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ABSTRACT

In this paper, calibrating a camera refers to the process of determining the transforma-
tion between a 3D object coordinate system and the 2D image coordinate system of the cam-
era. Knowing this transformation, 3D position of a feature point seen in two cameras can be
determined by triangulation. Suppose a distortion free lens is had, this 3D-2D transforma-
tion can be well approximated by a linear model. Unfortunately, most off-the—shelf lenses
have a certain amount of distortion. If our goalis to get highly accurate 3D measurements, we
have to consider lens distortion in camera calibration. However, considering lens distortion
will not only complicate the camera calibration procedure, but also complicate the subse-
quent on-line processing such as feature—pomt correspondence and camera re—calibration,
Itis hence desirable to avoid considering lens distortion whenever the distortion-induced er-
ror is tolerable. This work investigates the effect of neglecting lens distortion, and presents a
theoretical analysis of the calibration accuracy. The derived error bound s a function of a few
factors including the number of calibration points, the observation error of 2D image points,
the radial lens distortion coefficient, the image size and resolution. This error bound provides
a guide line for selecting both a proper camera calibration configuration and an appropriate
camera model while satisfying the desired accuracy. Experimental results from both comput-
er simulations and real experiments are included in this paper.



I. INTRODUCTION

To infer 3D objects using two or more images, it is essential to know the relationship

between the 21D image coordinate system and the 3D object coordinate system. Thisrelation-

- ship can be described by the following two transformations:

(i). Perspective projection of a 3D object point onto a 21D image point — Given an esti- . 'J
mate of a 3D object point and its error covariance, we can predict its projection (mean and
* covariance) on the 2D image. This is useful for reducing the searching space in matching

features between two images, or for hypothesis verification in scene analysis.

(ii). Back projection of a 2D image point to a 3D ray — Givena 2D image point, thereis
a ray in the 3D space that the corresponding 3D object point must lie on. If we have two (or

more) views available, an estimate of the 3D point location can be obtained by using triangu-

lation. This is useful for inferring 3D information from 2D image features.

The above 3D-2D relationship can be specified by a column vector §, which contains_:

the geometric camera parameters specifying camera orientation and position, focal length,
lens distortion, optical axis misalignment, and pixel size. Determining this 3D-2D relation-

ship, or equivalently, estimating 8, is called (geometric) camera calibration.

12
?

The techniques for camera calibration can be classified into two categories: one that

considers lens distortion [3] [8] [12] [13], and one that neglects lens distortion [4] [6] [10] [11}.
A typical linear technique that does not consider lens distortion is the one estimating the per-
spective transformation matrix H [6] [11]. The estimated H can be used directly for forward

and backward 3D-2D projection. If necessary, given the estimated H , the geometric camera

parameters B can be easily determined [5] [6] [10].

Faig’s method [3] is a good representative for those considering lens distortion. For

methods of this type, equations are established that relate the camera parameters to the 3D
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object coordinates and 2D image coordinates of the calibration points. Nonlinear optimiza-
tion techniques is then used to search for camera parameters with an objective to minimize
residual errors of those equations. One disadvantage of this kind of method is that a good

initial guess is required to start the nonlinear search.

Afewyears ago, Tsai proposed an efficient two—stage technique using the “radial align-
ment constraint” [12]. His method involves a direct solution for most of the calibration pa-
rameters and some iterative solution for the remaining parameters. Some drawbacks of Tsai’s
method are pointed out in [13]. Our experiences [7] also show that Tsai’s method can be

worse than the simple linear method of [11] if lens distortion is relatively small.

Recently, Weng shows some experimental results using a two-step method [13]. The
first step involves a closed-form solution based on a distortion—free camera model, and the
second step improves the camera parameters estimated in the first step by taking into account
lens distortion. This method overcomes the initial guess problem in the nonlinear optimiza-

tion, and is more accurate than Tsai’s method according to our experiments.

We have also developed a fast and accurate technique for calibrating a camera, with
lens distortion, by solving linear equations [8]. Instead of using nonlinear optimization tech-
niques, the estitnation of radial lens distortion coefficient is transformed into an eigenvalue
problem ofa 8 x 8 matrix. This method provides an efficient and accurate solution for cali-
brating a practical camera, and according to our experiment it is more accurate than Tsai’s

method.

However, considering lens distortion will not only complicate the camera calibration
procedure, but also complicate the subsequent on-line processing such as feature-point cor-
respondence (in stereo) and camera re—calibration (in the case of having a moving camera).
Notice that epipolar line is no longer a straight line if lens distortion is taken into account.

Moreover, when lens distortion is small, if the noise in the 2D feature extraction is relatively
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large or the number of the calibration points is relatively small, the calibration results based
on distortion camera model can be worse than those based on linear camera model. The
question is then, “when should we consider lens distortion in camera calibration?” or “when
does it worth all the troubles to consider lens distortion?” This work represenfs an effort to-

ward the answer of the question.

. CAMERA MODEL

Consider the pinhole camera model with lens distortion, as shown in Fig. 1. Let P be
an object point in the 3D space, and ro = (xo Yo 2o) be its coordinates, in minimeters,

with respect to a fixed object coordinate system (OCS). Let the camera coordinate system
(CCS), also in minimeters, have its x-y plane parallel to the the image plane (such thatx axisis

parallel with the horizontal direction of the image, and y axis is parallel with the vertical one),

Optical Axis

Lens Center

OCS

Fig. 1. Pinhole camera model with lens distortion, where P is a 3D
object point, Q and Q’ are its undistorted and distorted image
points, respectively.
OCS — Object Coordinate System (3D)
CCS -~ Camera Coordinate System (3D)
ICS -- computer Image Coordinate System (2D)
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with its origin located at the lens center and its z axis aligned with the optical axis of the Iens
(see Fig. 1). Let rc = (x¢ yc z¢) bethe cbordinates of the 3D point P with respect to the
CCS. Suppose there is no lens distortion, the corresponding image point of P on the image
plane would be Q (see Fig. 1). However, due to the eifect of lens distortion, the actual image
pointis Q'. Let st = (u7 v7) denote the 2D image coordinates (in pixels), with respect to
the computer image coordinate system (ICS), of the actual image point Q' , where the origin

of ICS is located at the center of the frame memory coordinate (e.g. the origin of the ICS is right
at (256, 256) for a 512 by 512 image).

As shown in Fig. 2, the 3D-2D transformation from rg to sy can be divided into the

following four steps:

U, V0, .0,y
O, Op K f £1, 82,13
i s'F SF rc Yo

AV v

in pixels In minimeters
Fig. 2. Relation between different transformation matrices

II.1 Translation and rotation from the OCS to the CCS

The transformation from ro to r¢ can be expressed as

a3ty
0 0
5 om0 = . o_|Reteg| _|T47576 12
Te = TC g Wlth TC = [ O 1] s rg rg t3 (1)
0001
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where tilde (™) denotes homogeneous coordinates [2], tg = (t; tp t3) isatranslation vec-

tor, and R isa 3x3 rotation matrix determined by the three Euler angles, ¢, 6, v, rotating

about the z, y, z axes sequentially.

II.2 Perspective projection from a 3D object point in the CCS to a 2D image point on the
image plane
Let f be the “effective focal length”, and let sp = (ur vr)' be the 2D coordinates (in

minimeters) of the undistorted image point O lying on the image plane. Then, we have

X
UF =fz—§", Vg = ﬁ—(c: 2.1)

Alternatively, we can express this perspective projection in the homogeneous coordi-

]. 22)

For practical reasons, we consider only the first term of the radial lens distortion, i.e.,

nates as
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§p = H§ Fc with Hf,:":[

i
=

I1.3 Lens distortion from Q to Q'

sr=(1-k || s'F [P) s'F (3)

where s'r = (u'r v'F)',is the coordinates of the distorted 2D image (in minimeters). In this

paper, « has the unit of minimeter2.

I1.4 Scaling and translation of 2D image coordinates
The transformation from s'r (in minimeters) to sy (in pixels) involves (i} scaling from

minimeter to pixels, and (ii) translation due to misalignment of the sensor array with the opti-

cal axis of the lens. Hence,




1/(5;, 0 Up
] 4)

=T §r with T = l: 0 1/6, vo
0 01
where d, and J, are the horizontal and vertical pixel spacing (minimeter/pixel), #y and vy

are the coordinates (in pixels) of the computer image coordinate system. For convenience, we
will call (ug, vo) the principle point, since it is the coordinates of the piercing point of the prin-
ciple axis (as well as optical axis).

Using the above notations for camera parameters, f = [t1 f2 83 ¢ @ ¥
f & 08, ug o] . The vertical scaling factor ¢, is not included here because it is a known

parameter when we use a solid state camera —— otherwise, orily the ratios f/d, and f/d, can

be determined. Combining (1), (2), (3) and (4), we have

+ yora + zors + 1y
1~ k0D)(uy - ug)d, = FroL 5.1
(- ks -ud, = fFLILITE 0 (5.1)

(1= kgD)vr - ve)s, = fre T YOI T 207 T 1y (52)
v Xor7 + yorg + zorg + 13 )

where Q. = Jaa(u[—ug)z + (51%(\11—1?0)2 =|]_S'F ” .

Notice that, suppose there is no optical distortion (i.e., £ = O and D isan identity oper-
ator, see Fig. 2), the relationship between rp and s; can be expressed as a linear transforma-

tion by combining (1), (2) and (4):

upw hy hy hs hg yo
S=Hrp ie., vi'w | = |hs h¢ h7 hg zg (6)
w ho hip At 14| 1

where H = T HE 12 .

Hereafter, for simplicity, we will use u, v, ¥, y, ztodenoteu v, X0, Yo, 20

respectively.

.




M. A LINEAR METHOD FOR CAMERA CALIBRATION
Given a set of 3D calibration points and their corrésponding 2D image coordinates, the
problem is to estimate §, the parameters of our camera model. Instead of estimating 8 di-
rectly, we first estimate the composite parameters h (as described following equation(8)),

then the composite parameters can be decomposed into § by methods described in [5] [6]

[10].

From equation (6), the derivation of a linear method for camera calibration is quite
simple (refer to [5] [6] [10]). However, to observe the effects of lens distortion on camera

calibration, it is necessary to derive the linear method in a different way.

From (5.1) and (5.2) it can be shown that (refer to [9])

Ap + Bq + «Cq = 0, (7)

------

UK Uy T UR) U

where  A=1000 05y 10 P |- -wi —vE |
. (- uo)ody; (uj—uo)edy (uj-u0)oiz (-uo)e;
Wi-voek; (vi-voely (vi-voelz (vi-voef| |
rif/0u + rap ref {6, + rmg |
P = rof {8y + raug P = rsf/0y + revp p. = |8 |
S C PR N (7 R e I (4 =
11f/Ou + t3up tf [0y + tavo ? §
P 21 T7§t3 }}:9 1
= |1 _ |72 - _ |7s/t3] _ |70 s
and p= I:pz]/t3 cl, a=Pi/ty Yo/t hul !
hg 1 1 1

Suppose we have a distortionlesslens, i.e., ¥ = 0,then equation (7) can be simplified to |

-8-




TR e | I

where B’ is the matrix obtained by removing the last column of B, b = [ - Uj V. ]t (ie.,

[B’E - b] = B)andh = [k Ay hshahshghyhghohy1]'. Notice that the small perturbation, e,

in equation (8) is due to the measurement error of the 3D and 2D coordinates of the calibra-

tion points.

Hence, the parameters to be estimated, h, can be computed by minimizing the follow-

ing error function, || e |?, with respect to h:

lelP=IAR-b[?, ©)
where A =[A B’|.

The optimal solution of (9) is well known to be

h = (A'AYIA! b, (10)
if there are more than six noncoplanar calibration points. The estimated composite parame-

ters can be further decomposed into 8, when necessary [6].

-

¥

’ IV. ACCURACY ASSESSMENT
In this section we will derive an approximate error bound for the linear calibration
method shown in section 1, which does not consider lens distortion. The effects of both the

measurement noise and the modeling error (the negligence of lens distortion) are considered.
The error bound is based on the following assumptions:

(a.1). The 3D positions of the calibration points are known exactly. In practice, the 3D
position of a calibration point is more easy to be located precisely comparing to its 2D image
coordinates. Furthermore, the 3D position error can always be transformed to an equivalent

2D measuring error.



(a.2). The only source of measurement noise is the error in estimating the image coordi-
nates of the calibration points, i.e., the 2D observation noise (in pixels). In both horizontal

and vertical directions, we assume the 2D observation noise have the identically independent

Gaussian distribution with zero mean and the variance, a2

(a.3). The depth components of both calibration and test points, z¢, can be approxi-
mately replaced by a constant (i.e. the depth of field is small relative to object distance). This
assumption holds in most computer vision applications, since the depth of field for a practical

camera is usually limited to a small range comparing to the object distance.

IV.1 Definition of error measure
To evaluate the accuracy of the camera calibration for 3D vision application, it is neces-
sary to define certain kinds of error measure. The measures adopted in this paper are (refer to

Fig. 3):

Optical Axis

(The Object Point)

Front Image
Plane

Estimated

Lens Center The 3D A‘ngular Error (in degree)

The 2D Prediction Error (in pixel)

Fig. 3. The error measures adopted in this paper.
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(). the 3D angular error, i.e, the angle (in degree) X POP where P is the 3D test point,

O is the estimated lens center, and OP is the 3D ray back projected from the observed 2D

image of P.

(ii). the 2D prediction error, i.e, the image distance (in pixels) between the Q and O,

where @ is the true 2D image coordinates of the test point P, and Q isthe predicated image

coordinates of the 3D test point P using the estimated parameters.

There is a relationship between the 2D prediction error and the 3D angular error (see

Fig. 3), which can be approximated by

3D angular error = 2D prediction error*%, (11)
a

where d, denotes the average distance from the image point to the estimated lens center, and

d, stands for the average pixel spacing (see Appendix I,

In the following, we are going to give the intuition of the error function (9). Hereafter,
for convenience, we will use (i, V) to denote the predicted 2D image coordinates of the 3D

calibration point of (x, y, z), i.e., _

¥
S

151x+i§2y+l§3z+ﬁ4
£9x+ﬁ1m7+5112+1’

=
I

(12.1)

Esx+ﬁﬁy+ﬁ7z+ﬁg
ﬁgx+ﬁlgy+lgllz+1'

<5
i

and (12.2)

Notice that the error function (9} is equivalent to the following equation (refer to [9])

Neais s \2 - \2
leP=|Ah-b[F= > [(uf-ﬁj)z(ftf;—’) + (Vf"ﬁj)z({ﬂ) ] (13)

j=1

~

ey ~ - -~
where ITQ- = hng + hlﬂ)’j + h]_]_Zj + 1.
3
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In equation (13), the 2D prediction error of each calibration point is weighted by the
factor zc/t; , which means that the linear calibration method tends to minimize the 2D pre-

diction error of those points far away from the camera. But, from assumption (a.3) and equa-

tion (13), we have

felF = Z[(u, af + (f-»a-)z]}x (;39)2 (14

which amounts to say that (10) is the optimal solution that minimizes the 21D prediction error.

IV.2 The 2D prediction error as a function of the number of calibration points and 2D
observation noise.
Consider the ideal case that both 2D and 3D coordinates are noise free, equation (8)
can be written as

Xj Yi Zj 10000 I:ll;'i] — UtrueiXi — Utrue)j — UtrueZj — Utrugj P = 0. (15)

00090 X; Yi Zj 1 = V0urej —Viruelj —VirueZj — Vtruef

Now suppose the observation-noise along u-axis (v-axis) is n, (ny), i.e.,

s
}

where (Uyye ,Vinee ) 18 the true image coordinates (noise free) and (x, v) is the measured one

(noisy). Substituting usmye and vyye in (16) into (15), we have

%32z 10000) P | - upj - uy; ~ugj =1
0000xyz1||P]| " |-v& —wi—vg -vil|°

Ny Nuyj NuiZi Nyj

my gy gy o |F3 = O (17
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From the definition of P3, we have [9]

[x ¥ z 1] P3 = z¢, (18)

where zj is the z-component of the coordinates of the jth calibration point in the camera

coordinate system. Substituting (18) into (17) and dividing (17) by #, it follows that

X2 10000| — u; —izyj —ug; —uj + nuzcifts

0000xyz 1P |-vw —vyy —vey —v{d nzglts| (19)

Comparing equations (8) and (19), we have

nuzcilts Ry
=~ “lzcfts. 20
O e o o)

. Using equations (8) and (9), we have

Ah=b+e=b", (21)

In practice, both the calibration and the test points are selected from the same working
volume. Thus the 2D prediction error calculated by using the test points can be approximated
by the one usirg the noise—free version of the calibration points. Therefore, the following
work is to find the 2D prediction error calculated by using the noise free calibration points,

Let us denote the expectation of the average 2D prediction error as ¢, , then we have

& = ! ENf[(utmej—ﬁ-)z + (v,,uej-ﬁ-)z]. (22)
Neaii j=0 g !

By assumption (a.3), we have




From equations (21) and (13), equation (23) can be further simplified as

2
z , ~
N aip X (730—) x e = E}b -AR|P. (24)

Since equation (21) is derived from a noise—free equality (17), it is obvious that the solu-

tion of (21) obtained by pseudo inverse has zero residual error, i.e.

b'-Ah = b -AAAIATY = (b+e) - AWATA (b+e) =0 (25)
Thus we have
Ib —ARE =] b+ e - ANA)TAD P =] AAA)Y AP (26)
The expectation of equation (26) is
E|b -Ah|?
= EfJ A@AYy A Pl = E{e‘A(A‘A)‘lA‘A(A‘A)‘lA‘e}
= E[e‘A(A‘A)“lA’e] = zrace[A(AfA)-lAf]oZz%/rg
= trace| (NAY WA |o%%/5 = 116%2%/5. @7)
Taking average of the above equation over the Ny, points and dividing it with the con-

- stant z%/13 , we have the expectation of the average square 2D prediction error

, 110

(in pixels) (28)

V.3 The modeling error

Suppose the 2D-3D pairs of the calibration points are noiseless, but the lens we used
has certain amount of lens distortion, i.e., £ = 0. And if a linear calibration method which
dose not consider lens distortion is used, then the deduced 2D prediction error is called the

modeling error. Usually, the 2D prediction error has two sources, one is the effect of the
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. measuring noise, which has been discussed in the previous sub-section. Another is due to the

| improper modeling of the camera, which will be dealt with in this sub-section.

Knowing that the linear calibration method will minimize the 2D prediction error, see
equation (14), subject to the distortion free camera model and providing that the assumption
(a.3)is true. The idea of the following work is to find an approximate solution that is close to
the optimal solution and convenient for us to compute its 2D prediction error. The 2D predic-
tion error of the approximate solution is then used as the upper bound, since the optimal solu-
tion will always have a smaller error. The more approximations included in the derivation of the
approximate solution the more conservative the bound is, because of that the approximate solu-
tion deviates from the optimal solution more. The derivation of the upper bound of the mod-

eling error is described separately in the following steps.

IV3.1. Find an approximate relation between the estimated composite parameters and the
true one.

Rewrite (7) as following

(uj- uD)szxj_’(uj ~up)dy; (wi-uo)ez (uj-ug)o?

=D- Ps / i3. (29)
; Wi-volgr (i-voloh; Wj-vololz (vj—vo)e?

Since zg; = [x; yj z; 1]P3, zc1 = z» ~ .. =~ ZcN = zc, and in general, the princi-
ple point, (i, vg), is negligible comparing to the image points, (1, v;), we have

. - 2 .. 2
Ah =~ b-x %€ (UJ-UO)QJ' ~ b ZC (uj)Qj

K . (30)
13 | (v; - vo)o? 3 | (v)o?

Now suppose that Q}?' can be approximated to a constant, i.e., sz = M, for all j, where

M is a constant to be determined later, Substituting the above approximations to (30), yields
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A h = (1-kMzc/t)b. (31).

From (31), we have

By = (1~ kMzc/ts) (NA)'AT b = (1-xMzc/t;) R, (32)

where hy,. is an exact solution of equation (29).

[(”m - uo)«s,.]

{(¥ee — V)0

Vtrue F

‘ SF | Yo\ ro
[”’”‘3]4— TF [€— p [¢— pSle—] 10 [4—

-

Yu (V- 0)0,

[uu] <+ T] |«

PRI LY

E

b g [cuu-uo)au]

el

Fig. 4(a). This figure shows the relation between the true
image point Uy, Vine]' and its undistorted image point,
[ttrue, Viree]'s when the true parameters are known.

Spi” 77T SF[ rq . ro
— Hf — TO [—
t

neglect x

< &

< T} [

Fig. 4.(b). The 2D predicted image [¢ ¥| is computed using the
camera parameters estimated using linear calibration method
without considering lens distortions.

-

-

IV.3.2. Find tl{e relation of the true image point (@, Vi ) and its undistorted image
point (u,,v, ). (refer to Fig. 4.(a))

Using the estimated parameters h the predicted image point (4, ¥ ) (in pixels) is de-
fined i1_1 equation (12). Also, if tl}e true parameters hy,,, were used,.then the the undistorted
image point (u,, v, ) (in pixel) will be

U, = h1x+h2y+h3z+h4,
hot + hyy + huz + 1

o= hsx + hgy + hz + hg
v hgx+hmy+h112+1’

(33.1)

(33.2)

~16 -




where the subscript "uv’, denotes that the coordinate is undistorted, i.e., to obtain the correct
coordinates, one further step is necessary to compensate the effects of the lens distortion.

From equation (4), we have

(u - ug)dy (uu—ug)dy
s'p = and sp = , 34
F [(v—ve)a., F = a0, 69
In practice, ko® < 1 (e.g. £ = 0.00035 minimeter=2, g2, = 25.80 minimeters?, and x%ax

= (.01). Therefore from equation (3), it follows that

(tt1rue — o) | @) x| @a—u0)
; = 1/(1 -k = (1+« . 35
[ Vorue — Vo) /( ) Vu—vo) ( R Vu-vo) 33)
IV.3.3. Find the relation of the predicted 2D image point (Z,7 ) and its true undistorted

image point (u,,v, ). (refer to Figs. 4.(a) and (b))

By equation (12}, (32) and (33), it can be shown that (refer to [9]).

&

IV3.4. Find the error of the predicted 2D image point (iZ,V ) with respect to its true

‘:'.> :>

] (L+ 'CM)[V —vo] (36)

image point (e, Vinge ). (Tefer to Fig'é. 4.(a) and (b))
By (35) and (36), the error of the predicted 2D image point, (i, V), with respect to the
corresponding true image point, (Uiye, Viue) i8:

Uerie ~ 1) = (true — ) — (4 — ug) (g —ug)(1 + K% - (@ —up)(1 + kM)
Virye ~ V) (Virue — ) — (ﬁ - vg) Ve —vo)(1 + KQZ) (Vu- vo)1 + xM)

— K(uy - ug)(o®— M)
[:c(vu-vo)(g M)] &7
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For convenience, we would like to calculate the mean square 2D prediction error by

multiplying both the errors in two directions by their scale factors, 8y, dy , respectively. Let U

and V denote (u, —up) and (v, —vp), respectively. As explained before, xg® < 1. Hence, from

(37), the 2D square error becomes

[6u(urme - ﬁ)] : [’C Oy U(Qz ~ M)]
Ov(Virue = V) K Oy V(Qz -M)

where §% = (U3, + (V3,)? and ¢ = (- uq)du)* + (- v0)d)* ~ &.

==

, .
= 1 §% (0*-M), (38)

Now, the mean square 2D error is calculated using the following equations

Umax { Vmax
& = —1——j [ (0P~ MUY + (VPAUAV,
UmaxVmax J 0 0
Umax | Vinax
~ 1 J j 6% - MUY,  (39)
Umax¥max J O 0 ' ;

where €%, is the mean square of the modeling error, and Umar, Vma: are the length, in pixels, of

half the maximal size (in pixels) of the image in either direction (see Fig. 3). If we integrate the

error on the disk whose radius, R = \/ (Sutimax)® + (6Ymax)” » €quals to half the diagonal size

of the image sensor, then we will have

R r2m
&~ —=| j 8 - M0 do
7 R? 0 Jo

6 pt 2042
= K‘z[%--— 2R 6M + R f ] (in minimeters) (40)

Minimize (40) subject to M, we have
M = 2R%/3,and &, = ¥*R%/36. : (41)
Recall that we claim that Qf can be approximated to a constant, which yields equation

(32), but in practice, this is usﬁally not a good approximation. Besides, since h is the optimal
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solution that minimize 6%{ ;and (1 + &Mzc/t3)hy,, (an approximation) is used to replace h

(the optimal solution} to calculate the 2D error, so that the obtained results is the upper

bound of the 2D error (in minimeters).

With the average pixel spacing (see AppendixI), the 2D error bound can be represented
in pixel, which yields
R6

€ = tczgaa—% (in pixels) (42)

Many techniques can be used to determine the value of « , but we recommend to use the
method we proposed in [8], since least efforts is needed to adapt the method described in

section I to estimate «.

IV.4 The bound of total 2D prediction error
Assume that the interaction between measurement noise and modeling error is small.

Then, we have the approximate total mean square 2D prediction error combining (28) and

(42):

Bpuna = €11 + €. . (43)

Notice that the second term, €2, of equation (43) is an expectation value, which means

that the violation of the approximate upper bound, €pgunq, is possible.

V. EXPERIMENTAL RESULTS
In this section, we will show some experimental results obtained by both computer sim-
ulations and real experiments. In the simulations, we assume the 3D positions of the calibra-
tion points are known exactly, and the only source of measurement noise is the error in esti-
mating the image coordinates of the calibration points, i.e., the 2D observation noise. The

Teason for doing so in the simulation is because, for our applications, the 3D measurement
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noise is easier to be controlled such that it has much smaller effect than the 2D observation
noise has. Let ¢ denote the standard deviation of the 2D observation noise. Unless specified
explicitly, the following parameters are used in the simulations (most of these parameters are
obtained from a real experiment using nonlinear calibration method [13]). The images are of
480x512 pixels. The synthetic camera is assumed to have the effective focal length of f =
25.8547 minimeters and the pixel size of 8, = 0.01566 minimeters and d, = 0.013 minime-
ters in horizontal and vertical directions, respectively. The radial lens distortion coefficient is
0.00035 minimeter2. The extrinsic camera parameters include three Euler angles, 45.22,0.95
and 45.52 all in degrees, rotating about z—, y-, z— axes successively, and the transition vector
(138.82, 136.81, 1811.11) minimeters. The calibration and test points are selected from a

volume having the depth (in the direction of the optical axis) of 500 minimeters.

The first experiment observes the effects of both the 2D observation noise and the lens
distortion in camera calibration using distortionless model. Each simulated data point shown

in Fig. 5 is the average of ten random trials, while the number of calibration points are set to

Neatitragion = 60 Negirazion = 60

o o g2 @
m o 2~  ®

2D prediction error (in pixels)
2
I
2D prediction error (in pixels)

. g = 00 0 g = 00
ISR S S B LR LTI s
. . . . x 107%mm2 . . . . x 1074 mm2
Radial lens distortion coefficient Radial lens distortion coefficient
Fig. 5. The simulated 2D prediction Fig. 6. The predicted error bound
error
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60 points. Asshown by the V—shape curves in Fig. 5, the 2D prediction error is proportional
to the amount of lens distortion, i.e. €goung * &, as we expected. Also, itincreases as the 2D
observation noise Or ¢ increases, i.€. €poyng < 0. Each curve shown in Fig. 5, from bottom
to top is obtained by using the 2D observation noise having the standard deviation, ¢ = 0.0,
0.1,0.2, ..., 1.0 pixels, respectively. Fig. 6 shows the error bound obtained by using equation
(43). Although the basic assumption (2.3) does not hold (z-components can vary in the range

of 1300 to 1800 minimeters), our error bound still predicts the actual 2D prediction error

quite precisely.

This bound is tested further by the next experiment. Here, four of the intrinsic parame-

ters are generated randomly (see Table 1). The calibration and test points are generated from

20 planes, which are equally spaced with Z;,, minimeters. Hence, we are using a working

volume having the depth of 20 X Zj,c minimeters. On each plane, we generate N, random
points for calibration, which yields totally Negip = 20 x N, calibration points. The reason

we set up such a configuration is to simulate the real equipment we have. Both Z;,. and Np

Parameters Interval of the uniform distribution
; focal length, f 125 mm ~ 75 mm
principle point, w, -20 pixels ~ +20 pixles
principle point, v, -20 pixels = +20 pixles
lens distortion, « -0.0005mm™ ~ 4+ 0.0005mm™
2D noise, ¢ 0.0 pixel = 1.0 pixel
Distance between 1mm ~ 25 mm
successive plane, Z;,
#ocf ::é‘;’;?:l‘l’g Egmts 1 point ~ 10 points*

* integer random number
Table 1. the interval of parameters tested in experiment 2.
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in this experiment are also randomly selected (as shown in Table 1), but the number of test

points is fixed to 200.

Totally, ten thousand trials were simulated. For each random trial, the computed 2D

prediction error is normalized by its theoretic bound. Fig. 7 shows the histogram of the nor-

malized error which shows that, in most trials the 2D prediction error is close to and less than _

2 2
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the theoretic bound, i.e., the normalized error < 1with high probability. Still, there are

some points which exceed the theoretic bound. This is partially because of the violation of the

assumption (a.3) in section IV. Another reason s that €2 is an expectation value, not an upper

bound. Figs. 8 — 14 show the distribution of the random trials with the normalized 2D predic-

tion error as vertical axis and the parameter we are interested in as horizontal axis, where
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darkness represents the occurrence frequency of the random trials. Some parameters do not
show strong relqtion to the 2D prediction error, these are the effective focal length, f, the
principle point, (4, vp), and depth of the working volume, see Fig. 8 — 11. In Fig. 14, we can
see that when the lens distortion is very small, i.e. [«x| = 0, the effects of the 2D observation
noise dominates, and the €gymqs is more of an error expectation than of an upper bound.
Therefore, the normalized error variesin a larger extent. Figs. 12 and 13 show that wﬁen the
number of calibration points is small or the 2D observation noise is large, the approximate
bound tends to be violated. At the beginning we expect that the smaller the depth of the work-
ing volume is (to let the assumption (a.3) be true), the more correct the bound is. Butdueto
the effects of the random 2D observation noise (recall that we need noncoplanaf points for
calibration, and the smaller the depth of the working volume the more singularity the calibra-

tion problem tends to, since the calibration points tens to be on the same plane), we do not see

this phenomenon in Fig. 11.

The third experiment test the bound by a real experiment. With a PULNiX TM-745E
camera, and an ITI Series 151 frame grabber, we took 21 images of a moving calibration plate
having 25 calibration points on it, which is mounted on a translation stage. One image was
taken each time the translation stage was'moved toward the camera by 25 minimeters. A
typical image is shown:in Fig. 16. Thus we have 21 x 25 = 525 pairs of 2D-3D coordinates
of points. The image coordinates of the center for each circle is estimated, with an error of

about 0.1 pixel. For Nggip = 10, 20, 30, ... and 200, we randomly choose N,y points from

the 525 2D-3D pairs to calibrate the camera and use all remaining points to test the calibrated
parameters. The above random trials are repeated ten times to obtain ten sets of the 2D pre-
diction error. Fig. 15 shows the ten sets of data and two predicted bounds based on two differ-
ent effective image sizes (here « = 0.00035 minimeter2). Since all the calibration and test
points are distributed in the central Iﬁart of the image, whose size is roughly of 355 by 300 pix-

els (see Fig. 16), the bound calculated with this image size is much closer to the experimental
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experiments.

results. To use every pixels in the 480 X 512 image, the error bound will be approximately

three times of the experimental results.

" VI. CONCLUSIONS

In this paper, we have derived an E{pproximate upper bound for the 2D prediction error.
The effects of both the radial lens distortion and the 2D observation noise are considered.
This bound was tested by computer simulations and real experiments which show that the
upper bound is quite tight, i.e., it is close to the experimental results and still bounds almost
all of them from above. For 3D applications, e.g., stereo vision, it is of great importance to
determine the accuracy of 3D position estimation. Knowing the 2D prediction error, the 3D
position error can be derived as in [1]. Thus, the error bound can be used as a criterion to
decide whether the linear camera model is sufficient or not, for a specific application. In the

following, a general guide line is provided for using this error bound:
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1). Determine the acceptable 2D prediction errorand 3D angular error. X the specified error
bound is given as the 3D angular error, then equation (11) is used to translate it to the 2D

prediction error. For convenience, let us denote this specified 2D error bound as €gpec -

2). Calculate the approximate error bound, €gound » by equation (43) according to the parame-

ters of the equipments to be used.

3). If €pec > €Bound then it is good enough to use the linear camera model.

4).Xf €gpec < €Bound then tryto reduce e in equation (43) as much as possible, by making the
feature extraction more accurate (reduce a)' and increase the number of calibration points.
Check if this process brings the theoretic bound, €gound , to the value smaller than the speci-

fied one, €gpec -

5). X €pound still can not meets the requirement after the reduction of €, in step 4), then try to

reduce the effective size of the image to an acceptable level (see equation (42)).

6). If the efforts in step 4) and 5) fail to reduce €pouna Suchthat €gpec > €Bound , then a nonlin-

ear camera model should be considered in the camera calibration procedure as in [3] [8][12]

[13]. , }

!

A linear camera model is always the first consideration of engineers. Not only will it
simplify the camera calibration proceduré, but will it make the subsequent processing easier
* (e.g. eliminating the need of geometric correction). This paper provides a tool for making

decisions based on the trade—-off between accuracy and efficiency.

APPENDIX L

As shown in Fig. 17(a) and (b), the average distance from the image pomt to the esti-
mated lens center, d, , and the average pixel spacing, d,, can be computed through the fol-
lowing equations:
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Fig. 17(a). The average pixel spacing. Fig. 17(b). The average distance to

the estimated lens center.

1 2% :
dy= = ] j rdydy = - 1n |sec(n) + tan(gy)] (44)
0o Jo n

e

Oy = -f; J * S(a)da = é[éum | sec(an) + tan(a)| + &yIn | sec(@) + tan(a)|],  (45)

and

[1]

[2]
[3]

[4]

R = \/(Suumax)2 + (avvmaX)27

0
ay = tan'l(a—” ,
u

a, = tan"l((;—“) .
v
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