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Abstract

In this paper, we propose a method to reduce the search space for 3-D object recogni-
tion using an ART-1 neural network. We also present a procedure to automatically-
construct CV libraries for modeling polyhedral objects. This procedure is considered
as a fundamental process in the multiple-view approach to 3-D object recognition.
Although there is no redundancy in the resultant CV library, the size of the library is
still large if the target object is complex in shape. To increase the efficiency of the
recognition process, a coarse-to-fine search strategy-is adopted. In the coarse search
phase, an ART-1 neural network is used to locate a set of CVs in the library that is
most s’imilar to the projecfion 6f the object. In the fine search process, those Jocated
CVs are used as the starting points for exhaustive search. Experimental results corro-

| borating the theory are reported.
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1. INTRODUCTION

Three-Dimensional (3-D) object recognition is the process of matching an object to
a scene description to determine the object’s identity.and/or its position and orientation in
space [1-3]. Any éystem capable of recognizing its input image (intensity or range
image) must in some sense be model-based. The problem of object recognition can be
separated into two closely related subproblems - that of model building and that of recog-
nition. There are different approaches to both these subproblems, and the procedure used
for recognition will have a strong impact on the kind of model that will be required and
vice versa. An object can be modeled by 3-D configurations of its surface [4,5] or
volume [6,7] primitives having specified attributes and relationships. Alternatively,
objects can be characterized more abstractly, using symbolic expressions. They are
referred to as geometric models and symbolic models, respectively [8]. The easiest way
to build an object model is to construct it mannally by using CAD techniques. However,
automatic generation of a 3-D object model from multiple views is always a better choice
if posSiblc. The mode] can be stored as a single 3-D representation in an object-centered
coordinate system. It can also be stored as multiple 2-D projections in a viewer-centered
coordinate system [9,10]. The nature of the recognition process depends on the form of
the objeét model. Geometric models lend themselves to the hypothesis-verification para-
digm [8] while symbolic models can be matched to symbolic scene descriptions using

formal or heuristic graph-matching techniques.

The multiple-view approach [9-13] models objects by the set of its 2-D projections
as seen from a set of predetermined viewpoints on the view sphere. This approach
requires more storage space than the single-3D-model scheme since a large number of
different 2-D projections are needed to fully represent the target object. However, the
multiple-view approach offers one major advantage over the single-3D-model approach

due to the fact that the features extracted from images can be directly matched with those

associated with each member of the multiple-view model set. This circumvents the
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difficult problem of determining the transformation between 2-D (i.e. viewer-centered
coordinate system) and 3-D (i.e. object-centered coordinate system) spaces which is

always encountered in the single-3D-model approach.

In [13], we have proposed a computer system which automatically constructs
multiple-view rﬁodel database for polyhedral objects. This database is organized as a
graph in which a node represents a characteristic view (CV) [10-12] and an arc represents
the transformation between two CVs. It is also referred to as a CV library (or aspect
graph). In constructing a CV library, a set of viewpoints uniformly distributed on a view
sphere enclosing a target object is selected and a set of features from the projection of the
target object is extracted from each viewpoint. Based on this feature set, a region growing
process is then applied on the view sphere to form a finite set of regions so that each
region on the partitioned view sphere constitutes a CV. In other words, all viewpoints in
a region visualize the same topology with slightly different geometries. This procedure
significantly reduces the size of the model database by merging those neighboring and

topologically equivalent views.

Although the redundancy of the model database has been reduced in the CV library
generation process, thc'z size of the library s still large if the target object is complex in
shape. After the modél database is constructed, the neﬁt problem is to determine where
we should start the search process. This decision is crucial since a good selection of start
point brings us close to the solution and thus vastly reduces the search time. In this paper,
we propose to use an ART (Adaptive Resonant Theory)-1 neural network [14,15] to
accomplish this task. The ART-1 neural network basically clusters binary vectors into
categories. It possesses distinctive properties such as self-adjusting memory search and
direct access. With self-adjusting memory search, it is capable of doing parallel memory
search that adaptively updates its‘ search order to maintain efficiency while its categories

resulting from clustering becomcs-afb'itrary complex in the course of learning [14]. With

direct access, it can activate the category of a familiar input pattern without searching.

Iy s O e
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Tﬁesc functions enable a trained ART-1 system to locate candidate CVs in real time. In
most situations, this step vastly decreases the search space. The candidate CV selection
using ART-1 network is considered as the cbarsc search operation in a coarse-to-fine
search process. The fine (or exhaustive) search proce;s.s starts with these candidate CVs. It
compares the topology and geometry of the unknown object (in the form of line drawings
after image processing) and those projections in the neighborhood of these candidate CVs

until a best match is found.

The remainder of this paper is organized as follows. In Section 2, the automated CV
library generation process is described. In Section 3, the coarse-to-fine search process is
presented. Then, some experimental results are reported in Section 4. Finally, the advan-
tages of using ART-1 network in multiple-view approach to object recognition is dis-

cussed in Section 3.

2. AN AUTOMATED PROCEDURE FOR GENERATING CV LIBRARY

The model-building task in the multiple-view approach to 3-D object recognition
requires that all the topologically different 2-D projections (i.e., CV library) be exhaus-
tively generated and stored. Fo our knowledge, there is no automated procedure proposed
to accon’;plish this task. This work is generally done by hand, requiring some degree of
faith on the system designer’s ability to exhaustively enumerate all the CVs. The reason
why an automated procedure is still unavailable may be attributable to the lack of criteria

for distinguishing topological changes between two neighboring views.

In this paper, we present 2 procedure for automatically generating CV libraries for
polyhedral objects. One of the distinctive features of this procedure is the selection of a
minimum feature set for determining whether two neighboring views are topologically

equivalent. The details of this feature set will be presented in Section 2.2.2.

The process of automated CV library construction consists of three major tasks.

First of all, a systematic method is needed to determine a set of viewpoihts uniformly
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distributed on the view sphere. Thus, the view sphere is preliminarily partitioned. Dur-
ing the subsequent CV library construction process, in order to determine whether the
topologies of two projections visualized from any two viewpoints are equivalent, a
representation scheme is needed to describe the topdlogy of a projection (in the form of
line drawings). The second major task is to devise a feature vector for comparing two
projections. Finally, a region growing process is needed to merge the connected regions
\;zith topologically equivalent CVs. Since the second task - feature set selection - is vital
in understanding the operation of the ART-1 network, it will be elaborated in Section 2.2.

The other two tasks will only be briefly described for completeness. For illustrative pur-

pose, we use a polyhedral object shown in Fig.1 as a running example throughout this

paper.

2.1. Viewpoint Determination

The process of viewpoint determination is the first step toward automated multiple-
view model generation. The major goals of this task are : (1) to find a systematic
viewpoint generation method which calculates the coordinates of all the viewpoints on
the view sphere and, (2) to design a data structure which organizes the generated
viewpoints and builds up the relationships between each viewpoint and its neighbors in
an efficient manner so as to facilitate the region growing procedure discussed in the sub-

sequent section.

During the construction of the library of 2-D projections (or models), the object of
interest is viewed from different directions in a ﬁked distance. The loci of all the possible
viewpoints constitute a view sphere. To approximate the view sphere, we start with a reg-
ular polyhedron. In this paper, we use an icosahedron to approximate the view sphere.
Each face of the icosahedron is divided recursively into 16 smaller triangular facets. The

320 facetst are finally projected onto the view sphere. The centroid of each facet is used

t+ The objective of the proposed method is to generate the CV library autom.al.ically. The number
"320" which is reasonable and adequate in most situations is determined empirically.
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as the viewpoint. Fig.2 shows the simulation result after 320 facets are projected onto the

view sphere.

2.2. Feature Set Selection

We have described how to obtain viewpoints on the view sphere systematically in
the previous section. If we apply a straightforward library construction method to model
the object from 320 viewpoints, the space complexity of the model database will be
unnecessarily large. This is because some neighboring viewpoints on the view sphere
visualize the same topology and it is redundant to put them all in the database. To rectify
this problem, a set of criteria for distinguishing topological changcs between neighboring
views is required. In this section, we first describe a representation scheme for a 2-D pro-
jection in the form of line drawings. Then, a set of features for classifying 2-D projec-
tions is introduced. This feature set is proved [13] to be the minimum set required to

detect topological change between two neighboring views.

2.2.1. Representation of a 2-D Projection

As we have mentioned earlier, the multiple-view approach requires a set of 2-D pro-
jcctions’to fully represent an object. The recognition phase of this approach is simply to
find a best match between the description of objcct projection and one of the model
descriptions in the database. In this section, the structural description proposed in [18] is
extended to a two-level scheme. Since we deal with polyhedral objects, topological
changes due to self-occlusion can not be described by a single level description. The pro-
posed two-level scheme is general enough to describe all topological variations for the

projections of a polyhedral object. Besides, this representation scheme is rotation invari-

ant.

Definition: A component contour is a simple closed curve composed of a set of
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component segments. Each segment is either a line segment o1 a curve segment. []

Definition: A structural description DP of a projection P is arpair DP=(C,R). C=
{C1,C2,...Cy) is a set of connected closed contours. Each component contour
C; (1<i<n) has two kinds of descriptions. The first one is a binary relation F; c A XV
where A is a set of possible attributes and V is a set of possible values. The second one is
aiso a structural description G; which will be explained later. R={CR,CR,,...,CRg] is
a set of named N-ary relations over C. For each k=1,2,...,K, CRy is épair (NRp,Ry)
where NR; is a name for relation Ry, and for some positive integer M , Ry < M, Thus,
set C tepresents the component contours of the projection, and set R represents the
interrelationships among the components. G; is a pair (CG,LRG)), CG=
{S: 155 2,..,5; n;} 1s a set of component (curve or line) segments, one for each of the n;
concatenated primitive segments of the component contour. Each component segment
S;1, 1<<n;, is a binary relation S;; QA x QV where QA is a set of possible attributes
and QV is a set of possible values. RG;= {CRG; 1,CRG; 3,..,CRG; s} is a set of named
N-ary relations over CG;. For each j=1,2,....J, CRG; is a pair (NRG; ;,RG; ;) where
NRG; ; is a name for relation RG;; and for some positive integer M; ;,RG; ; < (C G
Thus, set CG; represénts the component segments of the componént contour C;, and set

RG; represents the interrelationships among the segments. []

Example: Given a 2-D projection as shown in Fig.3, a complete two-level structural
description is described as follows:

First-level structural description P
P={C,R}

C={C1,C2,C3}

C1 = {(shape,concave_polygon),{edge,6)}
C, = {(shape,concave_polygon),(edge,5)}
C3 = {(shape,convex_polygon),(edge,4))
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R= {(pmtial_connected,partial_,sct),(full_connected,full_set)}
partial_set = {(C2,C3)}
full_set = {(C1,C2),(C1,C3)}

Second-level structural description of component contour C; is G where
Gy ={CG1,RG1}

CG1=1{S 1,1 :S1.2:S1.3ssl,4;S1,5,Sll6}

81,1 = {(type,line_segment)}

S1.9 = {(type,line_segment}}

S$1,6 = {{type,line_segment)}

RG1 = {(§1,)_neighbor,§ 1,; _neighbor_set),
(S 1,2_neighbor,S 1 »_neighbor_set),

(S 1,6_neighbor,S | ¢_neighbor_set)}
§1,1_neighbor_set = {(S1,2,51,6)}
§1,2_neighbor_set = {(§1,1,51,3)}

§1,¢_neighbor_set = {(S1.5,51.1)}

The structural descriptions of C, and C3 are similar to that of C; and are omitted.

In this section, we havg defined a complete structural description for a 2-D projec-
tion. However, a straightforward comparison of topologies based on this description 1s
tedious. To alleviate this problem, we are urged to find a "condensed” feature set which
contains less descriptional contents while still detects topological changes between two

views rendered from two adjacent viewpoints.

2.2.2. Selecting a Proper Feature Set

By definition, any 2-D projection can be represented as a two-level structural

description. The first-level description is P=(C,R), where C is the set of component con-
tours and R defines the relations among all elements in set C. C,y=~(CG,n,RG,,) (where

1<m <ICl, | | represents the size of an arbitrary set) denotes the second-level structural
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description of the m-th component contour. CG,, is the set of all Cy,’s component seg-

ments and RG,, defines the relations among all the elements in set CG,,.

For any 2-D projection, there are four pétcntial sources that may cause the change
of topology. They are: C and R from the ﬁrst-ch;cl Vstructural description and CG,,,
RG,,(for 1<m <ICl ) from the second-level structural description. In [13], we proved that
ICI, ICG,,| (for 1<m <ICl ) and R are potential sources for topological change. RG,, can be

changed only when ICG,,! is changed and vice versa. In other words, if we can detect the

change of ICG,,|, we are sure that RG,, is also changed.

The beauty of this feature set is that it enables us to detect topological change
between two neighboring viewpoints without the need of detailed 2-D descriptions. This
speeds up the region growing process significantly. To facilitate the region growing pro-

cess, the three features are organized in the following fashion:
(1) the number of detected component contours -- m,

(2) a sorted list (ny,79,....Hy); Where n12ny2 - -+ 2n,, m is the same as in (1) and »;
(1<i<m) is the number of edges (component segments) of an arbitrary component

contour belonging to the 2-D projection under consideration,

(3) two ordered lists (L11,Lo1s oL ) L12:L 22, Liea)), Where Ly12Lo 2 - - 2Lk 1,
L1320 902+ ++ 2Lga, Ly (1<k<K) represents a sorted sequence of the number of
fully connected edges between all adjacent component contours, and Ly (1<k<K) is
another sorted sequence representing the number of partially connected edges

between all the adjacent component contours.

Two descriptions output from the automated model construction program are shown
in Figs.4(a)-(b). The extracted feature sets shown in Figs.4(a)-(b) are then converted into
the forms shown in Figs.5(a)-(b), respectively. These forms are used in topological com-

parisons.

T We select | CG,,} instead of RG,, since | CG 1 is easier to detect.




2.3. Region Growing Process

The purpose of the region growing process is to partition the view sphere into a set
of regions such that each region corresponds to a CV and the collection of all CVs forms
the CV library. Here, we only give a brief description about this process. The details of
this process can be found in [13]. The feature set extracted from each view is used as the
criterion to partition the view sphere into maximally connected regions such that all the
2-D projections rendered from all viewpoints in a region have the same topology. Each
partitioned region ultimately become a CV in the CV library. Each CV in the library con-

tains a neighborhood list which registers all its neighboring CVs.

It is noted that the computational overhead is drastically reduced based on the pro;
posed feature set to perform region growing. This is because a thorough description of a
2-D projection is not needed for detecting tbpological changes. Moreover, the space
complexity is also reduced since we do not have to store anything at each viewpoint until
all regions are fully grown. Fig.6 shows an instance of a partially parcelled view sphere

based on the target object shown in Fig.1.

3. A C(?ARSE-TO-FINE SEARCH PROCESS FOR OBJECT RECOGNITION

Ar; automated CV library generation process has been presented in the previous sec-
tion. However, the size of the library is still large if the target object is complex in shape.
To speed up the recognition process, a coarse-to-fine search strategy is proposed. In the
coarse search phase, an ART-1 network is used to locate a small set of CVs in the library
most similar to the projection of the unknown object. Then, the fine search process starts
with topological comparison between the scene description and the located CVs. The
fine search process stops whenever a best match is found. The rest of this section is
organized as follows. In Section 3.1, the ART-1 network is briefly reviewed. Then, the

details of using ART-1 to perform coarse search is covered in Section 3.2. Finally, the

fine search process is briefly described in Section 3.3.
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3.1. The ART-1 Network

ART-1 is a neural network architecture that self-organizes stable categories in real
time in response to arbitrary sequences of input patterns. Basically, it is a competitive
learning model enhanced by a feedback process that leads to category stabilization. Like
the rest of the competitive learning models, its basic purpose is to recognize or classify
an input pattern to a category or cluster that is learned by the model previously. The
architecture of ART-1 contains two layers of processing elements, F| and F,, as shown
in Fig.7. Layer F receives the input pattern and a feedback signal from layer F,, per-
forms matching process, and activates the search process. Layer F provides a competi-
tive field for those learned categories, generates the most related category to the input
pattern, and provides a feedback signal to F 1. Details of ART-1 architecture is described
in [14]. Learning takes place when the input pattern and the feedback signal locks into a
loop, i.e., they produce a resonant staté. The behavior of an ART-1 network is described
by a set of differential equations. While the system approaches a steady state, the signals
and weights in the system have only two steady states. Hence, from the functional
point-of-view, ART-1 performs clustering of binary vectors. As long as the input can be
consistently transformed to a binary vector, many pattern recognition and classification

problems can be‘efficiently and correctly solved by ART-1.

3.2. Using ART-1 for Coarse Search

The key step in this application is the transformation of a feature set to a binary
feature vector that can be fed into an ART-1 network. Each entry in the feature set is an
integer and different element in the feature set has different weighting factor. It is easy to
code each element in the feature set using a string of binary digits. The difficult part is to
take the weighting factor of each feature into consideration in forming the binary dj'gits

and then combine all the binary digits into a binary vector. Since the values of integers in

the feature set are usually less than 10 in our objects of interest, an integer is represented
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bf the same number of binary digits as its value. Several strings of binary digits that
represent a whole feature set are arranged to form a 10 by 10 matrix. The top two most
significant features are used to circular-shift the square matrix columnwise and rowwise,
respectively. '

According to the aforementioned feature representation scheme in Section 2.2.2, the
elements in a feature set are ordered as m, (y.n2, "t Hm)s and
(Ly1,La, Ly Lz Ly o7 s Ly ). Since m is the most important feature,
10 binary digits (referred to as the o group in the sequel) are used to represent it.
n; , 1 i <m, is represented by the number of binary digits (referred to as the f; group in
sequel) the same as In;l. Since (L1, L21, *** 5 Lyy)and (Lyg . Lop, ++- 5 Lyo ) are

relatively less important features, they are condensed to two respective numbers

K K
Sy=YIL;; | and S =3, 1L;2 | and represented with binary strings (referred to as the
i=1 i=1

v, and ¥, groups in the sequel). Digits from the & group are entered in the third column
of a 10 by 10 matrix. Each B; group is placed in a row starting from the first row and
beginning with the third column. The y; and 7, groups are entered into columns one and
two of the matrix. Afterthis ba_§ic matrix is formed, two most important features m and
ny are used to circular-shift this matrix columnwise Il times and rowwise In1l times,
respectively. The operation to circular-shift a matrix columnwise once transforms the
matrix [C, Cp -*- Cp ), where C’s are column vectors, to another matrix
[C, C1Cp - Cp-1 ]. Similarly, the operation to circular-shift a matrix rowwise once
transforms the matrix [Ry R2 - Ry 17, where R;’s are row vectors, to another matrix
[RgR1 Ry +-- Rg-1 ]T, where [-]T represents the transpose of matrix [-]. The resultant
matrix can be transformed to a binary vector and used as the input to the ART-1 network.
The original matrices and the shifted matrices of the two examples in Fig.5 are shown in
Figs.8(a),(c) and (b),(d), respectively. This scheme takes the weighting factors into con-

sideration in forming the binary vector and thus is able to distinguish different CVs. Of

course, our scheme is just one of the feasible ransformations that can detect the
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difference between features.

ART-1 is applied to perform the coarse search process using the transformed binary
vectors. In the training phase, the feature set of each CV in the CV library is transformed
to a binary vector and fed into ART-1. In the testing bhasc, a feature set is extracted from
an unknown view in an image. This feature set is then transformed and fed into ART-1
in order to select a set of CV's that are most similar to the projection in the image. Those
lé)cated CVs are then used as the starting points to perform fine search. The coarse search
process using ART-1 reduces the search space to a significantly small size. This will be

further elaborated in Section 4.

3.3. Fine Search Process

The fine search process starts with those CVs located in the coarse search process
and compares the topology of the (object) projection with all the views in the neighbor-
hood of the located CVs until a best match is found. In the fine search process, the opera-
tion the topological comparison is unavoidable. A number of algorithms such as graph
distance measure [19,20] and relational distance measﬁrc [21,22] have been proposed for
topological comparison. Basically, the topological comparison is performed between
two descriptions dcri’;rcd separately from two 2-D projections. This part is beyond the

scope of this paper and is currently under investigation.

4. EXPERIMENTAL RESULTS

In our experiments, we used the three polyhedral objects shown in Fig.9 to test the
proposed coarse search process. An ART-1 network is first trained by using a set of
binary vectors from all the CVs in the library for several iterations until it reaches the
state of stable categorization. This is when the system does not generate new categories
and every input from the library always belongs to an category generated by the system

in the previous iterations. When the test samples are drawn from one of the 320
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viewpoints on the view sphere, the successful rate is 100 percent. Here it reflects the pro-
perty of direct access when a familiar pattern is input and the category that it should
belong to is "resonant” instantly without _séa:ch in memory. When the samples are
selected from the neighborhood of the 320 viewpoints, the successful rate drops to 90
percent. This is due to the training viewpoints don’t cover the whole view sphere. There
are some peculiar feature sets in some view angles that are not in the training set and

result in error classification.

In Figs.10(a) and 11(a), two randomly generated synthetic images are fed into a
trained ART-1 network. The located CVs which correspond to each test image are
shown in Figs.10(b)-(f) and 11(b), respectively. In another set of experiments, we used
the two range images shown in Figs.12(a) and 13(a). After applying the image segmenta-
tion algorithm proposed in [4], the results are shown in Figs.12(b) and 13(b), respec-
tively. The most similar CVs located by the ART-1 network are shown in Figs.12(c)-(d)
and 13(c)-(f), respectively. Figs.14(a) and (b) show the actual locations of these located

CVs on the view sphere for the range images in Figs.12(a) and 13(a), respectively.

5. CONCLUDING REMARKS _

’

In this p:;per, we have presented a method to reduce the search space for 3-D object
rccognitioh using an ART-1 neural network. In the modeling phase, a method to automat-
ically generate the CV library of a polyhedral object is presented. The CV library genera-
tion process is an important step in multiple-view approach to 3-D object recognition.
The task includes not only generating the minimum aspect graph but also describin g each
node (line drawings of a 2-D projection) and arc (the transformation between a pair of
nodes) in a form suitable for subsequent matching process. The antomated CV library

generating system described in this paper is able to handle all kinds of polyhedral objects.

Although the redundancy has been reduced in the CV library generation process, the

size of the library (or aspect graph) is still large if the target object is complex in shape.
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To select a good starting point for searching the most similar view in the aspect graph is
crucial to an efficient recognition algorithm. A method which is capable of performing
this task to reduce the search space using an ART-1 neural network has been proposed. It
is used in the coarse search phase of the object recognition process to locate 2 set of CVs
most similar to the projection of the object. There are some advantages of using ART-1
in the multiple-view approach. Firstly, itis a universal clustering scheme which does not
count on the shapes of the targctl objects. Secondly, it achieves stable categorization
under arbitrary learning environment. This is a favorable property in the multiple-view
approach to 3-D object recognition since the number of viewpoints needed to construct &
CV library can be furthér increased whenever needed. Finally, ART-1 can directly
access a learned category of a familiar input pattern no matter how large and complex the
learned categories are. This kind of search speed is desirable in all applications. In the
coarse-to-fine search process, tﬁc problem of finding a transformation or coding method
to achieve maximum distance in discriminating categories or clusters with minimal
number of digits is still under investigation. The possibility of using ART-1 in the fine

search process is also under study.
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Flgl A polyhedral object. Fig.2 The view sphere after 320 facets of the
icosahedron are projected onto it.

Fig.3 A 2-D projection of an L«shape&l object.



process viewpoint no. 273
5 edges in region 1
4 edges in region 2
3 edges in region 3
3 edges in region 4
4 edges in region 5
. 4 edges in region 6
'3 edges in region 7 _
region pair 2 & 1 has 1 partial con.
region pair 2 & 1 has 0 full con.
region pair 3 & 1 has 1 partial con.
region pair 3 & 1 has 0 full con.
region pair 6 & 1 has 0 partial con.
region pair 6 & 1 has 1 full con.
region pair 3 & 2 has 0 partial con,
region pair 3 & 2 has 1 full con,
region pair 4 & 3 has 0 partial con.
region pair 4 & 3 has 1 {ull con.
region pair 5 & 4 has 0 partial con.
region pair 5 & 4 has 2 full con.
(a) region pair & & 5 has 0 partial con.
region pair 8 & 5 has 1 full con.
region pair 7 & 6 has 1 partial con.
region pair 7 & 6 has 0 full con.

process viewpoint no. 287
4 edges in region 1
3 edges in region 2
3 edges in region 3
) 4 edges in region 4
: 4 edges in region 5
V 4 edges in region 6
region pair 2 & 1 has 1 partial con.
region pair 2 & 1 has 0 {ull con.
region pair 4 & 1 has 0 partial con.
region pair 4 & 1 has 1 full con.
region pair 3 & 2 has 0 partial con.

region pair 3 & 2 has I full con.
region pair 4 & 3 has 1 partial con.

region pair 4 & 3 has 0 full con.
region pair 5 & 4 has 1 partial con.

‘ region pair 5 & 4 has 0 full con.
region pair 6 & 4 has 1 partial ¢va.

‘ (“b) Tegion pair 6 & 4 has 0 full con.

region pair 6 & 5 has 0 partial con.
region pair 6 & 5 has 1 fuil con.

Fig.4 Two examples to illustrate the representation
scheme for 2-D projections.




viewpeint= 273, no. of regions= 7
.- sorted edge list -=-
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viewpoint= 287, no. of regionzs== 8
-.- sorted edge list ---
4

0 L b e

--- sorted fullconn, list ---
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«»- sorted partial_conn. list -« .

O OO -

(b)

Fig.5 D ata structures of the two representations in Fig.4.




.Fig.6 An instance of the partially parcelled view sphere
_ with each CV bounded by bold lines.
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Fig.7 The architecture of ART-1 system (redrawn based on Fig.3 of {8])-
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Fig.8 (a) and (b) are the original and the shifted matrices of the example
in Fig.5(a). (c) and (d) are the original and the shifted matrices

‘




Target Objects 9-D projections

Regions found on the
view sphere after region
growing process
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‘Fig.9 Different sizes of CV libraries generated from three
different polyhedral objects. -




_ 7]

b) Viewpoint 111 (CV 65) (¢} Viewpoint 235 (CV 85)

o m

Vlewpomt 318 (CV 86) e) Viewpoint 212°(CV 89)

O

(f) Viewpoint 213 (CV 89)

: Fig.lOﬁ (a ) A synthetlc image generated from an arbitrary viewpoint,
(b) to (f) are some vigws in the CV library that are considered by the
, ART-1 network to be most similar to (a).
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(a) A synthetic image. (b) Viewpoint 197 (CV 88)

Fig.11 (a) A synthetic image generated from an arbitrary viewpoint,
(b) A located CV that is most similar to (a).

(c)

Fig.12 (a) A range image, (b) result after image segmentation, (¢) and (d)
are the most similar CVs located by the ART-1 network.




(d)

(e) S (D)

Fig.13 (a) A range image, (b) result after image segmentation, (¢) to (f)
are the most similar CVs located by the ART-1 network.




Fig.14 (a) The actual locations of the candidate CVs on the view sphere
for the projection shown in Fig.12(a).

(b) The actual locations of the candidate CVs on the view sphere
_ for the projection shown in Fig.13(a).




