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Abstract

The prime-factor decomposition is a fast computational technique for many important digital
signal processing operations, such as the convolution, the discrete Fourier transform, the discrete
Hartley transform, and the discrete cosine transform (DCT). In this paper, we present a new
prime-factor algorithm for the DCT. We also design a prime-factor algorithm for the discrete
sine transform which is based on the prime-factor DCT algorithm. :

Hardware implementations for the prime-factor DCT are also studied. We are especially
interested in the hardware designs which are suitable for the VLSI implementations, We will
show three hardware designs for-the prime-factor DCT, including a VLSI circuit fabricated
directly acgording to the signal-flow graph, a linear systolic array, and a mesh-connected systolic
array. These three designs show the trade-off between cost and performance. The methodology,
which deals with general (N} - N2)-point DCTs, where N; and N, are mutually prime, is
illustrated by converting a 15-point DCT problem into & (3 x 5)-point 2-D DCT problem.
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1 Introduction

This paper is concerned with designing a fast prime-factor algorithm for the discrete cosine trans-
form (DCT). The DCT, which performs much like the theoretically optimal Karhunen-Loeve trans-
form for the first-order Markov stationary random data, has found wide applications in speech and
image processing as well as telecommunication signal processing for the purpose of data COmpres-
sion, feature extraction, and filtering [9]. In order to compute the DCT efficiently, fast algorithms
have been intensively studied [1] [8] [12] [13] [16] [19] [28] {30]. A complete survey of the DCT
algorithms can be seen elsewhere [14] [21].

It is our goal in this paper to present a new prime-factor DCT algorithm. The prime-factor
decomposition is a fast computational technique for many important digital signal processing oper-
ations, such as the convolution [20), the discrete Fourier transform (DFT) (2] 3] [4] [5] [10] [22] [24]
[25] [26] [27], the discrete Hartley transform (DHT) [6] [18] {23], and the DCT (6] {13] [35]. It has
both theoretical and practical significance, Its main theoretical rationale is to convert a large-size
one-dimension problem, by employing certain appropriate index mappings, into a multidimensional

one. Then, we can deal with the resulting groups of small-size problems in each dimension.

’For practical considerations, since in a typical DSP processor the memory for data storage is
expensive and usually not large, it is more feasible to process a small-size problem ome at a time.
In addition, whén this approach is combined with efficient short-length algorithms, such as Rader’s
algorithm {20], or Winograd type minimum multiplication algorithms in DFT [31], or Heideman’s
small odd-length DCT modules 7], etc., it would be of practical interest in reducing the scalar

multiplication complexity.

However, the actual realizations of the index mappings are always time-consuming, Therefore,
many researchers have been secking efficient jraplementation methods and have obtained some

encouraging results {17] [32] {33] [34].

Although, previously Yang and Narasimha [35] have proposed a prime-factor DCT algorithm,




its index mapping is very complicated. Yang and Narasimha note that an N-point DCT can be
implemented by an N-point DFT, and in addition, there exist prime-factor algorithms for the

DFT. Therefore, it is possible to derive a prime-factor DCT algorithm.

From our point of view, an index mapping not only should be easy to understand, but also
should be efficient in running. Lee [13] has achieved this goal. However, his input index mapping is
realized by constructing and combining two index tables, which could occupy additional memeory

space and would be infeasible in variable-size applications.

Chakrabarti and J4J4 [6] develop a systolic architecture for implementing Lee’s algorithm.
Because they want to compute the DCT from the DHT, they modify the index mappings, which
are essentially the same as Lee’s. However, they did not discuss the actual implementation for

these index mappings.

In this paper, the input index mapping we adopt is the Ruritanian mapping, ‘since its efficient
realization can be based on the previous research efforts. In addition, the resulting algorithm
complexity is by no fneans increased. As for the output index mapping, we employ the same one
as Lee’s, for which might be the most natural one in view of the DCT transform kernel’s structure.
Because the Ruritanian mapping can be implemented by existing fast algorithms, our algorithm is

thus suitable for on-line computation for variable different size prime-factor DCTs.

We also conéiider hardware implementations for the prime-factor DCT. We are especially in-
terested in the hardware designs which are suitable for the VLSI (Very Large Scale Integration)
implementations. We will show three hardware designs for the prime-factor DCT, including a VLSI
circuit fabricated directly according to the signal-flow graph, a linear systolic array, and a mesh-

connected systolic array. These three designs show the trade-off between cost and performance.

Finally, we generalize Wang’s method [29] to design an algorithm for computing the discrete
sine transform (DST) from the DCT. We also design a prime-factor DST algorithm based on the
prime-factor DCT algorithm.




The rest of this paper is organized as follows. In Section 2, the DCT is introduced. In Section
3, we derive the prime-factor DCT algorithm. In Section 4, we propose three hardware implemen-
tations. In Section 5, we derive the prime-factor DST based on the prime-factor DCT. In Section
6, we give some concluding remarks. Finally, in the Appendix, we give the proof of two main

theorems.
2 Background

¥or a given input data sequence @, 0 < n < N -1, the DCT output data sequence Xg, 0 <k <

N -1, is defined by
N=1
w(2n 4 1)k
Xh =\ 2 k) 3 2 con "2t DRy, (1)

n=0

and the IDCT (inverse discrete cosine transform) is defined by

mn—\f Ze(k) X cos( T2t DRy (2)

where
for k = 0;

(k) = { li, forl<k<N-1.
We assume throughout this paper that N is a product of two relatively prime integers Ny and
N3. For convenience, we will ignore the scaling factor ¢(k) and the normalization factor \/; in
Equations (1) dnd (2), since they can be done in a separate step. In the following, we deal with

the simplified version of Equation (2} :

7r(2n+ 1)k
,Z% X co —"?ITF—) - (3)

We want to convert Equation (3) into the form in Equation (4) by taking appropriate input and

output index mappings:

Ni—1 No—1
m(2ny + 1)k T(2n3 + 1)k,
Z(ny,n2) :.kgo k22=:o Yk k) cos( 2N, ) cos( 2N, ) (4)

where 0 < ny < Ny, 0 < ng < Ny, and Yk, k) are the result of certain modifications on K (ks ka)-
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The input index mapping connects the input index k, 0 < k < N, to (k1,k2), 0 € k;y < N1 and
0 < k2 < Na. The output index mapping connects the output index n, 0 < n < N, to (n1,n2),
0 <n< N7 and 0 € ng < Na. Since the DCT is orthonormal, the forward transform also can be

realized by taking the transpose of the inverse transform.
3 Derivation of the Prime-Factor Decomposition

The input index mapping we adopt is the Ruritanian mapping, which was also used in the prime-
factor DFT algorithms [3] (4] {5] [10] [22], and several researchers have studied its efficient imple-
mentation methods [17] [32] [33] [34]. That is,

Yk e[0, N —1], 3 (k1 k) € [0, Ny — 1] x [0, N2 - 1],

such that
k= Tfi(kl, k‘z) = (Ngkl + leg) mod & |
where N = Ny Nz, Ny and Ny are relatively prime.
In other words, based on the Ruritanian mapping, the integers k on the interval [0, N — i]

correspond one-to-one to the lattice points in the regioﬁ {0, Ny — 1] x [0, N3 — 1]. For the sake of

our derivation, these lattice points are divided into five disjoint groups.
},

Let

f(k1,ka) = Noki+ Nike,

g(ky, k) = Noky— Niky .
Define

E = {(k1,k2)|k1=00rk; =0},

{(kl,kg) l f(kl,kg) < N and g(kl,kg) > 0; klkz # 0} ,
= {(k1,k2)| f(R1, k) < N and g(ki, k2) < 05 kiks # 0},



{(k1, k) | f(R1, ko) > N and g(ky, ko) < 0; kiky # 0},
{(k1, k2) | f(k1, ko) > N and g(ky, ko) > 0; kykg # 0} .

Let

W= {klk= k), (b, k) € B},
= {k|k = f(klskZ): (klst) €(4u B)} 3
{k | k= g(klakZ)a (kh k?) < (A u D)} .

<

Theorem 1 {klke[0, N-1], kisan integer} =W UTU UV.

Proof : In the Appendix.

From Theorem 1, we can rewrite Equation (3) as follows:

2a= (0 + 30+ 30) X cos( T2 )

KEW  keU  keV
Let

Kk ko) = Xi, where k = p(ky, kq) ,
X(fkhkz) = Xy, where k = f(ky, ko) and (ky, ky) € (AU B)

!

quknkz) = X, where k = g(ki, ko) and (%1, k) € (AU D).

Because, when (k1,%2) is in E, f(k1, k) = | g(k1, k)| = P(ky, k2), we have cos(ﬁ—z%——M) =
cos( 312”—"'12%(@) = cos(i(zn—ﬂ)ﬁ(&@). Therefore, Equation (5) becomes:

o= 5 X Ko oo D k) | o nCrt Dotk by

(k]_,k:)EE

(2n+1) f(k, k
2 Z X{k]_,kg) COS( ( 2;!( 1 2))+
- (kl,kg)E(AUB) .

w(2n + 1) g(ky, k2

2 Z ngl,k:) COS( IN )) } . (6)

(k1,k2)e(AuD)




Now, we define

X(ky a)» if (ki k) € E
-X(kI,kg) + X(h WNo—ka)s lf (klikQ) €A
Yies o) = X(kaoka) T X (Vg by k2)» if (k1,k2) € B (7)

— X (Ny—k1 No—kp) + X(Ny=k1 kp)> I (K1, k2) € C
— XNy by No—to) + X (k1 No—ky), H (k1,k2) € D

Theorem 2

Ni—1 No—1
7(2n + 1)k (27 + 1)k2
Ty = kllz___o kgo }r(h #2) COS( 2N, ) COS( 2N, ) .

Proof : In the Appendix.

Next, we introduce the output index mapping, which was proposed by Lee [13]. For the

completeness of this presentation, we list it here for easy reference.

The output index mapping: @(n) = (n1,n2), where

iy = nmod2N
iz = mnmod 2Ny
_ fi1, ifa < Ny
o= { 2N, -1~ 7, otherwise (8)
Ny = g, if fig < Ng
; L 2N, — 1 —7g, otherwise.

Lee [13] has shown that ¢ : [0, N —1] — [0, N1 — 1] x [0, N2 — 1] is a one-to-one mapping function.
In addition,

1r(2n + 1)k1

S( 1r(2n1 + l)kl
2Ny

2N,

7(2n + 1)ky T(2ng + 1)k

) = cos( 5N, ) = cos( 5N, ).

) and cos(

Therefore, it is easy to obtain the following theorem.

Theorem 3
Ni—1 Na—1 '
n(2n + 1)ky w(2ng + 1)k
Tln1ma) = kz Z Yiky ko) cos( ( 2N, ) cos( ( 2N, : ) o
1=0 kp=0



Prime-factor algorithm for the IDCT:

Input: An N-point data sequence X;, 0 < k < N , where N = Ny Ny, N7 and N, are mutually

prime.
Output: An N-point data sequence z,, 0 < n < N.

Step 1: Apply the Ruritanian mapping on X to construct an (N7 X Na)-point 2-D data matrix
X(kg,kz)) where 0 < k; < Ny and 0 < ks < Na.

Step 2: Modify the 2-D data matrix Xk k) t0 get the 2-D data matrix Yk, k) according to
"~ Equation (7). '

/* This is proved to be correct in Theorem 2. */
Step 3: /* Row-column evaluation */

1. Execute the Ny-point IDCT for each of the N» columns of Yk, kp)> and the result is
Tk )

2. Execute the No-point IDCT for each of the Ny rows of Tky k2), and the result is (g ma)»
where 0 < ny < Ny and 0 < ny < No. '

/* This is proved to be correct in Theorem 3. */

-

Step 4: Apply”the output index mapping in Equation (8) to get the final result z.,. a

In the following, we use an example to demonstrate our method.

Example : In this example, N = 15, and Ny = 3, N2 = 5. Figure 1 shows the signal flow graph
for implementing the 15-point 1-D IDCT, which can be converted into the (3 x 5)-point 2-D IDCT.
First, when giver a 15-point 1-D input data sequence X, 0 < k < 15, we transform this 1-D data
sequence by the Ruritanian mapping to a (3 x 5)-point 2-D data matrix X, (k1.ke)s 0 < k1 < 3 and

0 < k2 < 5. Table 1 shows the Ruritanian ma.pping for this case. The five disjoint sets of lattice
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Table 1: The Ruritanian mapping: & = (5%; + 3k;) mod 15, when ¥ = 15, and Ny = 3, N, = 5.

points in the region [0, 2] X [0, 4], which are divided by k1k2 = 0, 5k1 + 3k2 > 15, 5k; + 32 < 15,
Bky — 3k, > 0, and 5&; — 3k2 < 0, include

1(0,0), (0, 1), (0,2), (0,3), (0,4), (1,0), (2,0)};
{(1,1), (2, 1)}
{(1,2), (1,3)};
{(1,4), (2,4)};
{(2,2), (2,3)}-

O QO = o=
]

Next, we modify the 2-D data matrix Xy, 1,) to get the 2-D data matrix ¥{;, 4,) according
to Equation (7). Then, we apply the row-column evaluation for the computation: first, we deal
with five 3—po‘,int IDCTs; then, taEe the transpose of the result; and then, deal with three 5-point
IDCTs. Finally, the output data sequence z(n), 0 < » < 15, can be obtained by using the output

index mapping in Equa.ti_oxi (8). Table 2 shows the output index mapping for this case.

Note thé.t, the signal flow graph in Figure 1 performs the IDCT if the signals flow from left to

right, and performs the DCT if the signals flow from right to left.
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Table 2: The output index mapping when N = 15, and N; = 3, N = 5.

4 Hardware Implementations

In this section, we consider several hardware implementations for the prime-factor IDCT. We are

especially interested in the hardware designs which are suitable for the VLSI implementations.

Fig. 1 shows the signal-flow graph for the implementation of a 15-point prime-factor IDCT.
It is possible to fabricate such a 15-point prime-factor IDCT circuit directly into a single chip,
which may contain millions of transistors, by using current VLSI technologies. The input data
sequences can then be pipelined and enter into this chip, and an output data sequence is produced
in every cycle time. This design, of course, has achieved the best performance and the maximum
throughput. We will call this implementation, which is fabricated directly according to the signal-
flow graph, Design I.

-

7
However, when the problem size grows, it is difficult to fabricate a large-size prime-factor
IDCT circuit directly into a single chip. This is because it requires a network including several
butterfly-like interconnections and a transpose network that are very costly to layout in most circuit

technologies including VLSI.

After carefully étudying the prime-factor algorithm, we find that Step 1 and Step 4 only deal
with O(N) memory references. Step 2 only requires O(N') addition or sﬁbtra,ction operations.
However, Step 3, which implements the row-column evaluation, requires at least O(N log N ) mul-
tiplication and addition operations by any fast IDCT algorithm [8] [12] [14]. It is clear that Step 3
is the bottleneck of the algorithm. Steps 1, 2, and 4 can be implemented by the host computer, or

9




by a single processing element, or by a single processing element each. Therefore, in the following

we concentrate our effort in solving Step 3 by using feasible VLSI algorithms.

In Fig. 1, we find that there are five 3-point IDCT components and three 5-point IDCT compo-
nents. In general, there are Ny Ny-point IDCT components and N7 No-point IDCT components.
In practice, in order to save hardware without slowing down the processing speed, we can use only
one 3-point (NNq-point) IDCT component and one 5-point (Nz-point) IDCT component as shown

in Fig. 2, provided the data sequences are carefully arranged.

In Fig. 2, Steps 1, 2, and 4 are each implemented by a single processing element. Step
3 requires a 3-point (Ny-point) IDCT component, a transpose buffer, and a 5-point (Ns-point)
IDCT component. The data matrix generated after Step 2 is pipelined and enters into the 3-point
(N1-point) IDCT component column by column. The output data matrix of the 3-point (N7-point)
IDCT component is stored in a transpose buffer. After this data matrix enters the transpose buffer,
this data matrix in the transpose buffer is then pipelined and enters into the 5-point (N2-point)
IDCT component row by row. The resulting data matrix is then sent to a processing element for

generating the output data sequence by using the output index mapping.

We now consider the fabrication of an arbitrary N-point IDCT component. It is true that there
is no fast algorithm fbr the N-point IDCT, except if NV has a value of 2 to a power. However, in
practice, the value of N may be varied. Previously, if N did not have a value of 2 to a power, then
either we should-"pa,d additional zeros so that we could use a fast IDCT algorithm, or we should

use the conventional matrix-vector multiplication algorithm to solve the N-point IDCT.

Suppose that we base this on an O(N log N) fast sequential IDCT algorithm for laying out
the IDCT chip. If Ny # N, then the layout of the Ny-point IDCT component is quite different
from the layout of the Na-point IDCT component. In addition, as mentioned before, because this
fast sequential algorithm requires a network with several butterfly-like interconnections, the circuit
layout becomes expensive. Therefore, if a chip includes both the N;-point IDCT component and

the Ny-point IDCT component, then the circuit design cycle will certainly be lengthened.

10



Recently, Kung and Leiserson [11] used matrix-vector multiplication algorithm to solve the
discrete Fourier transform (DFT). Although it requires O(N?) multiply-and-add operations for
solving the V-point DFT in the sequential algorithm, the algorithm cé.n be implemented by a linear
systolic array with N processing elements in O(N) time. This result is promising in comparison

with any sequential fast Fourier transform algorithm with O(N log V) operation complexity.

We are interested in the systolic array implementations, because the systolic arrays are es-
pecially suitable for VLSI implementations. A systolic array is a special-purpose parallel device,
composed of a few simple types of process elements. Because its interconnection pattern exhibits
regularity and locality, it is especially suitable for VLSI implementations. Several array structures
- have been proposed, including linear array, mesh-connected arrays, and hexagonal arrays. In a
typical applica.ﬁon, .s".uch arrays would be attached as peripheral devices to a host computer, which

inserts input values into them and extracts output values from them [11].

Like the D¥T, the IDCT also can be implemented by the conventional matrix-vector multipli-
cation. In addition, we also can use a linear systd]ic array with N processing elements to implement

the N-point IDCT in O(N) time. We will call this linear systolic array implementation Design I,

However, as each processing element requires N registers or memory storage to store part of
the N-point IDCT coefficient matrix, each processing element needs additional memory addressing

and control ha,r,dwa,re, which will increase the circuit complexity.
J

We now consider the time complexity and the area complexity of this linear systolic array
implementation. It requires O(N) units of time for solving the N-point IDCT with this linear
systolic array with ¥ processing elements. The .area, complexity of this linear systolic array which
has the same order as the total number of registers or memory storage is O(N?). Therefore, the
VLSI performance measure AT? of this linear systolic array implementation is O(N*), where A
means the circuit area and T means the execution time. However, this performance can not be

satisfied.

We now show that the computation required by the row-column evaluation can be represented
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by two matrix-matrix multiplications. Suppose that the N7 X N data matrix ¥ is generated after

Step 2. Then, by the row-column evaluation,

T T
"‘UN]_ XJVQ = CNQXNQ (CN1XN1 YNl XN-;) ]

where C, xny and Ci,xn, are the Ni-point and the No-point IDCT coeflicient matrices, respec-

. tively. That is,

T T
TrnyxNy = CNyxNy Yy xvy  and 2y, wv, = Coxvy T xiv, -

Thus, the operation complexity of the prime-factor IDCT is O(N (Ny + N3)) in the sequential
algorithm. This is better than the operation complexity O(N?) of the IDCT implemented by the

matrix-vector multiplication.

In the following, we show how to use mesh-connected systolic arrays for implementing the
row-column evaluation. Because the matrix-matrix multiplication can be implemented by a three-
nested for-loop algorithm, we can design a mesh-connected systolic array to implement it. The
method we use to design systolic arrays is based on the theoretical result developed by Lee {of
this paper) and Kedem [15], which presented the form_al necessary and sufficient conditions for the
correct implementations of nested for-loop algorithms on systolic arrays of arbitrary dimensions. In
addition, the method allows us to design processing elements with a constant number of registers,
thus ma,king the array modularly extensible. That is, we can use one type of processing element,
with a constaht number of registers independent of the input problem size, to construct a systolic
array for a target algorithm. This approach is attractive because the algorithm can be executed

faster than it could be on a computer using conventional memory addressing techniques.

We will omit details of transforming the matrix-matrix maultiplication algorithm onto mesh-
connected systolic arrays in this presentation. However, for completeness, we will describe, but not
in complete detail and formalism, our target systolic arrays. The interested readers are referred to

the theoretical results as stated in [15).

In order to implement the row-column evaluation, three components are required: an N; X

N1 mesh-connected systolic array for implementing the matrix-matrix multiplication Ty, xn, =

12




CNyxN, YNy xiN,; & transpose component for implementing T§1x N, from T yn,; and an Ny x

N, mesh-connected systolic array for implementing the matrix-matrix multiplication x%lx Ny =

T
CN2 XN TN]_ XNz

Fig. 3 shows the complete data flow of the 15-point IDCT systolic array implementation.
When given an input data sequence Xj, 0 < k < 15, we transform this 1-D data sequence by
the Ruritanian mapping to a (3 x 5)-point 2-D data matrix X, 4,) by using only one processing
element, for 0 < k1 < 3 and 0 < by < 5. Next, we modify the 2-D data matrix X (k1.k) b0 the 2-D

data matrix Y4, 1,) according to Equation (7) also by using only one processing element.

Then, we use three systolic array components to implement the row-column evaluation. First,
we deal with the matrix-matrix multiplication T3xs = Cax3 Y3xs using a 3 x 3 mesh-connected
systolic array. The data entries C‘ffi,j) = cos(ﬂ%—f}';—)j) of the 3-point IDCT coefficient matrix are
stored in the 3x 3 mesh-connected systolic array initially. The data matrix Yix, k,)» which requires it
to be aligned skewedly, flows from north to south. The intermediate data matrix T{x, x,), which also
requires it to be aligned skewedly and whose initial value T&; kp) 1S ZerO, flows from west to east. In
each processing element of the 3 X 3 mesh-connected systolic array, it contains a multiply-and-add
circuit which implements Tz, k) = Tiky 2y) + C(Skl,i) % Y(i k,)» as shown in Fig. 4 (0 = I, + R+ ),

for some integers kq, ks, and 4.

Second, the intermediate data matrix Tz, 1,y then passes through an adjustment buffer, which

i
adds one unit of delay between two adjacent data entries of the data flow of Tk, ky)- This one unit
of delay between two adjacent data entries is necessary when the data matrix Tk, k) enters into

the transpose component to obtain the transposed skewed data matrix T(El RS

The 3 x 5 transpose component computes T, 5 from T3xs, where T is the input matrix of size
3% 5 (N, x N2) and T7 is the output matrix of size 5 x 3 (N, x Ni1). The (ky,k2)-th entry of T
(T(ky,ky)) Will enter into the transpose component from the kq-th row, then will shift to the east
buffer cell in each of the time units until to the (N3 —1—k2)-th column of the transpose component,

and then will shift to the north buffer cell in each of the time units. The resulting skewed data

13




matrix T§1x N, can then be obtained.

Third, we deal with the matrix-matrix multiplication 23,5 = Csys T s using a 5 X 5 mesh-
connected systolic array. The data entries C?i,j) = cos(ﬂzz"_—*;ll‘i) of the 5-point IDCT coefficient
matrix are stored in the 5 X 5 mesh-connected systolic array initially. The skewed data matrix
T(Tk1 k2) flows from south to north. The data matrix (,, n,), which requires it to be aligned skewedly
and whose initial value m?nl ng) 18 Z€ro, flows from east to west. The operations performed in each
processing element of the 5 x 5 mesh-connected systolic array are the same as the case in the 3 x 3
mesh-connected systolic array as shown in Fig, 4. In effect, the circuit of the processing element in
the 3 X 3 mesh-connected systolic array is the same as the one in the 5 x 5 mesh-connected systolic
array. This is the advantage of designing the modularly extensible systolic array, which allows us
to use only one type of processing element to construct systolic arrays for a target algorithm with

different problem sizes.

The resulting data matrix Z(s, »,) can then undergo the output index mapping according to
Equation (8), and the output data sequence z,, 0 < » < 15, can then be obtained. This step,

however, can be implemented by using only one processing element.

o

We now analyze the time complexity and the area complexity of the mesh-connected sfs?fblic
array implementation which implements the row-column evaluation. It requires O(N; + N3) units
of time for solving two matrix-mattix multiplications and one transpose operation. Because each
processing elef’nent only contains a constant number of registers, the area complexity of this im-
plementation is O(N? + N1Ny + N3). Therefore, the VLSI performance measure AT? of this
implementation is O((max{N1, N2})*), which is much better than the case in Design II.
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5 Computation of the IDST by using the IDCT

In this section, we show how to compute the IDST (inverse discrete sine transform) by using
the IDCT. Wang [29] showed that an N-point DST could be computed by an N-point DCT. In
the following, we generalize his method to compute the IDST by using the IDCT. Therefore, the
prime-factor IDST can be computed by the prime-factor IDCT. Since the DST is orthonormal, the

forward transform also can be realized by taking the transpose of the inverse transform.

Recall that in Equation (2), the IDCT output data sequence z¢ of X§,0< n, k < N -1, is

defined as
[z N1 x{2n + 1)k
¢ = - ¢ X ¢ —
xn 1V E=D: € (k) k COS( 2N ) ]

where

L fork=0;
o — ‘/5! ]
(k) {1, for I<hk<N—1.

The IDST output data sequence =%, of X§, 0< m, h < N — 1, is defined as

N-1
=2 Y ) X sin(2REDAD)) (9)

h=0

where
. 1, for0<h<N-2
E(h)z{%, forh=N-1.

-

Note that, fér the sake of distinction, we use the superscript ‘¢’ for denoting the cosine transform,

and ‘s’ for denoting the sine transform.
We now state how to compute the IDST by using the IDCT. First, by substituting
k=N-1-h, for0<h<N-1,

into Equation (9), we have

5 _ 2 2 3 3 : W(2m+1)(N_k)
xm—\/w k=;_1€(N—1—k)XN_1_ksm( 5N ).
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Since

m(‘fr(Qm +2];~.)J(N - k:)) = (-1)™ cos(ﬁ(zr;; 1}k

Y and (N —1-k) = €(k),

we obtain that

0 T 2T
\/%_ > (k) Xja- kCOS(—@'—I—j:ﬁ]E)

k=N-1
N-1
- V7 T X , cos(ZCmELE).

That is, the data sequence {ym = (-1 zi}, for 0 < m < N —1, can be obtained by doing the

(D)™ 2

IDCT on the data sequence {¥i = X§j_y_¢)>for 0 < E<N-1.
Suppose that N is a product of two mutually prime integers. In the following, we list the
procedure for computing the prime-factor IDST by using the prime-factor IDCT.
Prime-factor algorithm for the IDST:
Step 1: Compute the data sequence {Ye=X}y_1_3}:for 0< E<N—-1;

Step 2: compute the IDCT output data sequence {ym}, 0 <m < N -1, for the data sequence
{Ye}, 0 < k < N ~ 1, by using the prime-factor IDCT algorithmn;

Step 3: compute z3, = (—=1)" ym, for0<m <N-1

Fig. 5 shows the procedure for computing the 15-point prime-factor IDST from the 15-point
prime-factor IDCT.
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6 Conclusion

We have presented in this paper a new prime-factor DCT algorithm, which consists of four steps:
the input index mapping; the modification; the row-column evaluation; and the output index
mapping. The input index mapping we adopted is the Ruritanian mapping method, which is much
simpler than the ones designed by Yang and Narasimha [35], and Lee {13]. The output index
mapping we employed is the same one as Lee’s [13], for which might be the most natural one in
view of the DCT transform kernel’s structure. We also designed a prime-factor DST algorithm,

which is based on the prime-factor DCT algorithm.

We then considered hardware implementations for the prime-factor DCT. We have shown three
hardware designs for the prime-factor DCT. The first one, which is a VLSI circuit fabricated
directly according to the signal-flow graph, might be not easy to implement when the problem
size becomes large. The second one is a linear systolic array implementation, which contains N
- processing elements and can solve an N-point DCT problem in O(NV) systolic steps. The third one
is a mesh-connected systolic array implementation, which contains O( N + N1V, -|—'N22) processing
elements and can solve the row-column evaluation in O(N; + N3) systolic steps, where N = Ny N,,
and ¥; and N, are mutually prime. If we consider the VLSI performance measure AT? on the
second and the third designs, then the latter one, which is O({max{Ny, N2})*), is better than the
former one, w}p’ch is O(N*). i l

Appendix

Lemma 1 For each (k1,k2) in [1, N1 — 1] X [1, N2 ~ 1}, neither f(ki,ky) = N nor g(ky, k2) = 0.

Proof : Suppose that, for some (k1, k2) in [1, N1 —1]x[1, No—1], we have f(ky, ka2) = Noky+ Niky =

17




N. Then, Noky = N1(N3 — k3). Because N1 and N, are relatively prime, k; must be a multiple of

Ny. However, this is a contradiction, since k4 is in [1, Ny — 1].

Similarly, we can proof that g(k;, kq) # 0, for all (ky, k2) in [1, Ny — 1] x [1, Np — 1]. |

Lemma 2 (1) If (k1,ks) is in (AU B), then ¥(ky, k) = f(k1, ko).
(2) If (kla kg) s in (C U D), then ¢(k1, kg) = g(kl, Ny — nl’u‘g)

Proof :

(1) Because when (k1,k2) is in (AU B), N > f(ky, ko) = Noky + Niko = Yk, k2).
(2) Because when (ky,k2) is in (CU D), N < f(ky, k2) = Nok; + N1k < 2N. Therefore,

W(ky, k2) = fk1,k2) — N = Noky — Ny(N3 — ko) = g(ky, N2 — k2). O

Lemma 3 (1) f(kl,kg)=2N-—f(N1—-k1,.N2—k2).
(2) g(k1,k2) = —g( N1 — k1, N2 — k).

Proof : (1) f(lV1 — k1, Ng - kg) = NQ(N]_ - kl) + Ivl(Ng - kg) =2N — f(k]_,kg).
(2) g(Ny — k1, N2 — kg) = No(N1 — k1) — Ni(Na — ko) = —g(ky, k2). 1

]
H

Lemma 4 (1) (ky,k2) isin A if and only if (N1 — ki, N2 —k2) isin C.
(2) (k1,k2) isin B if and only if (Ny— ki, Na—ks) is in D.
(3) (k1 k) is in C  if and only if (ky, Na — k) is in A.
(4) (k1,k2) is in D if and only if (ky, Ny — ks) is in D.

Proof : We show the only-if part of (1), other parts can be proved similarly.

If (b1, ko) is in A. Then, f(ki,k) < N and g(ky,k2) > 0. We now show that (Ny—ky, No—ko)is
in C. First, because (ky, kg) is in [1, N1 —1]x[1, N2—1], sois (N1 —k;, No—ks). Second, from Lemma
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3-(1), f(N1 — k1, N2 = k2) = 2N — f(ky,k2) > N; and from Lemma 3-(2), g(Ny — ky, N3 — ky) =
—g(k1, k) < 0. Therefore, by definition, (N; — k1, N2 — k3) is in C. 0

Proof of Theorem 1:

From Lemma 1 and by definition, we obtain that all of the lattice points in [1, N7 —1]x[1, Ny-1]
is just equal to AUBUCUD. Therefore, the lattice points on the region [0, N; — 1] x [0, N2— 1] can
be divided into five disjoint groups: E; 4; B; C; and D. From the definition of the Ruritanian

mapping,
{k]k €[0,N -1], kis an integer }
= {k|k=1(kyka), (k1,k2) in E}U
{k|k =k, k2), (k1,k2) in (AUB)}U
{k|k& =k, k), (k1,k2) in C}U
{k1Ek =¥k, k2), (k1,k2) in D}
= A{k|k=1v(ki, k), (k1,k2) in E}U
{k|k = f(ki,k2), (k1,k2) n (AUB)}U - /* Lemma 2-(1) */
{k|k = g(k1,Na — kq), (k1,k2) in C}U /* Lemma 2-(2) */
{k{k = g(ki, N2 — k2), (k1,k2) in D} /* Lemma 2-(2) */
= {k|k= (ki k2), (k1,k3) in E}U
(k= f(kys ko), (krska) in (AUB)} U
{k|k=g(ky, k), (k1,k2) in A} U /* Lemma 4-(3) */
{k|k = g(k1,k2), (k1,k2) in D} /* Lemma 4-(4) */
= WuUuv. ad
Lemma 5
! 1\&2—1 1\1‘2:-11 Yoo 1 [0S T(2n + 1) f(kl,kz)) . Cos(fr(2n+ Izlgv?(kl,kg))] -
k1-0 ko =0
Proof :
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(right-hand side) x 2
Yo (k1 ka)EE (h1ka) [COS(M%M) +C°S(M%Ml)] +

{ [E(h.kz)e.& X(kl,ka) + z(kl,k:)EB X(khk?) + E(kl,k,)ec ("'X(Nl'-h,N:—kn)) + Z(kl,kg)eD (_'X(Nl -kl.Na—kz))]

+ [E(k,,k,)eA Xk Na=k2) T Z(kl,kg)eB X(Nx—knkz) + Z(h,k,)ec X(Ny—k1,k2) +Z(k1,kg)ED X(kx,Nz—f:'z)]}
% [COS(N!ZH-H'L’?I{JIHJC‘J!)-'— CDS(W!2n+12!‘5!kl'k2!)]

1,2 Ind-1) flk1.k ont1) g(ky,k
S Kk by Lcos( R YCBnkaly o coq( 22 gRutal)]

_g_._—-u-——ll i
( 1, RJEA (k;,kg) COS( t le kl kn )
» 1y 2) J-.———l—(——-—-‘ ]
(k] kg eB "((k k (l()s( llj{r k1,ka )

ZEskll,k,)eC (=X (N1 k1, N2—k2)) ©08(
Z[(i]l,kg)ep (—X(Ny—k1,Na—k2)) €05(
[EEE,::,)EA K(kr,ka) c0s(
Z{(i]],kg)eﬂ Xk, k2) cos(* 2n+12
Zﬁi,k,)ec (=X (N, —k2,Na=ka)) COS(
E?;ﬁl,k,)e p (=X, —k1,Na—k2)) €08{
[2&11].&2)&4 X(k1,Nz—k3) €OS

12
ZEh].kg)EB XNk,

T(2n+1) (ki Fa)
1r(2n+12bj; k1 k2)+
(2n+1) f(k ka)
(2n A 1 z)]_l_

x{ 2n+41 !g!kl,k,!
)+

L k]_,kg ) +

m(2n+1) g(ky k

( ?.!N! 1 22)+

n(2n+1) g(k k2)
) |+

( ) £y k2) l

(1|’ 2!’t-|-12 Flky k2 )
7(2n+1) f(k1.k2) +

k2) CDS(T 2ﬂ+12 flky,k2 )

2 EC 11—k kB) 5 hk'z
(C[,k ) tN k ) CO ( n |'115 k )
1 —~2 _L_._.L(—'—l
;S)ED (kllNE k ) COS( i Nj sl ka )

(kh
[ ZE]';SI].JG:)EA X(kr,Na—ka) cos(

(186
Z(kllsk‘l)EB

ZE&?,I:,)EC X(Ny—ky kg ©08(

X(N1—k1,

18
ZEkll,kg)eD X (s, Na—
1,3
ngl,]kg)eg K(k1,ka) (
(3]
[Z(kl.kz)EA X{khk'l) COS(
[4 !
2ky ka)EB K (k1ba)
2[5] (__Xf
(ky,k2)eC (Ni—k1,Na—ka)

8 (2 N~ —ky,Na—ka2
Egkll,k:)en (‘X{Nl—kl,N,-k,)) cos( Crei)lz fg(f\f‘ bulNa—kaDy 14 /* Lemmas

1r!2n+12!j$!k|,kg!)+
k2) Cbs(1r§2n+l2!Ng!k1,kz)) _t
1r!2n+12!1$[k1,k2!)+
k) COS(I!2n+12!1€r!k1.kg))]

COS(w!2n+12!J{,!kl'kg!)+COS(T!2n+?ﬂ!kl'kQE)] +
T 2ﬂ+121_\|;. ky,ka ) L

COS( x( 2n+12!1£! k1,ka J) +

) cos(vr(2n+1)(2N—f2(ijV1—h.N:—ann) + /* Lemmas

7 k
[Z%Jhka)eA X{khk’) cos(‘lr!2n+12!NQ§ :;ka!) +
[8] cos(w!2n+12N!y gkhk?)) +

Z(h.h)EB X{kl.k:)
9
EEA,&,)GC (=X, b Ngma)) €05(

T(2ﬂ+1)(“g(évﬁr—kl ,Ne-'kﬂ)) ) +

20

/* Lemma

2-(1)*/

(1) */

2-(1), 3-(1) */
2-(1), 3-Q1) ¥/
() */
2-()*/

2-(1), 3-(2) */ .

/* Lemma

/* Lemma
/* Lemma

/* Lemmas




{10] 2a+1)(—g{Ny—Fk1 , Ng—kz
2(ks ka)eD (-X(le_h,Ng-k,)) cos(ZEnt—gla— by Na—kal)y |

(2n+1)£ (ks k3)
Z(kl,kg)eA (kl,k,) cos( ™ 2n+12;{r Le2) 4

[12 2n4+ 1) 2N - f{N1 =k Na—k
Z(kl k3)eB (Nl—kth—kn) Cos(r( Lt f2(l_'\i'l =t 2})) +

2+ 1Y(IN = f (N =y No— k
m(2n+1)( IZ(Nl 1, N :)))+

13]
Z(khk:)EC’ (Nl—h,N;,—k,) COS(

(14] (2n+1)f(k1,k3)
E(k, k3)ED (kl,kz) cos{ T 21{r =) 1+

[25] (2n41)g(k1,k3)
[E(h.kz)u X(kl.kg) cos(% +2N )+

16 x (N =Ky Ny
EEh],k:-)EB (Nl—k,,,Ng—kg) COS(£"+1){ “;"N b1, kay 4

(20 +1)( = g(Ny— k1, No— b7
Z(kl,kg)EC X(M—h,Ng—-k,) cos( (2n+1)( g(zz\lf ,“2 )))+

Z:[IS] thkhk?) COS(T!2H+;N!9 !kl.k:!)]

(k]_,kg)ED

/* Applying Lemma 4-(1) and 4-(2), [3] = [5], [4] = [6], [15] = [17], [16] =

[TT+[9]=0, [8]+[10] =0, [11]+{13] =0, [12] + [14] = 0. */
z(kl,kz)EE Xl(k:..kz) [COS(WCzn-{'lL’)I{_(kl:kz)‘) +cos(1r_(_2n+12)1$(k1.k2))] +
2E(kl.k=)e(AuB) X{kl.kz) cos(ﬂz"_"'lwmws_l) +

23 (ke ka)e(auD) Xty iea) cos(ﬂz’””lw_mr_"_?l)

(right-hand side of Equation (6)) x 2

Proof of Theorem 2 :

Since

w(2n 4+ 1) fk,

7r(2n + 1) g(k]_,

/* Lemmas 2-(1), 3-(2) */
/* Lemma 2-(2) */
/* Lemmas 2-(2), 3-(1) */
/* Lemmas 2-(2), 3-(1) */
/¥ Lemma 2-(2) */
/¥ Lemma 2-(2) */
/* Lemmas 2-(2), 3-(2) */
/* Lemmas 2-(2), 3-(2) */

/* Lemmas 2-(2) */

kg))

s 2N 2 4 con 2N

71'(271 + 1)(N2/€1 -—

(18],

1
b cos(ﬁ‘(?n + 1)(;\?1 + N1k2)) + cos(
2
= 2 cos( TR LT oy T4 DI
#(2n 4+ 1)k T(2n + 1)k2
YA A Sy )

= 2 cos(

from Lemma 5, we have

Ni=1 Np-—1 + l)kl

(20 + 1)k,

2N

w(2n
Tn = Z 2 Yiky k) c08( ( 2N, ) cos( 2N,

k1=0 k=0

).

le‘z)) '
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Fig. 1. The signal-flow graph for implementing the 15-point IDCT, which can be decomposed into

the (3 x 5)-point 2-D IDCT. If signals flow from left to right, it performs the IDCT); if signals flow

from right to left, it performs the DCT. Solid lines represent transfer factor 1, while dashed lines

represent transfer factor —1. Circles o represent adders.
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Fig. 2. One 3-point IDCT component, one transpose buffer, and one 5-point IDCT component are

necessary for computing the row-column evaluation for the 15-point prime-factor IDCT.
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Fig. 4. Each processing element of the mesh-connected systolic array contains a multiply-and-add

circuit, which implements O = I, +.R « I;.
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Fig. 5. The procedure for computing the 15-point prime-factor IDST from the 15-point prime-
factor IDCT. ;




