 TR-91-013

ON OPTIMAL STOPPING RULES
IN SOFTWARE RELIABILITY

L

ON OPTIMAL STOPPING RULES IN SOFTWARE RELIABILITY

Mark C. K. Yang
Institute of Information Science
Academia Sinica, Nankang, Taiwan, ROd, and
Department of Statistics
Univefsity of Florida
- Gainesville, Florida 3261_1

* Anne Chao
Institute of Statistics
National Tsing Hua University

Hsin-Chu, Taiwan, R.O.C. 30043

On Optimal Stopping Rules in Software Reliability
By Mark C. K. Yang and Anne Chao

Abstract — Stopping rules for software testing are determined by the cost of testing and
the penalty of the unremoved bugs that may be encountered‘by future users. Unlike
most previous criteria, the damage is not assessed by the remaining bugs, but by the
chance that they may be encountered in the future when the software is run. “No
assumptions on the bug distribution is assumed. The stopping rules are adapted from
the theoretical optimal stopping rule which requires a known distribution of the bugs.
Our simulation study shows that under a wide variety of situations, the adaptive rules
are nearly optimal.

Index Terms -Debugging, optimal stopping rule, random testing, software reliability,

software testing.
I. INTRODUCTION

Software testing, or debugging, is one of the most important components in
goftware development. It 'has been estimated that in many projects, the time accounted
for debuggir,xg can be around 50% of the total development effort[12]. There is an
obvious question in the debugging process, that is when to stop. One naive angwer is, of
course, the process continues until there are no bugs (errors) in the program. Though
formal verification language[15] is designed for this purpose, its implementation can be
very time consuming. Thus, except for extremely sensitive programs, such as those
related to the national security, formal verification is too expensive to apply. For most
commercial soltware, the release requirement is usually not 100% error .free, but.an
acceptable error rate. Naturally, there is always some reluctance for a producer to

define and announce an acceptable error rate for his product. Even if the acceptable rate

is set, to determine when a debugging process has reached this stage is again difficult.
The best bet is often an estimate of the future error rate. However, the accuracy of the
estimate may not be very high, depending on the estimation formula, and more
seriously, on the assumptions that the formula is based upon. Thus, to examine the
applicability of a software testing and reliability evaluation procedure, one needs to
check 1) the assumption made on the error rate configuration, 2) the sampling and
testing procedure, and 3) the decision criterion. Listed below are some of the commonly

used assumptions, sampling procedures, and decision criteria.

A) Assumptions:
Al: There are m (unknown) bugs in the program with occurrence (failure) rates

A 2 Ay 2 e 2 >0

A2: There is a known distribution of A. For example, equal failure rate (EFR)

Al = ,\2 = e ZAe

Remark 1. The meaning of failure rate '\i is that suppose n programs are run (tested),
then on the average nA; of them will encounter bug i. Now if n is proportional to the
testing time t, then the number of times bug i is encountered before time t is
approximately a Poisson distribution with mean Apt, where p is the proportional
constant n=pt. Or, more realistically, the time should be measured by the testing effort
t=n/p, instead of the calendar tﬂne. Throughout this paper, n and t are treated as

aliages.

Remark 2. The restriction A} > A9 > ... 2 Ay > 0 does not lose any generality.

B) Sampling Procedures:

T1: Only one random sample is used for testing. The sample size has to be

determined by some prior knowledge of A [3].

T2: Sequential test. Random samples are taken sequentially and the testing

procedure stops when a certain criterion is met.
C) Decision Criteria:

D1: With (1 - a) confidence that the remaining number of bugs is less than or
equal to m,.

A

D3: Assign c; as the cost of testing one program and cy as the cost of one

remaining bug. Find a procedure that minimize the total cost.

D4: Assign c; again as the cost of testing one program. Let cy be the cost of
ruining one customer’s output due to the bugs and M be the number of programs that

are expected to run in the future. Find a procedure that minimize the total cost.

Remarks: 1) Under A2 EFR, D1 and D2 are equivalent and so are D3 and D4.
2) All the constants; o, my, c¢{, cqy M, and A have to be determined by

the tester. -

I

Table I gives some of the existing stopping rules. Since our interest is in sequential

testing, only those methods that are emphasized in T2 are included.
(Insert Table I)

To evaluate the procedures in Table I, we first consider the assumptions. Unless we

have some strong feeling on the distributions on A, Al should be the most general and

L

D2: With (1 - «) confidence that the remaining failure rate is less than or equal-to ...

reasonable choice. Readers who are interested in various modeling on A can refer to [1,
7, 11, 9]. As for the sampling procedure, it is apparent that T2 is more flexible and
requires no prior knowledge on A. It is also quite intuitive that D1 and D3 are less
reasonable than D2 and D4. Depending on the occurrence rates, a small number of bugs
can cause mote damage than a large number of bugs. Now, among D2 and D4, we feel
that D4 is more practical because it is harder for a producer to determine the-confidence
bound 1 - a and A, than for him to have some quantitative mea.s'ur.e on the two costs.
Actually, it is easy to argue t.hal: if the cost cg is much larger than c,then one should do
more testing, and vice versa. But this fact cannot be easily converted to « in the D2
framework. Actually, the two constants ¢, and M in D4 are inseparable and -can be
considered as one constant. For no matter what the value of c, is, the real cost of
damage depends on how much this program is used. Iere M can also be interpreted as
the expected number of programs to be run in the lifetime or the time before the next
revision of the software. In Table I, only Brown, Maghsoodloo, and Deason(3] consider
D4. But unfortunately, not only are the constants such as E and N in (T.3). difficult to
‘estimate, but also, no debugging procedure is reflected in the derivation. The number of
bugs are the same before and after the testing. Thus, we feel there are still gaps before

one can actually use the stopping rules in [3].

In this paper, we try to find stopping rules with the assumption Al, sampling
procedure T2, and decision rule D4 under two possible debugging schemes. In the next
section, theoretical optimal stop}ing rules are derived for the case when the A's are -
known and f.hey are adapted to the situation when the MA’s are unknown. Those
properties of the adaptive rules that cannot be obtained through mathematical analysis

are simulated in Section III. Some concluding remarks are given in the final section IV.
1I. OPTIMAL AND ADAPTIVE STOPPING RULES

In this section, only the most reasonable cases are presented. Possible

generalizations to more complicated situations are given in §IV. The assumption on A is

Al and the sample procedure is T2 with a sample size of N in each testing period,
N > 1. Here we do not restrict to the case N = 1 as in the usual sequential® analysis,
because for large programs, the testing and debugging may not be done simultaneously.
Debugging is performed only when a large number of programs has been tested. Two
options are allowed for debugging. They are: 1) standard debugging where bugs are
removed after each testing period, and 2) recapture debugging[13] where the discovered

bugs are bypassed but a record is still kept every time they are encountered.

Let I(x) be the indicator function

I(x) = {

_ 0 if x is false,

1 ifxistrue

X;(n) = number of times that the ith bug is encountered at the end of the nth
test period,

and the remaining failure rate
m
U(n)=) MI(X;(n)=0).
i=1 ,
Then if the program is released after the nth testing period, the cost is
C(n) = 'c2M -U(n) + cinN. (2.1)
Qur purpose is to find the optimal stopping rule ¢ such that
EC(¥) < EC(7),

for any stopping rule 7. Here E denotes the expectation. Note that a stopping rule is a

decision that depends only on the sampling information from the past, not the future.
To put it in the usual notation, a stopping rule r is a random variable such that the
event (r=n } € ¥F,,, where ¥, is the sigma field generated by all the previous samples
up to n. To find the optimal stopping rule, we first assume that all the A’s are known

and use Theorem 3.3 in Chow, Robbins, and Siegmund[5]. In order to follow the

theorem more easily, we let the payoff function g(n)=~C(n) and the equivalent.optimal

stopping rule now is to find 4 such that

Eg(y) > Eg(r), C(22)

for any stopping rule . Without loss of generality, we may let ¢;=I and coM=c.

Hence,
g(n) = —cU(n) - nN. (2.3)
Using our notation, we restate Theorem 3.3 of [5]. If the set

Ap={ E@n+)| F,) < g} e

is monotonically increasing with respect to n and

liminf I gt(n)dp =0, (2.5)
¥>a
then (2.2) is true for all 7 satisfying

liminf I g (n)dP =0, (2.6)
T>n

where ¢ is

the first n > 1 such that g(n) > E(g(n+1)|%F,). (2.7)

Because g1 (n)=0 for all n, (2.5) holds in a t;;rivial way. To show (2.4), note that

E(g(n+1) | Fy) < g(n)

o —C

A PLIX (n41) = 0) | I(X;(n) = 0)} — (n+1)N <
—~cU(n) -nN '

)
{i: X;(n) = 0}

2 N
“c) Al-(1-2)"]1(X;m})=0) <N
i=1
m Ne o/
= °i§1)‘i[1 (1= 11 X(n+1) =0) < N
Thus, (2.4) is proven. Since U(n) <1, g™(n) = cU(n) + nN < ¢ +aN, and

J g (n)dP < (¢ + nN)P{r>n} — 0,
T™>n

as n — oo, if Er < 00, Thus, we have shown that ¢ is the optimal stopping rule for all
stopping rules with finite'expectation. Suppose Er = oo, then Eg(r) < -Er = —oo.
Because the s(:opping rule that stops with ¢ = 1 has expectation greater than — (c+N),
this 7 cannot be optimal. We have proven (2.2) for all . To rewrite (2.7) explicitly, ¢

is to stop at

m
the first n > 1 such that) A(1— (1= XN [(X;(n)=0) <Nfe. (2.8)
i=1

For small A’s, a good approximation for (2.8) is

m .
the first n > 1 such that ZAZiI(Xi(n)zﬂ) <lfe (2.8")

=

Since the A’s are unknown, the ¢ defined in (2.8) cannot be put into practice, but
it tells us that if there is a good estimate of the left side of the inequality in (2.8) or
(2.8"), we may be close to the optimal stopping rule. Moreover, if any stopping rule that
can almost reach the optimz;l value EC(y) obtained from ¢ when the A’s are known, it
must be nearly optimal. From the simulation study to be presented in the-next section,

many nearly optimal situations are identified.

m ' '
Letd = E Z/\zil(xi(n)=0). Then it can be shown that
i=1

> 32 N
i=1
It is known in the literature (eg. [2], [4], il?]) that
. nN(nN-1) & -
E) I(X(n)=2) = _(2_.1 Y a2y N -2,
i=1 i=1

By ignorihg the small difference between (I-Ai)nN -2 and (I-Ai)nN, we can estimate ¢
by

__2 i[(x.(ﬁ)-_-z) = 2B
nN(nN-1) ~ i 7 nN(nN-1) "%

7

where B, is the number of doubletons, i.e., the number of bugs that.have been
encountered exactly twice up to stage n. Thus, a reasonable adaptive rule ¥ for the

recapture debugging procedure is to stop at

2
the first n such that m Bn < I/C. (2. 10)

The expected cost of this rule is denoted by EC(t).

When the standard debugging procedure is used, the number of doubletons up to stage n
has to be estimated, because all the previous bugs before stage n have been removed.
Let s, and b, denote the number of singletons and doubletons discovered at test period

n. They are observable. From
By,= (Those bugs in B__,that are not encountered in period n) +
(Those bugs in S__;that are encountered exactly once in period n) + by,

where S, denotes the number of singletons encountered up to stage n, Sy, and By, can be

estimate recursively by

By = By (L Y+ Sut (o) /D) £ (2.11a)
Sa=8.4 (1-%1:15)N + 8. | (2.11b)

The two formulae are derived from the maximum likelihood principle. For example, the

first term of (2.11a) is obtained by replacing the), in

m
.)_“iu - 2)NI(X (n)=2)
1=)

by 2/[N(n-1)},,for the ith ‘error appears exactly twice in a sample of size N(n-1). in

summary, for the standard debugging procedure, the stopping rule 4 is to stop at

—2 |
the first n such that aN(N-T) B, £ 1/ (2.12)

Again, we denote the cost under this rule by EC(¥).

Analytic study on the performance of (2.10) and (2.12) seems to be very difficult.

Simulations are used to evaluate their performances.

IiL. SIMULATION STUDY

The stopping rules; optimal (2.8), approximation (2.8/), adapted to recapture -
debugging procedure (2.10), and adapted to the standard debugging procedure (2.12) are
compared. In standard software development, the failure rate ghould not be very high at
the testing stage. Three values, 0.10, 0.05, and 0.01 are assigned for the total failure rate
T, = Izn:,\i, with m=100. Four configurations for A are used;

i=1

1=

a) rapidly decreasing A (exponential rate): Ai=K/2i, i= 1-,2,...,m;

b) moderately decreasing A (Zipf's Law): z\i=K/i, i=1,2,...,m;

c) slowly deéreasing A (constant): A=K, for all i=1, .. .,m;

d) random A (following [16]): A=K U, U;is a random number, i=1,...,m,

m

where K is the normalization constant so that iZ:AizTX

Since T, is small, small N will make the test very ineffective. We choose N=100, 300,
500. Since N=100 is someétimes too small for the case T.X:O'Ol' we hold our decision if
there is no doubletons before the 5th period. Similarly, we hold our decision for N=300
and 500 if there no duobletons in the first period. The value c=cqM/c; can vary
considerably due to different real situation. We feel that c;=1, ¢cy=100, and M=10%is a
reasonable middle ground. Thus, three values, c=105, 106, and 107are used. One

hundred simulations were done for each combination of ¢, N, and T).

(Ingert Tablell(a-d))

The simulation results for c=10% are given in Tablell (a-d). The other two c’s give

similar results. The differences between (2.8) and (2.8’) are so small in every case that
the figures for (2.8') are not worth reporting. In the Tables, the average cost and the
average stopping time (in parentheses} associated with each combination of T 3 and A’

distributions are presented. The following facts have been observed.

1) The first thing that surprises us is that there is little difference between (2.10)
-and (2.12). After detailed check into the stopping process, we found that this was due to
large variation in B, the number of doubletons. Singletons are more stable in the
sample. Thus, the estimated ﬁn from singletons can be as effecti\}e as the doubletons.
This is also a reflection of the effectiveness of the recursive formula (2.11). We have
tried some other ad hoc rules based on the singletons such as to stop at the first n such

that S ;/N(n-1) — 8,/Nn <1/c. Their performances are not cdmparable with (2.12).

2) It is actually unfair to compare (2.10) and (2.12) with (2.8), because ini'(2.8) all
the A's have to be known. There is a tremendous prior information difference between
(2.8) and the two adéptive stopping rules. However, the simulations show that in mos£
situations, especially Table II (b-d), the adaptive methods perforim extremely well. it is
unlikely that in these situations any other stopping rule can beat them without any

prior information on A. At least we can say that they are nearly optimal.

3) From the expected cost point of view, the initial total failure rate Ty has less
influence thar} the sizes of A. Naturally, it is easy to debug one big A=T A":’U.‘l"than to
debug 100 srﬁall equal A's with a total T A:O.Ul. However, it has also been confirmed by
our other simulations that if Ty< T/) 8nd the A’s in the T set is & subset of those in
the T/) ety then the expected cost in the {irst situation is smaller than that in the
second. Take Table 1l{(c) for example, if the bugs in T,=0.05 were
Aj=Ag=- -+ -=A5=0.001, a subset of T,=0.10 with 100 bugs, then the cost for
debugging Ty=0.05 is smaller.

4) In Table II(a), we see a bigger discrepancy in costs between (2.10), (2.12), and

~11-

(2.8). Also in the case not shown when ¢=10° and T 4=0.01, there are high increases in
the cost for the slowly decreasing A. Actually it is easy to identify these situations. For
example, when ¢=10° and TA=0.01, we have I Ai2 = 1076« 1/c. Obviously, if this
fact is known, no testing is the best strategy. But under the situation that the A’s are
unknown, it will take a considerable number of testing samples to discover this fact.
Thus, the adaptive methods cost more than the optimal rule (2.8). Another situation,
such as the rapidly decreasing A case, is that although X Ai2 < 1/c is not true for all the
‘X’s in the beginning, the A’s are dominated by a few large ones and once they are
removed, B '\i2 < 1/c is satisfied by the rest of the.\’s. Since the large X's-can be
discovered pretty easily, they can be removed in the very beginning. The debugging
process can then be stopped because the A’s are known. The adaptive methods again

have to identify this fact at considerable cost.

5) From the four tables, it is evident that the final costs vary little due to the test
size N. Also, the stopping times are inversely proportional to the test size N, i.e., the

total number of tested cases belore stop is basically invarinat under different test sizes.
SUMMARY AND CONCLUDING REMARKS

Adaptive optimal stopping rules for software testing are derived based on the cost
of testing and the penalty.of the future damage that the bugs may induce. The rules are
given in (2.10) and (2.12) depending on whether the recapture or standard .debugging

procedures are used. A few additional observations from the study are listed below.

1) As stated in Remark 1 in C, §1, D3 and D4 are equivalent when the \'s are
equal. In this case, (2.8) is equivalent to (2.1) in Rasmussen and Starr[l14). We also
repeated the simulation for the cases they considered. Qur results confirm their results.
However, their T,=1.0, designed for biol-ogical research, is unrealistic for software

testing.

—12—

2) In the present study, the testing size N is assumed to be the same in all the
testing stages. An interesting question would be what happens if-we vary N; One thing
we noticed is that the proof of the optimality of (2.8) is no longer valid. It seems to be

a significant contribution if the tester can choose the optimal sample size at each stage.

3) From the derivation of (2.8), we can extend the result to a more general cost
function i.e., let the cost for doing x tests be f(x). Then if Af(x)=f(x+1) — {(x) is a
nondecreasing function, then Theorem 3.3 of [5] holds and the optimal stopping rule

becomes to stop

at the first n > 1 such that i Ai[i-(l-Ai)N] I(X;(n)=0) < [[((n+1)N) ~f(nN)}/ec.

1=1

The assumption of Af(x) being nondecreasing is reasonable when delay in releasing the

g

soltware is considered as a cost.

APPENDIX (FORMULAE FOR EXISTING STOPPING RULES LISTED IN TABLE 1)

In order to be more compatible with the forinulae in the original papers, some
of the notations may not be consistent with the notation defined in the text. But we try

to keep them as clear as possible.

I

(T.1) Let T; = time that the ith bug is discovered, m; = total number of bugs

discovered at time {, and A,= max failure rate acceptable. Stop testing at the first t

when

Ig:t e—t/Ti [l;f c‘t/Ti l
———e— + . 12 < Ay
i=1 Ti(l—e-t/ Ti) « i=1 Tiz(l-e-t/ Ti)z ¢

where 7, is a probability tail constant adapted for sequential testing at significance

level a. The author suggests to use 7, = 3 for a = 0.05.

—13—

(T.2). [14]: Stop at the first n > 10 such that

¢y (# of singletons)/(# of cases tested) < c;. (T.2)

Sample size at each testing period is N=1. [2] extends the results to general N, but

without giving any useful stopping rule. They also obtained another variation of (T.2).

(T.3). ' N = # of program population size, c;, ¢;, M = Same definition as'those in
the text, E = # of initial errors, p = E/N.

One time test: Test t, programs, where

to = [énc, - &ncyp + €nén(1-p)}/En(l1-p).

Sequential test: Solve £ in the equation:
¢y (N+t)? + ¢;E(1-p)*M[(N+t)én(1-p) -1] = 0.
’s ’ mt
(T-4)- Let Ti, mt be defined by (T.l), ti = Ti - Ti -1 T= i; ti,

m

k= E (i-1);, é= my/(Tm - k). Let r be the solution that maximizes
i=1

L(m) = ¢n (m-i+1)e ~(m- n+1)¢t

If t>>my, continue sampling, or else compare (graphically as a function of m},

mt
R/(m) = L (m'iii) exp (-(m- m)qSt) and

Ry(m) = exp(-3(rr - m)*/o?), where

y E (ml+1)2 (i lm-H-lL):l

—14—

If R,(m) and Ry(m) are close, stop, or else take more samples.
Remark: i1 is the m.L.e. of m. Intuitively, if m; = m, we got all the bugs. Stop.
(T.5). Start with j=1. When the j distinct errors are detected, compute

k; = [log o/log G/(1+3))] + L.

Continue sampling until kj old bugs are found before any new bugs appear. (Dl

decision rule with m, = 0)
(T.6). Extension of [13] to the case when several types of bugs are allowed. The

decision rule is based on D1 with given a and m_ = 0. However, only rules for no rore

than two types of bugs are studied in detail.

—15—

Affiliations of authors: M. C. K. Yang is with with the Department of Statistics,
University of Florida, Gainesville, Florida 32611. »

A. Chao is with the Institute of Statistics, National Tsin-Hua University, Hsin-Chu
Taiwan, R.O.C. 30043 |

REF ERENCES
[1] A. A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood, “Evaluation of competing

software reliability prediction,” IEEE Trans. Sofiware Eng., vol. SE-12;no.- 9, pp.
950-966, Sept. 1986.

[2] P. K. Banerjee and B. K. Sinha, “Optimal and adaptive strategies in discovering
new species,” Sequential Analysis, Vol. 4, pp. 111-122, 1985.

[3] D. B. Brown, S. Maghsoodloo, and W. H. Deason, “A cost model for determining
the optimal number of software testing cases,” IEEE Trans. Soflware Eng., Vol.
Se-15, no. 2, pp. 218-221, Feb. 1989.

[4] A. Chao, “On estimating the discovering of a new species,” Annals of Stalistics,
Yol. 9, pp. 1339-1342, 1981, Correction, 10, p. 1331, 1982.

(5] Y. S. Chow, H. Robbins, and D. Siegmund, Great Ezpectation: The theory of
opiimai stopping, Houghton Miffon Co., 1971.

[6] E. H. Forman and N, D. Singpurwalla, “An empirical stopping rule for debugging
and testing computer software,” J. Am. Slal. Assoc., Vol. 72, pp. 750-757, Dec.
1977.

[A. L. Goel and K. Okumoto,/ “Time-dependent errocr-detection rate model for

? software reliability and other performance resources,” IEEE Trans. Rel, Vol. R~

—16—

[8}

[9)

[10]

[11]

[12]

{13]

{14]

{15]

[16]

33, pp. 176-183, 1984. °

I. B. J. Goudie, “A likelihood-based stopping rule for recapture debugging,”
Biometrika, Vol. 77, 1, pp. 203-206, 1990.

N. Langberg and N. D. Singpurwalla, “A unification of some software reliability
models,” SIAM J. Sci. Stat. Comput., Vol. 6, no. 3, pp. 781-790, July 1985,

B. Littlewood, “Stochastic reliability growth: a model for fault-removal in
computer programs and hardware designs,” IEEE Trans. Rel.,, Vol. R-30, pp. 313-
320, Oct. 1981.

B. Littlewood and J.L. Verrall, “A Bayesian reliability growth model for computer
software,” J. Roy. Stalist. Soc. C, Vol. 22, pp. 332-346, 1973.

G. J. Myers, Composile/Struclure Design. New York: Van Nostrand Reinhold,
1978.

T. K. Nayak, “Estimating population size by recapture sampling,” Biomeltrike,
Vol. 75, no. 1, pp. 113-20, 1988.

S. L. R,asn:;u_ssen and N, Starr-, “Optimal and adaptive stopping in the searching
for new species,” J. Am. Stal. Assoc., Vol. 74, pp. 661-667, Sept. 1979.

D. J. Richardson and L. A. Clarke, “Partition analysis: A method combining
testing and verification,” IEEE Trans. Software Eng., Vol. SE-11, No. 12, pp.
1477-1489, Dec. 1985.)

S. M. Ross, “Software reliability: The stopping rule problem,” IEEE Trans.
Software Eng., Vol. SE-11, No. 12, pp. 1472-1476, Dec. 1985.

—i7-—

[17] N. Starr, “Linear estimation of the probability of discovering a new species,”

Annals of Stalistics, Vol. 7, no. 3, pp. 644-652, 1979.

Acknowledgment: This work was done when the first author was with the Institute of
Information Science, Academia Sinica, Taipei, Taiwan, under a grant from the

National Science Council of the Republic of China.

. —18—

TABLE I
SOME EXISTING STOPPING RULES AND RELEASE ERROR,
ESTIMATION IN SOFTWARE TESTING

Reference # Assumptions Testing Procedure Decision Criterion FEstimation

(stopping) Procedure

[16] Al T2 D2 (T.1) *
14}, 2] Al T2 | D3 (T.2)*
[3] A2 (EFR) Tland T2 -D3 or D4 (T.3a), (T.3b)*
[6] A2 (EFR) T2 D1 (T.4)*
[13] A2 (EFR) T2 D1 ' (T.5)*
8] A2 (general) T2 D1 (T.6)*

* All the formulae are given in APPENDIX

—19—

TABLE II (a) (FOR RAPIDLY DECREASING A}’
SIMULATION RESULTS ON THE COST INCREASES BY THE TWO ADAPTIVE METHOD
(UNIT OF COST = 10%) AND THE AVERAGE STOP TIME (IN PARENTHESES)

1,
0.1 0.05 0.01
OPTIMAL 1.93 (8.45) 1.93 (8.45) 2.00 (11.5)
N=100 (2.10) 3.53 (7.93) 3.53 (7.93) 3.24 (7.79)
(2.12) 2.85 (11.7) 2.85 (11.6) 2.88 (10.5)
OPTIMAL 1.94 (2.88) 1.93 (2.84) 1.85 (3.18)
N=300 (2.10) 2.77 (3.38) 2.80 (3.27) 2.74 (3.15)
(2.12) 2.65 (4.14) 2.62 (4.32) 2.44 (4.05)
OPTIMAL 2.05 (1.94) 2.05 (1.94) 2.06 (2.46)
N=500 (2.10) 2.56 (2.69) 2.56 (2.69) 2.70 (2.70)
(2.12) - 2.60 (2.84) 2.60 (2.84) 2.66 (2.73)

~20—

TABLE II (b) (FOR MODERATELY DECREASING), ZIPF’S LAW)

OPTIMAL
N=1090 (2.10)
(2.12)

OPTIMAL
N=300 (2.10)
(2.12)

OPTIMAL
N=500 (2.10)
(2.12)

T,

0.1 0.05 0.01
8.90 (58.7) 10.4 (55.3) 6.98 (16.3)
9.65 (60.5) 12.9 (47.2) 8.08 (8.49)
9.57 (48.8) 10.8 (44.0) 7.42 (21.4)
9.00 (19.4) 10.4 (18.27) 6.90 (5.58)
9.26 (20.7) 11.1 (17.73) 8.00 (3.98)
9.30 (16.7) 10.7 (15.26) 7.33 (8.26)
9.07 (11.8) 10.4 (11.1) 7.06 (3.65)
9.36 (12.6) 111 (11.1) 7.66 (3.32)
9.4 (10.5) 10.7 (9.56) 7.56 (5.01)

—921—

TABLE 1i{c) (CONSTANT))

=100

N=300

N=500

OPTIMAL
(2.10)
(2.12)

OPTIMAL
(2.10)
(2.12)

OPTIMAL
(2.10)
(2.12)

I
0.1 0.05 0.01
5.23 (43.1) 8.16 (62.2) 10.0 (1.00)
5.67 (46.0) 11.7 (58.8) 10.0 (5.54)
5.61 (50.1) 8.82 (53.7) 10.4 {28.9)
4.98 (13.9) 7.99 (20.4) 10.0 (1.00)
5.43 (15.7) 8.92 {21.8) 10.6 (2.52)
5.46 (17.0) 8.45 (18.8) 10.4 (10.4)
5.18 (8.88) 8.14 (12.8) 10.0 (1.00)
5.66 (9.62) 8.4 (13.5) 10.2 (3.03)
5.83 (10.6) 8.46 (11.6) 10.5 (6.54)

—92-.

TABLE II(d) (RANDOM 1)

Ty
0.1 0.05 0.01
OPTIMAL 6.51 (46.9) 8.49 (57.5) 9.66 (19.1)
N=100 (2.10) 6.92 (46.8) 10.8 (53.5) 9.86 (6.11)
(2.12) 6.93 (47.8) 9.09 (49.5) 9.77 (27.9)
OPTIMAL 6.56 (15.7) -~ 8.46 (19.2) 9.65 (6.41)
N=300 (2.10) 6.94 (16.0) 9.08 (19.3) 9.81 (2.64)
(2.12) 6.98 (16.3) 8.96 (17.2) 9.80 (10.0)
OPTIMAL 6.52 (9.18) 8.41 (11.3) 9.61 (3.79)
N=500 (2.10) 6.80 (9.83) 8.72 (12.1) 9.73 (3.46)
(2.12) 6.84 (10.1) 8.67 (10.7) 9.83 (6.54)
—923—

