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ABSTRACT - Due to the lack of a satisfactory description for the human visual system, high
compression is very difficult to reach using the traditional optimization procedure. A DCT data
compression system with human interaction is proposed. Human quality judgement is embedded into
an optimization problem on weighted least mean squares. Codebook construction connected to this
method is also discussed. This system should be useful in photograph, fingerprint, and road map

storage and retrieval when the processing time in the compression stage is not restricted too much .
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1. INTRODUCTION

Image compression by the discrete cosine transform (DCT) has recently received considerable
attention. The main idea of DCT image compression is o divide an image into maay equal sized
square blocks, take a DCT on each block, and compress the block by reducing or eliminating some of
the DCT coefficients. More specifically, in any given block(, let the grey level of the (i, j}th pixel be x(i,
i) 1, 3=0, 1, ..., n-1. Then the DCT of this block is defined by

F(u, v) = 4‘:(11)(:(\')1{:‘1 nzlx(l,_])cw(zl-l-l)uw‘, n(2j.;[11)vﬂ-’ : 0
- 1—0 )=0

for u, v=0,1,..., n-1, where

1 /\IT if y=0
C(Y)={

1 elsewhere.

The F(u, v)’s are referred to as the DCT coefficients or the AC components except for F(0, 0), which is
called the DC component. The squares F2(u, v) are called the DC or AC energy depending on whether
{u, v)=(0, 0) or {u, v) # (0, 0). The inverse transform exists and it can be shown to be
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n-1 n-1
XG5 =) Y e()e(v)F(n, vieostop oo BIHUVT )

u=0{ v=0

fori, j=10, 1, ..., n-1.

From practical experience, it has been found that most of the AC energy is concentrated on the
upper right corner in the u, v=0, 1, ..., n-1 square. Thus, storing (or transmitting) a few upper right
corner F(u, v)’s is enough to recover the original image with little distortion. There -are two basic
methods in determining. the way of compressing F(u, v), namely, the codebook method[l] and the
zigzag scanning method{2-3]. Since the codebook method is related to vector quantization (VQ}, it
should have a better chance to reach high compression when the codebook is well constructed and used.
Hence the codebook method is the mz.i.in c*l:mcem of this paper, though the zigzag scanning method is

also used for the purpose of comparison.

A codebook consists of many bit assignment maps. A suitable bit-map is chosen for each block.
Table 1 provides the first 9 maps of a codebook with 32 maps. For example, if map 1 is selected, only
8 bits are used to store the DC compoﬁent of that block. All the AC components are ignored and they
are assumed to be 0 when inverse DCT is used to recover the block. On the other hand, if map 2 is
selected, 8 bits are used for F(0, 0}, 2 bits for F(0,1) and F(1, 0), 1 bit for F(0, 2) and F(1, 1), and all
the rest components are ignored. Similar maps can be found in Jain{4], Chen and Smith[1], Wu and
Burge[5], and Mitchell and Tabatabail6]. The methods of map construction include energy
distribution[1] and pattern recognition[5]. The numbers of maps in the cited papers are small. If high
compression is the main purpose, then the map number has to be increased. This is one of the main
problems in the codebook method. Heuristic methods for VQ such as those suggested by Linde, et
al.[7], Equitz{8], and Hang and Haskel{§] are available for codebook building: A new method of

codebook construction and updating is discussed in this paper.

Once a bit-map codebook has been constructed, one map has to be assigned for each block to
compress or store it in an optimal way. This again is not an easy matter when the number of maps is
large. Usually, only the nearly optimal solution can be found (see Shoham and Gersho[10]). Let S
represent the set of all the maps in the codebook and the maps be ordered as 1, 2, ..., T, with b(t)
denoting the number of bits required to use bit-map t. Without loss of generality, we lei
b(1) < b(2) <... < b(T). If the blocks are numerically ordered as 1, 2, ..., M, then an optimal allocation
is to find a bit-map t) for block k such that the total discrepancy

M
k=1




is minimized subject the channel capacity constraint

M
kz:l b(ty) = B, (4)

where dy (t,) denotes the discrepancy of using map t) to compress block k and B is the total number
bits available for image storage or compression. Due fo mathematical simplicity, .the discrepancy

function d(-) in (3) is usually the mean square error(MSE) defined as

n-1 n-1
E{, 20 (F(u,v) -F(u, v; £))2, (5)
u= Y=

where F(u, v; t) is the stored value for F(u, v) when given map t is assigned for compression.
However, some empirical studies have shown that the MSE criterion does not always agree with the
human visual quality assessment. Nill[11] has summarized some previous results and used the following

weight function to imitate human vision, i.e., (5) is modified as

n-1 n-1
20 ;]H(u, V)(F(u.v) F(u, v; ), (6)
where

B(u, v) =(0.240.45)¢° 0187, r=fu2 4 v2.

We will call H(u, v) the local human vision compensation function for the obvious reason that (6)
works only within a block while sometimes the discrepancy between (5) and human vision happens at a
global level. For éxample, in a human photograph, the blocks that contain important features such as
eyes, wrinkles, or scars, are more important than those that contain hair, ears, or the background. The
central right position of Figure 6 in Wang and Goldberg{12] provides an illustration. Even at the low
compression rate of 13.5:1, the right eye of the subject is distorted. But all the rest of the face including

the left eye is of perfect quality. A global weight function is apparently necessary. Thus, an ideal form
of (3) would be

M .
D = 1;_:1 Wy - Ey(ty), with _ (N
n-1 n-l
Ey () = EO ZOH(u, VI(Fy(uv) -Fy(n, v; )%
u=0 v=
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where W is the weight function, Fk(u, v) is the DCT component, and f‘k(u, v; tk)) is the compressed
component by bit-map t) for block k. To determine this weight function by computer alone seems
impossible at the present state of the art. Thus, in the proposed system human interaction is used to
determine the weights. Though the human interaction part is simple, it is too slow for real-time data
compression such as television or a teleconference. However, for non-real-time image compression such
as land and sea scapes, maps, paintings, and photos, this method should be useful. In particular, when
large number of photos are to be stored for security identification, processing time can be.more relaxed
at the agency that collects, inspects, and stores them. Only at the moment when a police or a customs
station needs a quick retrieval of those pictures, time for transmission and de-compression becomes a
major constraint. Thus, we ask for high compression ratio, but allow more time in the compression

process. Similar situations occur in fingerprint and road map storage.
II. METHODS AND RESULTS
A) Map Allocation

Let a codebook be given. Then one of the most efficient methods in solving (7) and (4) is the
generalized Lagrange multiplier method proposed by Everett[13] and adapted to bit allocation in [10].
The idea is that (7) and (4) can be solved in an individual block by trying to find a real number A and
a map, say t}eS, for block k such that

Wi Ep (4F) + A b(tP)= Tems { W+ E () + Ab(t)}, (8)
with | -
M
B~B(A)= ) b(t}).
k=1

Then the following theorem can be shown.

Theorem 1. ( Generalized Lagrange multiplier method, Theorem 1 in [10]) The {tf} defined in (8) is
the optimal solution for (7) and (4) if B happens to be equal to B(A) for some .

Unfortunately, in most cases it is not possible to find such a A. Let the optimal MSE for this A be
denoted by




M :
D(X) =kzl Wy - E (tf). (9)

If for any two X’s, say, A;<Aq, such that B(A;)<B<B{2y), then the optimal value of D for the total bit
constraint B is bounded by D(A;) and D(Ay). Thus, if the gap between D(};) and D(y) is not too

large, then using the solution for A; is not too far from the optimal solution, i.e., to replace B by the

less bit contraint B(A;) and accept the MSE D(}). Though some improvements are still possible, the
optimality cannot be guaranteed. A procedure of finding the smallest gap between B(};) and B(Az), or
equivalently the smallest gap between D(A) and D(}g), is described in [10). However, due to the
necessity of repeated computation of (7) and (4) during the weight modification process to be described
in this paper, it is easier if we first iden(';ify a subset set of S for the solutions ti independent of W) in
each block.

Define the backward slope

' _ E (t) — E(t")
A 5 28 T b — () (10)

and the forward slope

E (t) — E(t)

¢ (t) = min s 11
K )t<t’5T b(t’) — b(t) (D
n-1 n-1
with the convention E[(0) = E }:FQ(u, v), B1(0)=— oo and ¢|.(T)=0. Then the
. u=0 v=0

feasible set for block k is defined as: -

14

n .
T, = {teS | By(t) < $.(0)} = {tf, % - - -, 6K}, with the order

b(th) < b(t]) < - - - < b(tK).

The following lemma combines § and ¢.

Lemma 1. In the feasible set ¥,

. . 41y i
ot = peftly = E0KD — EE) (12)

b(tlF) — b(t)




- A proof of this lemma as well as all the other proofs in this section are given in Appendix A. Thus, we

may choose one set of slopes to represent 8 and ¢. Let us choose the 8’s and define
’ n
B,= (B AR -1 B},
The generalized Lagrange multiplier method is now equivalent to the following theorem.

Theorem 2. Any solution {t{} of the generalized Lagrange multiplier method (in S) must satisfy t§ €
¥, for all k. Moreover, the solution for A (A<0) can be identified as the map tr]( ¢ ¥} satisfying

Bth) <x< Bt (13)
Also, from the proof, it is obvious that Wy, can be embedded into A, or:
Corollary. The feasible sets are independent of { Wy} in (7).

Because the s in !Bk are monotonically increasing, the solution is very easy to find for any given A.
Actually, the » <™ signs in (13) are for the convenience of theorem proving. If in any time the equal
sign holds, we should take the equal sign, i.e., (13) becomes )\:Bk(tﬁ). However, for most ), (13) is
with two strict inequalities, ﬁk(t:L) <A< ﬁk(tij'l). Also, finding the bounds A; and A, which minimize
the gap

Ap=B(9) —B(}), B(A) <B<B(Ay), (14)

is also easy using ‘the feasible sets. Let

M
!B=kU B = {<hy< ... <P} (15)
=1

Since there are no maps that can produce a slope in a feasible set to fill into the gap between any two

adjacent ’s in B, we have:

Lemma 2. For any Ae[f;, ﬁj +1)’ (Bj, ﬁj _I_le!B ), the generalized Lagrange multiplier solutions are the

same.

The consequence of this lemma is that there is no need to check all the A’s. Only the values in B
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need to be evaluated. Hence, the minimum gap in (14) can be easily found by the methed of bisection
with at most Iogzm steps. Since only simple.comparisons are necessary in finding the solution in
Theorem 1, the bisection procedure is extremely fast. It can also be seen from this lemma that the
chance of finding a A such that B()) equals a given B is very small. Thus, a good codebook should
always have small gaps Ap in a target range of B. This concept will be.used later in codebook

construction.

Some improvement is possible by utilizing the leftover bits Ap in (14). The improvement is to
replace some maps in the feasible set by the maps in S. A simple way to do this is to find a particular

block map combination ( k*, t¥) which minimizes

W[ E (t) — By (tf )]

a(k,t) = b ~ () ) ' (15)

for all k=lL..,M, and all t&S with 0< by{t)~ bk(tﬁ) <6g=B—B(A)). Since
{teS [ 0<by (8) —bk(tf{) < 6p} is usually a small set, finding ( k¥, t¥) is again easy. If o k¥, t¥)<0,
then tt should be replaced by t*. It is easy to see that the new map allocation has total number bits
B; =B +bk*(t*) ~b(tf+) < B with MSE

D(A;) + Wk*[ Ek*(t*) - Ek*(t]’:* N < D(}y)-

The procedure can be repeated with the new ép=B—B; until ol k% tH>0 or
{teS|0<by(t) - bk(ti‘;) < g} becomes empty for all k. -

B) Global Weight Determination -

To determine W) in (7), first let all the weights be 1. Using various X's and the optimal map
assignment scheme (13) and (15) in (A), many compressed images can be constructed. The range of A
should be large enough that some high quality images are generated. Choose the A, say A,, such that
the total number of bits B(),) is close to B as a base for block quality comparisons. If any block in
this image is not satisfactory, search for the smallest A (A<),), say Ay, that gives a satisfactory
compressed image for this block. Assign A,/A; as the weight to this block. Similarly, for-an

- unimportant block, search for the smallest A> A, that can still produce a satisfactory compressed block.
Let the weight of this block again be Ay/A;. A new compressed image based on the newly assigned
weights can then be constructed by (13) and (15) with the §’s adjusted by the new weights. It can be

easily seen that this method should produce an acceptable image if the number of changes is not large.
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If the number of changes is large, more iterative steps need to be taken. The new weight in the next
round is W=W' -(/\2,/,\1), where the primes denote the weight and A in the previous iteration. The
process stops when the image is satisfactory. Of course, there is a possibility that the image can never
be satisfactory due to the lack of enough bits. Then a compromise has to be reached based on the

relative importance of the blocks.
C) Codebook Construction

As mentioned in the introduction, there are cluster algorithms for codebook construction using
Jarge training samples. Also, a codebook can be constructed by intuitive study of the image [5], or by
the DCT patterns from simulated figures such as Figure 1 which emphasizes the boundaries. In this
paper, only map growth and elimination based on the gap criterion described in (A) is- discussed.
Suppose a initial codebook has been constructed. Then in the next training set, a map is eliminated if
it is not selected often enough. Thus, a map can be retained in the updated codebook only when it is
selected in feasible sets and is used often. The rate of elimination is somewhat subjective, depending on

the number of maps. We used 1/4 of the total maps.

Eliminated maps are replenished by maps interpolated between large gaps in (13). More precisely,
suppose Ap=b(t) — b(t') for two maps t and ¢’ in 8. If t and t’ happen to be two adjacent maps (t<t")
in a feasible set of a block, say block k, then the slope §=p(t) is in B and for any Ae[B, B') will
produce a gap AB, where B’ is the element next to 8 in B. For two maps i and j (i<j) in S, define

M
w3)=[1 G~ o0,

. 1 if i ad j are adjacent in o,
Uy )={
0

elsewhere.

A new map is interpolated between maps i and j according the order of w(i, j). The priority are
assigned from the highest values of w(ij) to the lower. The method of interpolation is given in

Appendix B.

An important point, that seems to have not been mentioned in the literature, is that a good
codebook depends not only on the DCT patterns of the training sample but also on the compression
rate. Thus, the target range of the compression rate B (or equivalently X) needs to be given in
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codebook construction.
3. EXPERIMENTAL RESULTS

E{ght human face pictures are used to test the interactive system. Each picture occupies 240xﬁ56
pixels with 8 bpp gray levels. Table 2 gives some examples of existing human face compression.
Though the quality assessment is highly subjective and the compression ratio depends on the
background, it is fair to say that a compression ratio (CR) of 40 : 1 is difficuit to reach by the existing

methods. Thus, our compression goal is set around 40 : 1.

The block size for DCT is chosen as 16x16 and the Laplacian distribution is used for quantization,
except the DC coefficient which is transmitted by 8 bits to reduce blocking effect. ‘The codebock library
is built by examining the all the DCT transforms of the 960 blocks from 4 pictures and the boundary
samples in Figure 1 (a), where 15 boundaries are shown in each row with different gray levels of
contrasts. The contrasts become more and more eminent from the left to the right. Figure 1 (b) gives
the DCT for each of the 16x16 blocks. Note that sorme of the boundaries such as the one in the last
several rows produce DCT with a long tail in the diagonal. We choose 32 maps for the codebook
library. Due to the large volume, only the first 9 are shown in- Table 1. Note that most of bits are
allocated in the upper left corner similar to those found in many previous experiments [1, 5, 6]. Some
of the elongated ones are observed from the boundary samples. Fig. 1 (c) and (d) are, respectively, the
compressed Fig. 1 (a) by the codebook method and the zigzag method (see Appendix C for detail),
both with CR=26. It can be seen that the quality of (c) is better, especially for rows 2, 3, 5, 8, 9, and
14, where the zigzag method becomes unacceptable at a much higher boundary contrast than the
codebook method. For example, in row 2, column 6 is acceptable in (c), but not acceptable until
column 9 in (d). The zigzag scanning cannot handle some boundaries efficiently because their DCT’s do

not follow well with the zigzag route.

After the initial maps have been constructed, maps are dropped and added according to the
scheme discussed in §2.C by using 3 other pictures as training samples. The compression rate was set
between 30 —50 : 1 which corresponds to A from -1 to -4. There was a considerable shift from the maps
with a large number of bits to those with smaller numbers in the first training picture.. The .map

patterns were basically stabilized when the next two pictures were used for codebook modification. The

last of the eight pictures is used for compression which will be described later and shown in Figures 3
and 4.




—

In our interactive system, a typical compression output for a single given A is given in Figure 2. It
includes the original picture (a), the compressed picture (b), the blockwise DCT (c), and its block
divisiqns {d). Also, with the output are the compression ratio, MSE, and the bit classification maps for
all the blocks. In this particular picture, A=6.0 and CR = 72.9, which is computed by the ratio of
8x15x16% and the B in the classification map plus the bits to transmit the map number, i.e., logy32=>5
per block. It is apparent that this picture is compressed too much. Blocking effects and blurring are

visible everywhere.

Fig. 3 is another codebook compressed picture, where (a) is the original, (b) and (c) are
compressed images with 1=4.0, CR=48.0 and A=3.0, CR=41.8, respectively, while (d) is a modified
picture with CR=48.0 by our human interaction system. These pictures, like those compressed pictures
with a similar CR in the literature [eg., 5, 14, 15, 16], require careful scrutiny to tell the quality
differences. Here, picture (d) is better than (b) in the clarity at the eyes, lips, and teeth. Fig. 4 gives
some comparisons with the zigzag compressed pictures. In this figure, the diagonal pictures (a) and (d)
are the same as those in Fig. 3, while (b) has T=D=2 with CR=31.3, and {c} T=D=3 with CR=45.0.
The blocking effects in both (b} and (c) are apparent.

4. CONCLUSION

In this paper, we presented an image compression system where human visual preference is
mingled into the compression process by human intervention. Though it suffers from slowness, it can

be useful in many application areas such as photo and map storage and retrieval.
APPENDICES

A) Proofs for §2.A

A.l. Proof of Lemma 1.

We prove this lemma by geometry. Since all the E’s are within one block, the subscripts k are

dropped. Also, t; is replaced by t to simplified the notation.

Suppose te¥). Then there exist a t/ >t and a t” < t (see Figure 5), such that

E(t") — E(t)

¢(t) = DGECk (A.1)
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and

E(t) — B(t")

ﬁ(t’) - b(t) - b(t") "

(A.2)
We will show that t’e‘I’k and adjacent to t. We first show that S(t') = ¢(t).

Suppose A(t') # ¢(t). Then by the definition of 3, B(t") > ¢(t). Then there must be a point
(b(t"""), E(t""")) on line the L2 below line BC(L1) such that

_ E(t’) - E(tlﬂ)

P =5y sy

This violates the definition of (A.1) if b(t"/)e(b(t), b(t')), and violates (A.2) if b(t"") € (—oo0,
b(t)). Thus B(t') = 4(t). To show t'e¥,, suppose not. Then there must exist a (b(t"’), E(t"’)) below
L, with t"/¢(t', 00). This violates ¢(t) defined in (A.1). Thus t'e¥,.

Suppose t' is not adjacent to t. Then there exists a point D or D' in Figure 5 with its map
t/"e¥,. This is impossible because if it is at D, (A.1) is violated, or if at D/, then t' cannot be-in ¥},
because the § based on D is larger than the ¢ based on D. Thus, (12) is proved.

A.2. Proof of Theorem 2.

Since W) and E, (t) are always together, we drop Wy_in the proof. Let t, denote the solution for
the generalized Lagrange multiplier method by (8). Then

Ey(ty) + Ay < Ep(t) + A,

for all t #£ ber i.e.,

E (1) — Ep(y)
t— t'k

v

— A, for all £>t,

and

Ep(t) — Ey(t))
t— f.k

IA

— A, for all b<ty .
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This is equivalent to

By(b) £ =2 <4 (ty)
By the definition of ¥, t €¥;. Then by Lemma 1, (13) is proven.
B) Map ‘Interpolation

The method of adding a map between two maps again follows the idea of Lagrange multipliers. If
the map index t were a continuous variable, then the Lagrange multipliers solution for (3) and (4)
would be

ad, (t)/ot _
fk() = ag{(t)/at " i (A'3)

for all k=1, ..., M, while } is determined by (4). Note that the solution for (A.3) may not be unique if
the derivatives { fi } are not monotonic functions. Many local minimums may be reached from (A.3).
In order for { ii( } to be monotonic, the second derivatives of the fy need to always have the same sign.
We will show that a convex combination of two maps can satisfy this requirement under -an-ideal
condition. It is well known from quantization error curves(e.g., Max[17]), that the relation between
MSE and the number of bits used to represent it is approximately MSE & ¢~ VIS, Let the two maps
" be interpolated to be t; and tg and the number of bits used by them for compression for the coefficient

at (u, v) be t4(u, v) and t5(a, v), respectively. A convex combination t, of t; and ty uses
talu, v) = aty(u, v) +(1 — a)tg(u,"v)

bits to compress F(u, v). Then the MSE for table t, is approximately

n-1 n-1 (u, V)
Ep(ta)=KY ZF(U vje " talth V) (A.4)
u=0 v=0
where K is the proportional constant. It can be easily shown that 82Ek(ta)/8a2 >0. Actually, if
ﬁ(t1)=6Ek(O)/6a and ¢(t2)=6Ek(1)/6a, then all the newly created maps are in the feasible set ¥ if
(A.4) is exact. Unfortunately, (A.4) is only an approximation, especially when t,(u, v) has to be made

as an integer.

C) ZIGZAG SCANNING
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The zigzag scanning method follows the notation of [3], except we select the threshold value T
equal to the feedback normalization factor D. The reason is that if we let x=0 if |x/D| < 1, then it is
equivalent to letting x=0 if |x| =T < 0 when T=D. The Huffman code table for amplitudes and
consecutive zeros are adapted from [3]. By changing T (or equivalently D), pictures under different

compression rates can be obtained.
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The number in the parentheses are the total number of bits for the map

Map 1 (8)

Map 4 (34)

83221
3321
221
21

1

Map 7 (41)

34
53
42
41

Map 2 (14)

821
21

Map 5 (38)

84432
442
32

2

Map 8 (51)

85443
544
44

3

3

TABLE 1. First 9 tables for a codebook of 32 maps

Map 3 (20)

8§32
32
2

Map 6 (39)

854321
4321
321

Map 9 (57)

85442
5433
433
43

2



TABLE 2. Examples of compression ratios by DCT

in monochrome images

Reference Contents CR Quality
[18] Face 8:1 good
[12] Face(Fié. 6-2) 40:1 unacceptable
[12] Face(Fig. 6-3) 27:1 Barely acceptable
[12] Face(Fig. 6-4) 16:1 Acceptable
[15] Face 15-24:1 good
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Legends
Fig. 1. Experiments on boundary compression by DCT. (a) upper left: original , (b) lower left: DCT for all
the blocks, {c) upper right: compression by codebook method, CR=26, (d) lower right: Compression by

zigzag method, CR=26.

Fig. 2. Outputs for the interactive system. The alphabetic order is the same as Fig. 1. {a) the oﬁginal, (b)
the compressed picture, (c) the DCT of the picture, (d) the block boundaries.

Fig. 3. Comparisons of three codebook method compressed pictures. The (a)-(d) order same as Fig.1.7(a) ‘the
original, (b) A=4.0, CR=48.0, (c) A=3.0, CR=41.8, (d) by interactive system, CR=48.0.

Fig. 4. (a), (d) same as those in Fig. 3. (b) Zigzag method with T=D=2, CR=31.3, and (c) T=D=3,
CR=45.0.

Fig. 5. For the proofs of Lemma 1. Horizontal axis: bits for map t; Vertical axis: MSE by using map .
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