :
2 AR AR ARA 1 ALY AGE AT ALY i :
3 AGS ABS L ARS ACS AQT ARE ALY AULLG ALY A(LID) §
4 AMAL T AGS) AGS ABT AGSH) TARS ARG ARZILD AQRID AL AL ALIS) A(LIG)
3 X1 PAMS) AMS) AWRT AMS) TAGH AGID AGID AGID JARIN A4 ARIS) A216)
& A X(2) PAS) ABS AGD AGE) TAGS) AGID AGID AW EA(S.IE) A(314) A(,15) A(3.16)
7 Aac a2 X(3) : A8 A6 AGE) 1AGS AGID AGID AGID 1AKI3) AGL4) AGLS) A@I6)
8 AD Al A X(4) i ATD ALY JAGS AGID) ABID AGID JAGIN AL AGIS) A6
9 AGLD AG2 AG3) AGH | ABS) ATY AMLIO AL A(RI2) lAGIY AGLH AGIH AGIH
10 AL AG2 AGYH Als | X(O) TABS) ABID AGID AG12) JAGI AT A(LLS) A(716)
i1 ATD AD AT AGH E a6s X(6) EA(9.9) AG10) A(GID AGID) !A(ﬂ.lS) AB14) AB15) ABIH
12 ARLD AB2 ABYD ABRS EA(T.S) atsm XD i A(10,10) AQ10,11) A(10,12)§A(9.13) A{9,14) A@.I5) AMD.IE
13 AGD AGZ ABGD A0S ! AGRS ABSe ac?n X(8) ! AQLID AQILI2}IA(I0,13) A(10,14) AC10.15) A(10,16)
14 A0 AGDZ) AGG3 A0S} AGS) AGS AGD AGH : AQZIDIAULIR A(ILI4) AULLS) A(11,16)
15 ALY A(ILZ) A(IL3) AQLLA)} AIDS) A0S AQ0T A(108); X(9) 1A(12,13) A(12,14) A(12,15) A(12,16)
16 AU2,1) A(12) A(129) A(lz.d)g ALS) AULE AQLD A1)} Aac0s X(10) 5»\(13.13) A(13,14) A(13.15) A(13.16)
17 A3 AUSD) A(IS3) A(34)) ANIZS) AQZE) A(2D AQZY) ALY adnie X(11) ' AQ14,14) A(l4,15) A(14,16)
18 MILD AQMD) AU4T) A4 AUBS) ACI3E) AUST) AU A2 AUZI0) AUZIL X(12): A(I5,15) A(15,16)
19 A5 A(ISZ) AUS3) AUSH! A4S A(4G A(4D A(48) ! A(I3S) A(13,10) A(13,ID A(13,12)} A(16,16)
20 AQGD AU62) AUISH AUS4H AUSS) AUSE) AUSD A(SS) AGAS) Al410) AULID A(412)iX(13)
21 The next iteration DAI6S) AQSE A(GT A(I68) ! A(ISS) A(5I0) AQISIL A(SIDIA(Y K(14)
22 ' The next iteration 1AQ6S) A(I6,100 A(IS.ID AQSIDIA(MS513) A(1514) X(15)
23 i i The next iteration CIARGEY A6 AG6E5 X(16)
24 5 E E The next iteratiots

Figure 5: The pipelining implementation of the SOR iterative algorithm for solving linear systems
 Aisx16 X16 = Bie on a four-processor ring.

linear systems Aigx16 X16 = Bis on a four-processor ring. Fig. 6 shows the parallel program m
a processor. Note that the computation of V(7) and the updating of X(¢) can be Implementéd
in one computation step. After a careful study of the total execution time, we find that the
average executioh time of an iteration is at most (m 4 V) * (2 * § * {7 + 2 % £;), which is equal to
(2% %2— +2+m)*ts+2+(m+N)* t; and is better than the above naive algorithm. If the hardware
supports overlaying the computation and the communication, the total execution time may reduce

further.
6 Using Data-Dependence Information for Pipelining Data
Consider the following Gauss elimination algorithm for linear systems Amym Xm = Bp,.

1 {* Matrix triangularization. %} -
2 DO8k=1,m

14

{* Let m be the problem size, N be the number. *} 23 continue

1

2 {* of processors, and block=m/N. *} 24 do 341 =1, block

53 REAL A(m, black), X(biock), B(block), V{m) 25 current = before + i

4 me=who_am_i() (* Return current processor’s ID. *}] 26 temp = 0.0

5 before = me * block 27 do29j=1,i-1

6 dod44k=1,MAX ITERATION : 28 tamp = temp + A(current, j) * X(j)
7 do 15 i =1, before 29 continue

8 temp = 0.0 ’ 30 receive_from_left(V(current))
g do 11j=1, block 31 Y(current) = V(current) + temp
10 temp = temp + A, j) * X(j) 32 X(i) = X(1} + omega *

11 continue . . 33 { B(i) - V(cuirent) } / Alcurrent, i)
12 receive_from_left(V(i)) . 34 continue

13 V(i) = V(i) + temp) a5 dod43i=(me+1)*block+ 1, m
14 send_to_right(V(i)) 36 ternp = 0.0

15 continus 37 do 39 j = 1, block

16 do 23 i =1, block 38 temp = temp + A(i, [) * X()
17 current = before + i 39 continue

18 Y{current) =0.0 40 receive_from_left(V(i))

19 do21j=1i,block 41 V(i) = V(i) + temp

20 V(current) = V{current) + A(current, j) * X(j) 42 send_to_right(V(i))

21 continue 43 continue

22 send_to_right(V({current)) 44 continue

Figure 6: Generated parallel codes for the SOR iterative algorithm.

3 D0 8i=kx+ 1, m

4 L(i,k) = AQi,k) / Alk,k)

5 B(i) = B(i) — L(i,k) * B(k)

6 D08 j=k+ 1, m

7 ACL,3) = ACL,]) — L(i,k) = A(k,3)

8 CONTINUE

9 {* Triangular linear system UX = Y. *}
10 D012 i =m, 1, -1

11 V(i) = 0.0
12 CONTINUE _

13 DO A7 j=m, 1, -1

14 XGY =BG - VG [AGLD
15 DO 17 i=3 -1, 1, —1

16 V(i) = V(i) 4+ A(L,§) * X(§)

17 CONTINUE

Fig. 7 shows the corresponding component affinity graph and the suggested component align-

ment. Although the program fragment from line 2 to line 8 prefers using a 2-D processor grid,
the program fragment from line 13 to line 17 prefers to use a processor ring. In order to achieve
a better load balance among processors, a processor ring is used. In addition, data arrays are

partitioned along the first dimensjon. Because the index space includes an oblique pyramid and a

Figure 7: Component affinity graph and the suggested component alignment of the Gauss elimi-
nation algorithm

triangle, cyclical data distribution schema will be used.
Fa(i,7) = fu(i,3) = (i — 1) mod N, 0); fv(i) = fa(i)= fx(i) = (i~ 1) mod N.

A naive compiler may generate a lot of OneToManyMulticast operations for broadcasting B(k) in
line 5, A(k, 7) in line 7, and X(7) in line 16 to all processors in the ring for each distinct & and j.

It will certainly incurs excessive communication overhead.

In effect, data communication for B(k), A(k,7), and X () is due to the loop-carried dependence.
A better method for generating efficient codes relies on the data-dependence information of each
data token. For instance, line 5 is in the body of a two-nested loop, token B(k) was generated in
index (k—1, k’;t and is used in indices (k,0)"+4(0, 1), for all £ +1 < ¢ < m. The data-dependence
vector correéponding to token B(k) is (0,1)t. As we want to map index (k,¢)* to be executed in
the virtual processor %, the index-processor mapping is (0,1). (0,1) will map the data-dependence
vector (0,1)f to 1, which means that B(k) will be used in the neighboring processor in the next
consecutive step. Therefore, B(k) can be arranged by pipelining to the neighboring processor |
instead of broadcasting to the neighboring processor. The detailed data-dependence information
of each data token and the suggested index-processor mapping can be seen in Table 5. Fig. &
shows the parallel program in a processor. In the program, OneToManyMulticast operations are

substituted by Shift operations (send and receive operations).

16

virtual-PE

dependence-vector
token | line used in indices mapping mapping used in PEs
B(7) 5 (0,4)" + &(1,0) (0,1)((k,¢) =4 (0,1)(1,0) =0 (i~1)mod N
Bk) | 5 (k,0)t +4(0,1)* (0, 1)((k, i =4 (0,1)(0,1f =1 all PEs
A, | 7 (0,4, 5)" + &(1,0,0)¢ (0,1,0)(k,i,5) =1 (0,1,0)(1,0,0)t =0 (1—-1)mod ¥
L, k) | 7 | (k4,00 + 7(0,0,1)¢ | (0,1, 0)(k,4,5) =1 { (0,1, 0)(6,0,1) =0 (i-1)mod N
ARG | T | (B 0,5) 4 4(0,1,0)° | (0,1,0)(k,i, 50t =4 | (0,1,0)(0.1.0f =1 | all PEs
V(&) 16 (0,2)* + 5(1,0)* (0,1)(4,9) =1 (0,1)(1,0) =0 (1—1)mod N
X(7) | 16 (4,0)* +4(0, 1) 0,00, =i (0,1)(0,1) =1 all PEs

Table 5: Data-dependence information of each data token and the suggested index-processor map-
ping of the Gauss elimination algorithm

1 {*Let m be the problem size, N be the number *} 30 L, k1) = A, kD) / Apipeline(k1)

2 = of processors, and block = m /N, *} 31 B{i)=B(@) - L{i, k1) * Bpipeline

3 REAL A(block, m), L(block, m), X(block), B(block) 32 do34 j=(kl1+1),m

4 REAL V(block), Apipeline(m), Xpipeline, Bpipeline 33 AL) =Ax,) - L, k1) * Brpipeline
5 me=who_am_i{) {* Return current processor’s ID, *} 34 continue

& {* Matrix riangularization. *} 35 {* Triangular linear system UX =Y. *}
7 dol5k=1,me 36 do38 i=block, I, -1

8 receive_from_lefi(Apipeline(k..m), Bpipeline) 37 Vi) =00

9 send_to_right(Apipeline(k..m), Bpipeline) 33 continue

10 do 15 i =1, block 39 dodd j=m,(m-N+1)+(me+ 1, -1

11 L(i, k) = A{i, k) / Apipeline(k) 40 receive_from_right(Xpipeline }

12 . B=B@)-L{k* Bpipeline © _ 41 send_to_left(Xpipeline }

13 dolfj=(k+1, m 42 do 44 i=block, 1, -1

14 A,) £ AL) - L(i, ¥) * Apipeline(j) 43 V(i) = V(i) + A(i, j) * Xpipeline

15 continue = - 44 continue

16 do34 k=(me+1),m, N 45 do58 j=(m-N+me+1),1,-N

17 pivot = ceiling(k / N) 46 pivot = ceiling(j / N)

18 send_to_right{ A(pivot, k..m), B(pivot)) 47 X(pivot) = (B(pivot) - Vi{pivot)} / A(pivot, j)
19 do 24 i = (pivot+ 1), block 48 send_to_left(X(pivot))

20 L(i, K) = A, X) / A{pivot, k) 49 do 5li=(pivot-1),1-1

21 B(i) = B(}) - L, k) * B(pivot) 50 V(i) = V(D) + A(i,) * X(pivot)

22 do24 j=(k+1),m 51 continue

23 Al J) = A(i,) - L(1, k) * A(pivot, j) 52 receive_from_right(X(pivot))

24 continue 53 do 58 jl =(j - 1}, max(1, G-N+1),-1

25 receive_from_left(A(pivot, k..m), B(pivot)) 54 receive_from_right(Kpipeline)

26 do34 kI =(k+ 1), min(m, (k+N - 1)) 55 send_to_left(Xpipeline)

27 receive_from_left(Apipeline(kl..m), Bpipeline) 56 do 58 i=(pivot-1), 1, -1

28 send_to_right(Apipeline(kl..m), Bpipeiine) 57 Vi) = V(i) + AL, j1) * Kpipeline

29 do 34 i =(pivot + 1), block 58 continue

Figure 8: Generated parallel codes for the Gauss elimination algorithm.

7 Conclusions

We have presented in this paper a systematic method for compiling Do-loop programs on distributed
memory parallel computers. In Section 2, we have generalized data distribution functions for
1-D and 2-D data arrays by additionally allowing distributed data to be indexed increasingly
or decreasingly, and allowing the distributions of different data dimensions to be dependent or

independent. Thus, the distribution schema are more rich than previously proposed.

In Section 4, we developed a dynamic programming algorithm for distributing data which
can compute the minimum cost order of data distribution schema for executing a sequence of
nested Do-loops in distributed memory computers. In Section 5 and Section 6, we considered
the improvement of communication time by pipelining data. Espécia.]ly, in Section 6, the data-
dependence information which can be used to map iterations to be executed in specific processors

also can provide enough information for pipelining data.

From our experience, the codes generated by parallel compilers are inﬂﬁenced by the paradigms
and techniques of designing parallel algorithms, which are also influenced by the target parallel
computer architectures. In general, aavanced compiler techniques, such as loop interchanging, loop
distribution, data blocking (strip miling), or data interleaving, can improve extracting parallelism
in an algorithm [17, 18]. A correct parallel algorithm generated from a compiler must preserve
the data-dependence relations of the original sequential algorithm. Data-dependence relations
will influence th{a strategies of selecting a good data distcibution scheme, which will consequently

influence the balanced load and the communication costs among processors.

References

[1] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An interactive environment for data partition
and distribution. In Fifth Distributed Memory Comput. Conf., pages 1160-1170, Charleston, SC, Apr.
1990. IEEE. ‘ B

[2] V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. A static performance estimator to guide data
partitioning decisions. In ACM SIGPLAN Symp. on Principles and Practices of Parallel Programming,
pages 213-223, Williamsburg, VA, Apr. 1991. ACM. '

[3] Jarle Berntsen. Communication efficient matrix multiplication on hypercubes. Parallel Computing,
12:335-342, 1989. :

(4] D. Callahan and K. Kennedy. Compiling programs for distributed-memory multiprocessors. The Journal
of Supercomputing, 2:151-169, 1988.

(5] M. Chen, Y. I. Choo, and J. Li. Compiling parallel programs by optimizing performance. The Journal
of Supercomputing, 2:171-207, 1988. :

[6] G. C. Fox. Prospects for parallel computing. SCCS 265, Syracuse University, 1992.

[7] M. Gupta and P. Banerjee. Compile-time estimation of communication costs on multicomputers. In
Int. Parallel Processing Symp., pages 179-193, Beverly Hills, CA, Mar. 1992. IEEE.

(8] M. Gupta and P. Banerjee. Demonstration of automatic data partitioning techniques for pafallelizing
compilers on multicomputers. IEEE Transactions on Parallel and Distribuied Systems, 3(2):179-193,
Mar. 1992.

(9] S. Hiranandani, K. Kennedy, and C-W. Tseng. Compiling Fortran D for MIMD distributed-memory
machines. Communications of the ACM, 35(8):66-80, Aug. 1992. L

[10] C. T. Ho. Optimal Communication Primitives and Graph Embeddings on Hypercubes. PhD thesis, Yale
Univ., 1990.

(11] K. Ikudome, G. C. Fox, A. Kolawa, and J. W. Flower. An automatic and symbolic parallelization
system for distributed memory parallel computers. In Fifth Distributed Memory Comput. Conf., pages
1105-1114, Charleston, SC, Apr. 1990. IEEE.

(12] K. Kennedy, K. S. Mckinley, and C. W. Tseng. Interactive parallel programming using the ParaScope
editor. [EEE Transactions on Parallel and Distributed Systems, 2(3):329-341, July 1991.

(13) C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for distributed execution.
IEEE Transactions on Parallel and Distribuled Sysiems, 2(4):440-451, Oct. 1991.

[14] J.'Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing between distributed
arrays. In Frontiers90: 3rd Symp. Frontiers Massively Parallel Computat., pages 424-433, College Park,
MD, Oct. 1990. IEEE.

(15] J.Li and M. Chen. Compiling communication-efficient problems for massively parallel machines. JEEE
Transactions on Parallel and Distributed Systems, 2(3):361-376, July 1991.

[16] P. S. Tseng. A Systslic Array Pazal_lelizing Compiler. Kluwer Academic Publishers, Boston, MA, 1990.
[17] M. Wolfe. ‘,Opiimz'zing Supercompilers for Supercomputers. The MIT Press, Cambridge, MA, 1989.

(18] H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers. Addison-Wesley, Read-
ng, MA, 1990.

[19] H. P. Zima, H-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD/SIMD paralleliza-
tion. Parallel Computing, 6:1-18, 1988.

19

