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Abstract

Let P be a weakly visibility polygon from e which is an edge of P. The &-
cruising guard problem is to find a set of k disjoint segments, s;, ¢ = 1,..., k,
on e, such that P is weakly visible from the union of these k segments and
the longest |s;|, 1 = 1, ..., &, is minimized. In this paper we present a linear
time algorithm for the case of k=1, and an O(c - n) time algorithm for the
case of k=2, where ¢ is bounded by the number of the reflex vertices in P.
For the general case k > 2, we solved a variation of the previous defined
problem. We leave the general solution as an open problem.
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1. Introduction

Let P = {vg, V1, .-, Un_1}, the sequence of the vertices in clockwise direc-
tion, denote a simple polygon. Let eq = Tn_1, 75 and e; = Ti_y, v; forz = 1, 2,
..., n — 1 be the edges of the polygon connecting the corresponding vertices.
Since the boundary of P is assumed to be directed clockwise, the interior of
P lies to the right of each edge.

Definition 1: P is a weakly visibility polygon from an edge e, if and only
if for every point p in the interior of P or on the boundary of P, thereis a

point p. on e such that 5;7; lies in the interior of P[13]. The edge e is refered
to as an anchor of P. '

Given an weakly visibility polygon P and its anchor e, consider the place-
ment of k& mobile robots on e and each robot cruises along a segment on ¢
so that the entire polygon can be seen from the k robots. If & = 1, Fig. 1
shows that the guard has to patrols along almost the whole edge so that the
entire polygon can be seen from the guard. Consider the case of more than
one guard on e and assume that each guard patrols along a portion of e in
constant speed. In order to monitor the entire polygon so that each point
can be seen as often as possible, we should minimize the longest distance

that one of the guards patrols. This observation defines the k-cruising guard
problem.

Definition 2: Assume that P is a weakly visibility polygon from a given
edge e. Given a constant k, the k-cruising guard problem is to find & segment
s;, 7 =1, 2, ..., kon e such that P is visible from 5 = Us; and the maximum
of |s;],7 = 1,...,n) is minimized where |s| denote the length in Euclidean
distance of the line segment s.

For simplicity, we assume without loss of generality that P is in a standard
form{l]. We state briefly the standard form in the following. Let P be
a weakly visibility polygon with anchor ey where ey = T,_1,0o. As shown
in Fig. 2, let v,_; and v be the intersections, if any, of the line Un_1,%0
and P. It is clear that the points in region A (B) can only be seen by
v,y (v respectively) on eo. Hence, v,_; and vp must be visited by some
cruising guards in order to see A and B. This implies that v,_; and v must
be included in the optimal solution of the cruising guard problem. Let P
be a simple polygon obtained by replacing v and v,_; with vo and vn-y
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respectively, and deleting regions A and B. P’ has the property that all of
its vertices lie on the same side of the line Ym_1,U0. We say that P’ is in
standard form. It is easy to see that the standard form of a weakly visibility
polygon P with anchor ey can be obtained in O(n) time. In the following.
we assume that the input polygon P with anchor e is in standard form. We
also assume that the anchor e is on positive z-axis and v;_; 1s at the origin
in the Cartesian coordinate system.

2. One Cruising Guard Problem

In this section, we consider the case when k = 1. Recall that P is weakly
visible from the anchor eg. If k = 1, the cruising guard problem is simply to
find a shortest segment on eg denoted S, from which P is weakly visible.

Definition 3: For each point p in polygon P, we define r, (and /) to be the
right most (left most respeciively) point on eq such that p is visible from 7,
(and I,). For vertex v; on P, we use r; and I; to denote 7, and [ for short.

It is easy to see that p is visible from every point on 7y, lp-

Definition 4: For an edge ¢; = T;_1, Ui, Jet 1(z) be a segment on ¢g such that
t(1) is weakly visible from %i3;%. The line segment t(1) is said to be a type
2 segment if r;_y < I;, and is denoted #,(z). Similarly, if 71 > I, then ()
is said to be a type I segment and denoted t;(z) (see Fig. 3).

Notice that, if £(i) is a type 2 segment, then the entire t(i) is required so
that e; can be visible. That is, if there is only one cruising guard, the guard
must patrol the whole tp(4). If i(¢) is a type 1 segment, e; is visible from
every point on #1{%). “In this case, the guard can be placed at any point on
t,(i) and the whole e; can be seen from the guard.

From the above observation, the necessary and sufficient conditions for a
segment S’ on e which can see e;, Vi, are as the following;:

V4,(3) , t1(8) N S # ¢ and V £5(4), t2(5) N S’ = t2(d),
We state without proof the following lemma.

Lemma 1: The shortest S, denoted S, is the optimal solution for the 1-
cruising guard problem.

We have the algorithm for the 1-cruising guard problem as the following.




Algorithm (1-cruising guard problem):

(1) For each v;, compute and L;

(2) For each e, determine that [;,r;_1 is of to(2) or t1(1);

(3) Let Ry = ¢ and L2 = ¢ if there is no type 2 edge otherwise let R; be the
rightmost I; of t5(7) and Lo be the leftmost r; of 2(2).

(4) Let Ry = ¢ and L, = ¢ if there is no type 1 edges otherwise let R, be
the rightmost {; and Ly be the leftmost r;—1-

(5) R = max {Ry, Rp} and L = min {Li, L2 };

(6) If L < R then output L, R otherwise output any point on R, L.

Step (1) and step (2) of the algorithm can be done In O(n) due to the
result by Avis and Toussaint[1] in which a linear algorithm for determining
the visibility of a polygon from an edge was presented. For steps from (3)
to (6), the operations required are to select the rightmost and the leftmost

points which can also be accomplished in O(n). Thus we have the following
theorem.

Theorem 1: The 1-cruising guard problem can be solved in O(n) time.

3. Two Cruising Guard Problem

Let § = T, E be the segment obtained for the 1-cruising guard problem.
As mentioned in the previous section, 5 can be a point. If §is a point,
then one guard is sufficient. Thus, in the following, we assume that S 1s
not a point and two guards are required to patrol along segments sy and 52
respectively where s; and sz are on S. '

Lemma 2: Let s; and s; be the optimal solution for the two-cruising guard
problem. The intersection of s; and sz must be empty.

Proof We first show that the intersection of s and s, cannot be a segment.
Assume the intersection s’ = $1 M $2, each guard can patrol till the midpoint
of ' such that the entire polygon still'can be observed by the two guards but
the longest distance cruised by one of the guards is reduced. Secondly, we
show that the intersection cannot be a point peither. Assume that |si| > |s2|
and point p = s; N sz. Let all the points on s; except p are to the left of
p. If all t(z) contain p are of type 1, since one point on t,(1) is sufficient %o
observe the entire corresponding edge, 1t 1s obvious that |s;| can be reduced
so that 8, M s, is empty but the entire polygon is weakly visible by the two
guards. If there are t,(i) that contain p. Let p} be the right most point on
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e; that can see p. The point p} defines I; and ryy. Note that ry is p and Iy
is always to the left of p. Furthermore, points on eg which are to the left of
[,y can see all the points to the right of p} on e; and points on e which are
to the right of r,; can see all points to the left of pi on e;. Thus |s;{ can be
reduced. The lemma follows.

Corollary 1: |S|/2 is the upper bound of max({|si[, |s2[}), i.e. neither s
nor S, Crosses p,, where p,, is the midpoint of 5.

In the following, we assume that s; is on segment L,pm and s; is on
segment pm, .

The main idea of our algorithm consists of two steps.

(1) For each edge e;, find & point p; € e; such that min({|lps P, [Py il )
is maximized. :

(2) Let R’ be the leftmost r,,i =1,..,n—1 and L' be the rightmost I,z =
1,...,n —1. We have {s1,82} = {L,I', R, R}

With a lLittle difference from Section 2, we define the visibility relation
diagram as follows. A

Definition 5: The Visibility Relation Diagram of eg and e;, denoted VRD,,,
on domain e X ¢; is defined as the visibility relationship between pair of points
on e and e; respectively. Let u € eg and y' € e;. The region R.; in domain
e X ¢; is the set of points (u,u’) that u and v’ are visible to each other in P.
The rest of points in domain ey X e; are in the set Ry (see Fig. 4).

In order to investigate the properties of the boundary of VRD,;, we pa-
rameterized the point on e; as uj = vi_1 + o; - €j, where 0 < o <1 and
vy_1 is the location vecter of vertex v;_1 and & = vj - Vi_1. We also use u;
to denote the point of uj.

If ug and wu; are visible to each other, then ug — uj divides the vertices
on P into two subsets {vo,v1,...,vi—1} and {vi,vit1, <eyUn_1}- Let CHp and
C Hy, be the convex hulls of these two sets of vertices respectively. The space
between these two convex hulls is the set of points which is the union of all
ug — u; where ug and wu; are visible to each other. Recall that, each pair
of (ug,u;) determines a point in VEDe;. It is easy to see that V.RDe; is a
connected component.




The channel is defined by a pair of convex chains on CHg and CHy. If
ug — u; intersects one of the convex chains at a vertex, then (ug, ;) is a
point on the boundary of V RDe;. Assume that ug — u; intersects a convex
cahin on CHpR at a vertex v, and we tune «; to make up — u; rotates about
vy. Note that ug, e, and u; are collinear in this case so that (ug - vy)
x (ug — vk) = (Va1 + oo - ep Vi) X (Vi oo -oe - vk) = 0. Thus,
the locus of (ug,%;) in domain eg X e;, which is the boundary of VRDe;,
is a part of a hyperbolic function. We use f;x(-) to denote the hyperbolic
function. If up — u; intersects a convex chain on CHg at an edge T, U, then
(uo, ;) is at an intersection of two hyperbolic functions fix(-) and fiw(-)-
Therefore the convex chain on CHp determines a sequence of hyperbolic
functions in ey X e; denoted Fi{e;). Similarly the convex chain on CHy,
define a sequence of hyperbolic functions g;(-) as well and denoted Gi(oy).
Since R.; is a connected component, Fi(c;) and Gi{e;) does not intersect or
they can intersect at two end points of Fi(e;) and Gi(en), i.e., o = 0 or (and)
a; = 1. Assume that ug = r; and up — 1y intersects CHp at v; (ci = 0).- As
we increasing ¢; and maintaining ug — uj to intersect C Hp at a point, it is
not difficult to see that Fi(a;) is monotone decreasing. Similar observation
shows that G;(e;) is also monotone decreasing.

Note that, Fi(1) is ri—1 and G;(0) is L. Henﬁe, if F;(1) > G;(0), then e; is
a type 1 segment. If Fi(1} > G;(0) then e; is a type 2 segment. For a point
p; on e;, Fi(p;) is rp; of p; while Gi(p;) is I; of p;.

Let a,b be a line segment on edge e, such that in domain e X [a, 8],
Fi(o;) and Gi(a;) are respectively defined by 2 single f(-) and a single 0]
(see Fig. 5). We first'concentrate on the problem that a, b must be seen from
tHe two guards and the maximum distance patroled by one of the guards is
minimized. We call this the local optimal solution for the 2-cruising guards
problem. Recall that, if there are two guards, each guard patrols along a
segment on L, p. and pm, R where p, is the mid-point of I, B (the optimal
solution of 1-cruising guard problem). Note that, two guards must visit the
points I and R respectively. Assume that the two paths cruised by two
guards are s;, and si, L € s;;, and R € si,. In order to achieve the local
optimal solution. We consider the following cases.

1. pm is to the left of (F(b) + g(b)}/2 or to the right of (fta) +g(a))/2. We

look at the first case. If p,, is to the left of (f(b) + g(b))/2 then a,b can be




observed by the guard who patrols along f{(b), R. Therefore, s;; = L and s;
= f(b), B. The later one is similar.

2. pm € (F(0) + 9(8))/2, (fa) + g(a))/2. In this case, we search for a point p;
¢ e; such that {f(p:); pm| = |9{p:), Pm|. That means the distance required to
be patroled by each guard reduced by equal amount, i.e., two guards patrol

along segments s;;, = L, f(p;) and sip = g(p:), R respectively. Only under this
condition, the longer distance patroled by one of the guards is minimized.

Note that these conditions can be obtained by solving the following equa-
tions:
[Va_1 +ag-eo0 — V] X [vi toi- e — v;] = 0 (vertex v; and points on eq and
e; are collinear) .
[Vao1 + o - €0 — V] X [vit+ai-ei—vg} =0 (vertex vy and points on €o and
e; are collinear) )

[vp-1+ a0 - €0 — Pm) = [Vn-1+ a5 €0 — Pm] (optimal solution).

According to above observations, the optimal solution should satisfy the
following lemma.

Lemma 3: The optimal solution of 2-cruising guard problem is a pair of
segments (s1, 52), such that ¥V si, , 8;; C 81 and'V sy, i, C 52

Now we formally outline the algorithm.

Algorithm (2-cruising guard problem):
(1) Compute L and R by Algorithm for the 1-cruising guard problem;
_(E)_Ef L > R then we need only one guard and can put him on any point of
R, L; .
(3) For each e;, compute its Visibility Relation Diagram V RD,;;
(4) For each VRD,,, partition it to O(n) subdomains as described in Fact 3,
and compute their (s, si,);
(5) Let s; = the longest sy obtained from step (4); s2 = the longest s
obtained from step {(4);
(6) Output (s1,52)-

As mentioned in l-cruising guard problem, step (1) needs only O(n).
Steps (3) and (4) can be accomplished in ¢- O(n) + (n — k) - C time, where
¢ is the number of pockets in polygon P, and Cis 2 constant. For step (5),
the pair of longest segments, s and s, can be found in linear time. Hence,




the time complexity of Algorithm (2-cruising guard problem) is bounded by
Ofc- n). :

Theorem 2: The 2-cruising guard problem can be solved in O(c- n) time.

4. K - Cruising Guard Problem

In this section, we first define a variation of the k-cruising guard problem
and then give an algorithm to the variation version. The general k-cruising
guard problem for £ > 2 is not solved. We shall discus this problem later.

The variation version of the k-cruising guard problem is defined as the
following. Consider the case that if the maximum distance patrol by each
guard is no greater than r, then does there exist a placement of k guards that

each guard patrols along a segment s;, |s;| < r, so that P is weakly visible
from the guards. :

Definition 6: Given G;(z) and Fi(z) as defined in the previous section, the
transition mappings are defined as follows. '

7i(r) = Gi(F.~H(R—r)) and oi(r) = F(G; Y (L+r)) where 7 is a real variable
ranged in {0, B — L. S :

_ - As mentioned in the previous section, L, R is the solution for the 1-
al cruising guard problem and the points L and R must be visited by one of
] the guards. G;~*(L +r) is a point p; on ¢; such that the points L+, p;, and
a vertex vy are collinear. Furthermore, if there is a guard who patrol along
the segment L; L + 7, the segment Uiy, 7 on e; can be seen by the guard.
The rest of the points on e; have to be taken care by the next guard who
patrols on the segment Fi(G; (L +r), Fi(Gi™ ML +r) +r = 7(r), =(r) + 7
The observation gives the algorithm as the following.

For each e;, we compute the transition mapping function 7;{r) = F(G L+
r). The leftmost ;(r), for all « = 1,"..., n, Is the point that the next guard
should start with. Apply this method for at most k times and the variation
version is solved. Note that each iteration takes O(n) time.

The general solution for the k-cruising guard problem involves the in-
version of the transition mapping function stated above. It is know that a
polynomial with order 4 or less can be solved in O(1) time. The inverse of
transition mapping function has order higher that 4.




5. Conclusion :

We have presented a linear time algorithm for the 1-cruising guard prob-
lem and an O(c-n) time algorithm for the 2-cruising guard problem. The gen-
eral solution for k-cruising guard problem is an open problem. We strongly
believe that the time bound for the 2-cruising guard problem can be im-
proved.

In this paper, we minimize the longest distance that one of the guards
patrols. Another interesting problem will be to minimize the total length
that all guards patrol. For the case of k = 2, it seems our approach doesn’t
help to attack this problem. We pose this as another open problem.
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Fig. 5 Illustration for the local optimal solution.



