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Abstract:
We present a linkage model to model the 2D and 3D deformable objects under
) externally applied forces. In this method, an object is modeled by a linkage
| structure and forces and displacements for each link are solved to generate
‘ the deformation. It is simple, yet it can effectively model realistic deformed
shapes.
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1. Introduction

In recent years, solid modeling has received a lot of attention due to its
great application potential and the advances of computer technology. It acts
as the basis for fields such as computer graphics, computer aided design,
computer animation and simulation, scientific visualization, etc. The goal

of solid modeling is to represent the geometric features of a solid object
effectively.

Until now, there are two basic approaches for modeling 3-D objects: the
volumetric approach and the boundary approach(l]. the volumetric approach
describes an object as a combination of primitive volumes. This class includes
all the decomposition techniques related to the underlying space represen-
tation. Octree encoding[2] and constructive solid geometry technique[3] are
typical examples of this approach. On the other hand, the boundary ap-
proach describes the solid volumes using the enclosing surfaces. Such models
contain both the individual oriented surfaces of the object and the topologi-
cal relationships between the surfaces. One example of this approach is the
face-adjacency graph developed by Floriani and Falcidieno[4].

Although the researchers have proposed various solid models, most of
them are used to represent rigid solid objects. Recently, some ambitious
researchers start to alm at representing deformable objects(5,9]. To name
a few examples: Platt et al.[5] developed a general deformable solid model
based on the theory of elasticity; Waters[6] developed a muscle model for
animating human facial expression; Miller[7] studied the motion of snacks
and worms; and Terzopoulos et al.[8] tried to model complex behaviors of
the solid based on the theories of viscoelasticity, plasticity, and fracture.

~ In this study, we use a linkage model to represent a deformable solid. This

model applies to 3D cases as well as 2D cases. With relatively simple data
structure, realistic deformed shapes can be generated using this model. By
assigning different stiffness to the axial members of the linkage model, we can
even model materials of different characteristics and composite materials.

In the following, Section 2 describes the linkage model and the corre-
sponding data structure. The formulation of the element stiffness matrix of
a. single axial member is described in Section 3. The method for assembling
the element stiffness matrices to get the global stiffness matrix of the linkage
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model is described in Section 4. To gain a resolvable, there must exist some
boundary conditions. The method of applying the boundary conditions is
given in Section 5. Two examples, one is a 2D case and the other is a 3D
case, are showned and described in Section 6. Conclusions and Discussions
can be found in the final section.

2. Linkage Model for Deformable Solids

From microscopic point of view, there are forces acting between any two
atoms in a solid and the forces are balanced with the externally applied forces
to reach the final deformed shape. The structure of the solid can be viewed
as a seb of axial members and connection points where the axial members
take the forces acting between atoms and the connection points represent
the atoms. In this study, we use such a linkage model to represent a'solid
in which each axial member is constrained to extend or shrink in the axial
direction. No bending effect of the member is allowed. The connection point
of several members is called a node. Fig. 1 shows the linkage model of a
circular disk with 16 members and 9 nodes. The data structure of this model
is very simple. Two files are required for a 2D case. The first file stores
the 2D coordinates of the nodes and the second file stores the node number
pairs of the linkages. Each node number pair has two node numbers which
are the node numbers of the nodes at the two ends of a linkage. For 3D
cases, a third file is necessary to.store node number friplets of the surface
triangular patches. In this study, all surface patches of a deformable body
are triangular with each side being a linkage. With this information, we can
compute the outwardnormals at the nodes of a patch and hence can perform
shading to get a realistic view of the deformation process on the screen.

3. Formulation of Element Stiffness Matrix

The basic principle for computing the displacements of a solid 1s equilib-
rium. From a local point of view, the resultant force acting on one end of an
axial member and the resultant force acting on the other end should be equal '
in magnitude and opposite in direction. Furthermore, both of them should
act along the axial direction of the member. This is due to the assumption
that the member can only deform along the axial direction. Fig. 2 shows
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this situation of a member. The force F, applied by the wall on the member
is equal to —F; and the displacement of the free end D can be found to be

D=FL/AE (1)

where A is the cross-sectional area of the member, L is the original length
- of the member, and F is a material property called Young’s modulus. The
formula of D can be easily found in any textbook of mechanics.

To relate the end forces and the end displacements of the member, an
element stiffness matrix equation can be formed. To unify our approach, we
define a global coordinate system z —y and decompose each of the end forces
and end displacements into their # component and y component. Fig..3
shows this case. By letting U; to be positive and the other three displacement
components to be zero, the axial shortage of the member is Us - cos ¢ and the
axial force can be found to be AEU; -cos ¢/ L. According to Eq. (1), the force
components Fiy, Fya, Fra, and Fy; can easily be found to be AEU, cos® ¢/ L,
AFEU; -cos¢-sind/L, —AEU; -cos® ¢/ L, and —AEU; - cos ¢ - sin ¢/ L respec-
tively. These comprise the first column of the element stiffness matrix. In a
similar way, we can derive other elements of the element stiffness matrix and
the final form of element stiffness matrix equation is as follows

Fy A B —-A —B7 (U

F, | | B ¢ -B —C||Ww - )
Fo (7| ~-A -B A B Ua
Fy‘Z _B —'C .B C va

where A = cos’ ¢, B Zsing-cos ¢, C = sin? ¢.

4. Assemblage of Global Stiffness Matrix

From a global point of view, the forces acting on each node, both exter-
nally applied forces and internal forces provided by the members, should be
summed to zero. Otherwise, the node will accelerate away under the un-
balanced force according to the second law of Newton. Using the element
stiffness matrices, we can assemble the global stiffness matrix. Fig. 4 shows
a square solid with four nodes and eight degree of freedoms. We use this ex-
ample to explain the assemblage of global stiffiness matrix. The displacement

4




of a node can be decomposed into two components along the two degrees
of freedom associated with that node. Moreover, the resultant force acting
on a node can also be decomposed into its z component and y component
according to the principle of vector decomposition. The final global matrix
equation can be represented in the following form

F:I:l Sll 512 313 et 518 Ul
Fyl 521 322 523 et '528 .E/l

S U P, (3)
Fuy | Ss1 Sez Ssz - Sss Vi

or in a more uniform form like

B S S12 Sz -+ Sis 0
Fy Sui Sa2 523 -+ Sus Uz

=1 . . e ) (4)
Fy | Ss1 Ss2 Sez -+ Ses Us

where coefficient S;; can be assembled from the related local matrices of
the members. Take member #1 for example where the related degrees of
freedom are 1, 2, 7, and 8. The 16 elements of the matrix in Eq. (2) should
be added to the 16 elements in the matrix of Eq. (4) which correspond to
the four target degrees of freedom. Thus, cos® ¢ will be added into Sy and
S77, —cos? ¢ will be added into Sy7 and 57, ete.
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5. Applying the Boundary Conditions

Once the global stiffness matrix equation is found, we can compute the
desired displacements after the known boundary conditions are applied. Fig.
5 shows a set of boundary conditions applying to the example of square solid.
node 3 is constrained not to move in both degrees of freedom, and node 4 is
constrained not to move in the y direction. Furthermore, an external force is
applied to node 2 in the z direction with magnitude 200 Newton. Thus, the
unknown force components include Fs, Fs, F3, and the unknow displacements
include Uy, U,, Us, Uy, and Uy. We can rearrange Eq. (4) so that the
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components corresponding to the supports and the other components can be
separated. The rearranged global matrix equation is as

| Kyp Ky Uy
{ 7 Fs}‘[ffsf Ko |\ U 2
where vectors U; and F, are unknowns to be found. Eq. (5) include two set
of equations as

Fy = KpUp + Ky,Us, (6)
F, = K,;U; + K,,U,. ' (7)

Since U, is a zero vector, Eq. (6) reduces to

Fp=KpUy (8)

or
Us = K7} Fy. | (9)
Substituting Eq. (9) into Eq. (7), we have
F, = K K5} Fy. ' (10}

Solving Eq. (9) and Eq. (10) give the unknown displacement components
Uy and force components F, respectively.

6. Examples

Two cases have been implemented and displayed to show the deformation
process of a deformable solid using the linkage model. The first example is a
2D solid as shown in Fig. 6. The lower left node of the solid is constrained not
to move and the lower right node is constrained not to move in the vertical
direction. These supports are represented as short black line segments. A
horizontal force is applied at the upper right node which varies in magnitude.
The force is represented by a blue line segment and the length of the line
segment represents its magnitude. During the deformation process, some of
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the axial members will be loaded too much and will exceed the strength Limit.
We did not simulate the fractured process but the members are marked as
black once they exceed the strength limit. Fig. 6 shows a sequence of pictures
which represent different steps in the deformation process.

The second example draws the deformation process of a 3D cylindrical
shell structure. One end of the shell is completely fixed and will not move.
The other end of the shell is subjected to an external force which varies in
magnitude. Shading is also applied so as to display the realistic deformed
shape. Fig. 7 shows a sequence of pictures of this deformation process.

Although we did not draw the deformation of 2 3D solid, it is rather easy
to prepare data and compute the deformed shapes using the same procedures
developed by us:

7. Conclusions and Discussions

In this study, we have proposed a linkage to represent deformable solid
objects. Due to its simplicity and fexibility, it can effectively model a lot
of realistic deformed shapes of solids under externally applied forces. A 2D
example and a 3D example are implemented to test the effect of our model.
Realistic deformation process has been produced and the feasibility of this
method has also been proved.

Several problems found in this study will be discussed here. One prob-
lem is the computation time. If we want the deformed shape to be real,
the number of members and nodes in the model must be large. Real time
computation and display of the deformation process may not be possible for
three-dimensional cases. Results of the deformation steps should be stored
in files and then displayed in sequence so as to produce the deformation pro-
cess. Another problem with this model is its inability to model the fracture
phenomenon. To model the process of crack formation and crack propaga- )
tion using this model is difficult. Suitable modification of the model may be
necessary for fracture simulation. Still another problem is when there exists
- several deformable solids simultaneous. In this situation, they may collide
with each other and deform. For purpose of collision detection, the surface
information of the solid object is necessary. Extra data about surface patches
must be provided by the user so that collision can be tested for node-patch




pairs{10]. These problems will be the topics of our further study about draw-

ing deformed bodies. For complex shaped objects, to prepare the necessary
data automatically is also a challenge of interest.
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Fig. I The linkage model of a circular disk.
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Fig. 2 - An axial member under applied force F1.
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Fig. 3~ End force components and end displacement
components of a member,
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Fig. 4. The linkage model of a square solid.
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Fig. S -The supported square solid.
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Fig. 6 Deformation of the 2D case
right arrow is the force
bold line segments are overloaded segments




*

S i

B v

SRy = 2

>

LRSI

e,

i

zﬂn.ﬂ..

A

C

Ao
T4

AT .vm,..

A i b ai e

f the 3D case

10m. O

7 Deforﬁat

Fzg




