_PR-91-015

AN EXPERIMENTAL MODEL OF CHINESE
TEXTUAL DATABASE

i |

607

AN EXPERIMENTAL MODEL OF CHINESE
] TEXTUAL DATABASE

Shih-Shyeng Tseng
Computing Center, Academia Sinica, Taipei, Taiwan 11529, R.0O.C.
Chen-Chau Yang

Department of Electronic Engineering, National Taiwan Institute of Technology, Taipei, Taiwan 10772, R.0.C.
Ching-Chun Hsieh

Institute of Information Science, Academia Sinica, Taipei, Taiwan 11529, R.0.C.

Key Words: textual database, document model, odcument retrieval.

ABSTRACT

A textual database deals with retrieval and manipulation of documents.
It allows a user to search on-line complete documents or parts of documents
rather than attributes of documents. Resembling a formatted database which
uses a data model as its underlying structure, a textual database has to base
its development upon a document model. In this paper, a document model,
called the ECHO model, is proposed. The ECHO model provides a docu-
ment representation, called the ECHO structure, for expressing documents
and operations on the representation that serve to express queries and
manipulations on documents. It has the ability to provide multiple document
structures for a document, a flexible search unit for retrieving textual infor-
mation, and a subrange search on a textual database. In addition, the ECHO
structure is relatively easy to maintain. An architecture of a textual database
based on the ECHO model is also proposed. In order to improve the query
performance, a refined character inversion method, called ARCIM, is pro-
posed as the text-access method of the Chinese textual database. The AR-
CIM can retrieve texts faster than a simple inversion method and requires
less space overhead. '

WS A SO I & T BRI
RN
b RFFITBER

B T AR T TR R

i
b A AR B BT S T

*Correspondence addresses

R e T

608 Journal of the Chinese Institute of Engineers, Vol. 13, No. 6 (1990)

B =®

40Pk B R AR TE R BT OR - EAFHE A SR AR R
TS AR T R RSO B R o e A LA BB
S S PUEESHE » IR B BRI L SURELSURS 50 © ARICHT I —E
SRS (BB ECHO 82) Fi—fdLl ECHO #XFRARM 2 U AR
Ht - ECHO 482 A ORERE (1) ECHO KHE) MILUILHRIE R B
s S AT R SO A I TAE - ECHO AR RBL T
TR R BETNEREEGUEEANS S AR BNERT - M
4 ECHO S L BA S MER « BT MMM » FRERE—F
WM FARIE (BB ARCIM) HUS b 30 £ 301 4 B 1 R #
& o ARCIM HEEBNTFARTIESR » REEFRRBREEMRE -

INTRODUCTEON

Formatted databases and textual databases are two
important categories of databases. A formatted database
deals with retrieval and manipulation of formatted records
while a textual database with documents. The main dif-
ferences between the formatted records and the documents
are the data structure, the query language, and operational
requirements such as update frequency and size of
database [6]. A formatted database uses a data model as
its underlying structure. The three most important data
models are relational, hierarchical and network [24]. They
use similar ways to express the data. That is, the data of
a formatted database are grouped into several data sets
in which each one is associated with a record format con-
sisting of a number of attributes. Adopted from [4], a data
set has four important properties. First, there are no

duplicate data in the set. Second, data are unordered in -

the set. Third, attributes are unordered in the record for-
mat of the set. Fourth, all simple attribute values are
atomic. It will be mentioned in Section 2 that the proper-
ties of documents conflict with these properties. Hence
data models are not suitable for developing textual
databases.

A textual database allows a user to search online
complete documents or parts of documents rather than at-
tributes of documents as in a bibliographic system. The
documents may be articles, newspaper stories, legal
documents, dictionaries, books, etc. The parts of
documents may be entries; paragraphs, sections, etc. In
some publications dealing with text-access methods, e.g.,
[6,16], a document is considered as non-structured data
consisting of an arbitrary number of words. This argu-
ment is not valid. Documents are also structured data
though the structure is not similar to that of formatted
records. Actually, a document is a text associated with
one or more document structures [17,23]. Resembling a
formatted database which uses a data model as its underly-

ing structure, a textual database has to base its develop-
ment upon a document model. In general, a document
model consists of two components: a document represeqn-
tation of expressing documents and operations based upon
the representation that serve to express queries and
manipulations of documents. The document representa-
tion is defined as a data structure which represents the
constituents of documents, including texts and document
structures. From the viewpoint of formalization, a docu-
ment structure can be considered as a context structure
[23]). A document mode! based on this view, namely the
ECHO model, will be introduced in Section 4.

An architecture of a textual database based upon the
ECHO mode! is shown in Fig. 1. It consists of five
modules: a user interface, a query processor, a text
retrieval subsystem, an ECHO subsystem and a
maintenance subsystem. The major function of the user
interface is to accept and to recognize requests from users.
A user request may be a query expression or a
“maintenance command. When a query expression is given,
it must be passed to the query processor. If a maintenance
command is given, then it has to be passed to the
maintenance subsystem. By means of the text retrieval
subsystem and the ECHO subsystem, the contexts that
satisfy the query expression can be found by the query

-
u
5 G ———————— + e —— Femm +
e query text ECHO
r |{-——> {—==>{retrieval [{--->
pro¢essor subsysten subsystem
i frmm—————— + Fmmmmm———— + o ——— +
n
t
5] o +
r maintenznee{----- +
l' ________
a subsystem |[------------meommmos +
[o e —— +
I
Pp—
Fig. I. A proposed architccture for textual dutabase.

S.5. Tseng, C.C. Yang & C.C. Hsieh: An Experimental Model of Chinese Textual Database 609

processor. The query processing will be discussed in Sec-
tion 6. The text retrieval subsystem plays the role of im-
proving the retrieval performance. An ARCIM structure
which is provided as the underlying mechanism of the text
retrieval subsystem will be introduced in Section 5. The
ECHO subsystem is an ECHO structure which provides
a mechanism of storing documents and their context struc-
- tures. The ECHO subsystem also provides the search
operations on the ECHO structure. These operations will
be mentioned in Section 4.1. The maintenance subsystem
provides the necessary operations for maintaining the text
retrieval subsystem and the ECHO subsystem. The
maintenance operations on the ECHO structure and on
the ARCIM structure will be mentioned in Sections 4.3
and 5.2, respectively.

DOCUMENT STRUCTURES

Definition 1: Document. A docwment can be defin-
ed in two ways: in terms of the author’s thoughts and in
terms of its constituents. According to the former, adopted
from [17], a document is defined as a material reproduc-
tion of the author’s thoughts and its prime objective is
to transmit, communicate and store these thoughts as ac-
curately as possible, regardless of the medium used for
these thoughts. The later simply defines a document as
a text associated with one or more document structures.

- In Definition 1, the rext is defined as a
heterogeneous data string consisting of a sequence of text
components. The text-components may be symbols,
words, phrases, or sentences in natural or artificial
languages, figures, formulas, or tables. In addition, a rext
element is defined as a fext forming a meaningful unit of
a document, which may be the whole document or a part
of the document, €.g., a paragraph, a section or a chapter.
A text element which does not contain any subordinate
text elements is called a basic tex: element.

When an author writes a document, the text of the
document has to be organized into a logical structure in
order to reflect the conceptual skeleton of the author’s

thoughts. The logical structure is determined by the author

and is unique and unchangeable. In practice, the author

document (book)
/ \

/ \
chapter....chapter
FARR /

/N /A

-section section
/ /A
/ \ / \
subﬁec{ion e subsection
/ \ /A
. paragraph paragraph

Fig. 2. An example of logical structure.

docu?ent(hooki

o FOI.

! f
cover frontlpar‘t rearlpart

contents part
page |

Ao mm e m e e} ety e me e g

| | { | |
title preface table of chapter...chapter appendix index
page pages contents | : pages pages
pages 0-—+—-~i :
title noramal
page pages

Fig. 3. An example of layout structure. .
first organizes a number of text components to form a
basic text element, ¢.g., a paragraph. Then he organizes
a number of basic text elements to form a larger one, e.g.,
a section, and so on, until the document is formed. These
text elements form a hierarchical structure in which each
text element, except for a basic text element, is a com-
posite of subordinate text elements, as shown in Fig. 2.
The hierarchy of text elements of a document is referred
to as the logical structure of the document. The logical
structure is always presented in a human readable form,
namely layout structure. For a document, the layour struc-
ture reflects the formatting of the text and the logical struc-
ture of it in a representation medium such as paper or

screen. The layout structure, similar to the logical struc-

‘ture which is the hierarchy of text elements, is the hierar-

chy of layout elements. A layout element may be a page,
a set of pages, or a subordinate element of a page, e.g.,
a line; a block or a frame. In general, a page forms the
representation unit of the document contents. A number
of pages constitute a set which may be a chapter, a
preface, or a table of contents, etc., as shown in Fig. 3.
Definition 2: Context. Given a text, a context is
defined as follows:
(1) The whole text is a context.
(2) -If a context is partitioned into a series of nonoverlap-
ped but concatenated subtexts, then each subtext is a
context, ’
1t is clear that Definition 2 is recursive. In Defini-
tion 2, the whole text specified in (1) is referred to as the
root context or the level 1 context. The partitioning opera-
tion specified in (2) is referred to as hierarchical parti-
tioning. That is, a level i context may be partitioned into

" a series of level i+1 contexts. A context Y is said to be

contained in a context X, or reversely, the context X is
said to contain the context Y, if and only if the context
Y is directly or indirectly partitioned from the context X.
A leaf context is defined as one that doesn’t contain any
lower-level context. Because the number of text com-
ponents of a text is finite, it is trivial that the number of
levels from the root context to any leaf context is also
finite.

Theorem 1: Each context of a given text forms a
tree structure, called the context structure.
Proof: Adopted from the definition of a tree proposed in
[15], the proof is given as follows. The given text is the
level [context. Depending upon whether the level i con-

N SRR e——— |

610 Journal of the Chinese institute of Engineers, Vol. 13, No. 6 {1990)

text, i=1, is partitioned into a series of level i+1 con-
texts or not, there are two cases to be discussed.
Case 1: If the level i context is not partitioned, then it
forms a special tree structure having only the root.
Case 2: The level i context is partitioned into a series of
level i+ 1 contexts. The necessary condition for the level
i context to form: a tree structure is that each of the level
i+1 contexts contained in the level i context forms a tree
structure. In other words, the level i context is the root
of the tree structure and each of the level i+1 contexts
forms a subtree of the root. Thus the problem is to show
that each of these level i+ 1 contexts also forms a tree
structure, Each level i+ 1 context which is not partition-
ed, similar to the case 1, forms a special tree structure
with only a root. For each level i+ 1 context which is par-
titioned into a series of level i+2 contexts, let i+1 be
iand recursively apply case 2 until a leaf context is reach-
ed. It is clear that each level i context forms a tree struc-
ture. From both cases, the theorem is proved. n
It is obvious that each text element of a document
is hierarchically partitioned from the whole text of the
document, From Definition 2 and Theorem 1, it is easy
to show that each text element of the document is a con-
text and the logical structure of the document forms a con-
text structure. On the other hand, if a page is seen as a
basic layout element, then the layout structure of the docu-
ment is also a context structure. Thus from the viewpoint
of formalization, both the logical structure and the layout
structure are context structures. The differences among
text elements, layout elements and contexts are: the text
elements are relevant to the author’s thoughts, the layout
elements are relevant to the formatting of a document in
a representation medium, while the contexts-are irrele~

vant to both. Hence a text element or a layout element

has to be a context but a context may or may not be a
text element or a layout element.

Because the context structure of a document is really
a tree structure, it can be explicitly represented by a tree,
called a context tree. In a context tree, each node denotes
a context of the document. From Definition 2, Theorem
1, the relevant definitions of a tree mentioned in [15], and
the nature of a document, it is easy to find that a context
tree has the following properties:
Property 1: Given any two nodes X and Y of the context
tree, node Y is a descendant of node X, or reversely node
X is an ancestor of node Y, if and only if the context
denoted by node Y is contained in the context denoted
by node X.
Property 2: For any node of the context tree, the number
of its children cannot be prespecified by a constant. That
is, any context of a document contains a non-predictable
number of subordinate contexts.
Property 3: For any node of the context tree, the order
of its children is unchangeable. That is, the order of the
contexts of a document cannot be changed at all.
Property 4: If nodes Y. ..., Y,, are all children of node

X in the context tree, then the length of the context denoted
by node X is the sum of the lengths of the contexts denoted
by nodes Yy, ..., Y. In addition, for any context, its
length cannot be prespecified by a constant.

By comparing these properties to the properties of
formatted records, it is easy to conclude that the data

‘model is not suitable to develop the textual database.

Hence a textual database has to base its development upon
a document model rather than a data model. There are
some conventions used in this paper. First, the context
denoted by node X of the context tree is simply called
context X. Second, a context tree or a sub-context tree
is named by its root, i.e., context tree X means that it has
the root X. Third, the height (or depth) of a context tree
is referred to as the maximal number of levels of the tree
from the root to leaf nodes. Because a context structure
is denoted by a context tree, the height (or depth} of the
context tree is also referred as the height (or depth) of
the context structure. '

From Definition 1 and the above arguments, a docu-
ment can be represented in terms of its text and its con-
text structures. Two documents are said to be of the same
class if they have similar length of texts and similar depth
of context structures. A textual database is always com-
posed of documents of the same class. Consider two dif-
ferent classes of docments: short-shallow documents and
long-deep documents. A short-shallow document is short
in the iength of its text and shallow in the depth of its

context structure, such as an abstract or a letter. In a tex-

tual database consisting of short-shallow documents, e.g.,
the UMTI’s Dissertation Abstracts Ondisc system, an en-
tire document always serves as the search unit when
retrieving information from it. In contrast, a long-deep
document is long in the length of its text and deep in the

“depth of its context structure, such as a book. In a textual

database consisting of long-deep documents, e.g., the
Chinese History Documents Database [12], a whole docu-
ment is too large to serve as the search unit, Instead of
a whole docurnent, a paragraph, a section or a page is
suitable to serve as the search unit. The entire documents,

the paragraphs, the sections and the pages are the con-

texts of documents. Hence the contexts of documents are
able to serve as the search units when retrieving infor-
mation from a textual database. A hypothesis is then pro-
posed to conclude this section.

Hypothesis: A document can be completely
represented in terms of its text and its context structures.
The contexts of documents are able to serve as the search
units when retrieving information from a textual database.

DOCUMENT REPRESENTATION
A document rcpreschtation is either implicit or ex-

plicit. In an implicit representation, a context structure
is embedded in the text and is recognized by a program.

5.8. Tseng, C.C. Yang & C.C. Hsieh: An Experimental Model of Chinese Textual Database 611

That is, a set of context delimiters has to be inserted into
the text in order to identify each context. Every context
is then surrounded by a pair of beginning and ending
delimiters. A text scanner can then be used to find the
beginnings and the ends of contexts. A higher-level con-
text containing the current context or a lower-level con-
text contained in the current context can also be searched
by scanning the text forward and backward. The advan-
tages of an implicit representation are: the data structure
is simple, it requires only space overhead for context
delimiters, and it is relatively easy to maintain. However,
its disadvantage is that one has to retrieve contexts by
means of full text scanning. The time required for scann-
ing a context from the whole database is O(L), where L
denotes the length of the whole text. Even though a refined
string pattern matching method can improve the search
speed {1,2,14], fulll text scanning still consumes too much
time retrieving contexts. Hence it is not reasonable to
develop a large textual database using the implicit
representation. Recall from Section 2 that a context struc-
ture of a given text can be explicitly represented by a con-
text tree with each node of the tree denoting a context
of the context structure. Hence instead of inserting a set
of context delimiters into the text, an explicit representa-
tion uses an explicit context tree to reflect each context
structure of the text.

“ Definition 3: Explicit context tree. An explicit con-
text tree is a context tree which represents a context struc-
ture of a given text. In the explicit context tree, each node
uniquely denotes a context of thé context structure and
carries a local name and a vector consisting of a pair of
pointers (BP,EP). The pointers BP and EP péint to the
beginning and the end positions of the context denoted
by the node, respectively.

“In a context tree H, it is clear that for each node
X, there exists a unique search path from the root to node
X. The path name of node X is then defined as the list
consisting of the local names of the nodes along the search
path of node X. The number of nodes (or local names)
in a path name is referred to as the length of the path name.

Defintion 4: Explicit representation. The explicit
representation of the context structures of a text T is defin-
ed as a finite set, (T,Hy, ..., Hy), consisting of the text
T and k explicit context trees. '

A textual database is basically an instance of the
explicit representation, as shown in Fig. 4. In Fig. 4, the

FAN /\ FAN
/N /A /N
/ \ / A / \
/o oHe A\ /olls A PN (I A
/context \ /context \ feonbext \
tree for \ / tree for \ tree For \
logical \ / storage \ !/ layout \

/ structure N/ structure \ / structure A\
/ A4 /

Fig. 4. An example of explicit representation.

1
b1
5, T4 (TSOEQZQI

] Sk e b

|]
<5 eb ¢?
558} [55‘.‘!1749) {750,760) t?ﬁlIQZQ)

PP, bommmpmm— +

| |
¢l 2 cfll
(19,30) (31.-?54? {355, 3100 (7

[T -

<
1

-— e

.
|
d i di dé di d6 ot dét

{30,279 (40, 1440 (145, 354) (371, 385) (388, 568} (559, 508) {569, 749) (75‘11.7591 (770.920)

Fig. 5. An example of context tree.

textual database is simply represented as (T,Hc,Ht-,Hsj,
where T denotes the whole text of all documents of the
database, and Hc, Ht and Hs respectively represent the
logical structure, the layout structure, and the storage
structure of the text T. Both the logical and the layout
structures have been mentioned, in Section 2. The storage
structure represents how the text T is stored in the secon-
dary storage of a particular computer system. In addition,
an example of the context tree is shown in Fig. 5,
Definition 5: Context-id. Given a text T and a con-
text tree H denoting a context structure of the text T,
assume that each context X of the context structure is
denoted by a node X’ of the tree H. The context-id of the

.context X is defined as the path name of the node X'.

- In an explicit context structure (T,H,, ... H,), the
beginning and the end positions of any context can be easi-
ly searched if its context-id is given. A higher-level con-
text containing the current context or a lower-level con-
text contained in the current context is also easily search-
ed via the links on the context trees. The time required
to scarch any context by means of a context tree H,
1 i<k, is O(n), where n denotes the height of the tree
H;. The number n is roughly O(log N) and is much
sinaller than L, where N denotes the number of nodes of
the tree H; and L denotes the length of the text 'T. Hence
from the viewpoint of search speed, the explicit represen-

. tation is much better than the implicit one.

An explicit context tree has an additional property
as follows:
Property 5: For each node X of an explicit context tree,

- if the length of its path name is m, then m=1 and the
- path name of the node X can be formally presented as

a list Ny...Ny,. It is clear that the node X has m—1
ancestors and each of them is denoted by a proper prefix
of the list N;...N,, where a proper prefix of the list N,
...Np, is defined as a sublist of the form N, ---Nj,
L=j<m. It is obvious that this property also holds for
the context-id of the context denoted by the node X.
The advantages of the explicit representation will
be mentioned in Section 7. Its disadvantages are: it re-
quires space overhead of storing the context trecs, and
both of the text and the context trees have to be updated
in order to maintain a context. In a context structure
denoted by a context tree H, the maintenance cost of any
context X is defined as the number of the nodes of the
tree H whose vector (BP.EPY must be undated if the con-

R

612 Journal of the Chinese Institule of Engineers, Vol. 13, No. & (1990}

text X is maintained. For any context tree, it is very dif-
ficult to accurately calculate the maintenance cost of a con-
text. But for a nearly balanced context tree, the
maintenance cost can be roughly calculated. A context
tree is said to be nearly balanced if it satisfies the follow-
ing properties. First, each non-leaf node of the tree has
a nearly equivalent number of children. Second, the search
path of each leaf node of the tree is nearly equivalent in
length. Theorem 2 proves that the average maintenance
cost of a leaf context on a nearly balanced context tree
is about N/2, where N is the number of nodes of the tree
(also the number of contexts of the context structure
denoted by the tree). To maintain a context always in-
vokes the maintenance of some leaf contexts of it. Hence
it is reasonable to assert that the maintenance cost of a
context is O(N). For a large textual database, because the
number N is very large, the maintenance cost becomes
a heavy burden when updating a context. The addressing
mechahism for an explicit context tree is known as ab-
solute addressing. In order to reduce the maintenance cost,
a refined explicit representation using a relative address-
ing mechanism, called Explicit Context-Hierarchical
Organization (abbr. ECHO), is proposed in Section 4. It
can reduce the maintenance cost from O(N) to O(log N).
Theorem 2: Given a text and a context tree which
represents the context structure of the text, if the context
tree is nearly balanced, then the average’ maintenance cost
of a leaf context is about N/2, where N denotes the number
of nodes on the context tree.)
Proof: From the properties of a nearly balanced context
tree mentioned above, the following twe assumptions are
reasonably induced:
(1) For each node of the context tree, except for leaf
nodes, the averagé number of its children is m.
(2) For each leaf node of the context tree, the average
length of its search path is n. The number n also roughly
denotes the number of levels on the context tree. As a
convention, these levels, from the level of the root to the
leve! of leaf nodes, are named level 1, ..., level n, respec-
tively. It is obvious that level i, 1<i<n, has m'~! nodes.
The total number of nodes on the context tree is

N=L, g, M =(m"— D/(m—1). (0

Suppose that a leaf context X is maintained and the
maintenance causes a change in the length of the context
X. It is obvious that the length of each higher-level con-
text cntaining the context X is then changed and the loca-
tion of each context behind the context X is also moved.
Heace each node on the search path of the node X or on
a search path in the right side of the node X must be up-
dated. In other words, a node has to be updated if any
of its descendants is updated or any node on a search path
on the left side of it is updated. In order to calculate the
average maintenance cost of a leaf context, the total
maintenance cost of all feaf contexts, called TC, must be

computed first. Based on the assumption that each leaf
context is maintained with equivalent probability, TC is
given by

TC = L) gjem G=Zisjem Eiisa Cy)
= Licizn Cr=jem G- (2)

In Eq. (2), M=m""" denotes the total number of leaf
contexts (also leaf nodes), C; denotes the maintenance
cost of an individual leaf context, and cy denotes the
number of level 1 nodes which must be updated to main-
tain an individual leaf context. For each level i, 1 <i=<n,
there are L=m'~! nodes on this level and each of these
nodes has m™ ™ leaf elements. A node X is a leaf element
of a node Y if the node X is a leaf node and either the
node X is a descendant of the node Y or the node X is
the same as the node Y. As a convention, all nodes on
level i are named node il,, node iI.:, from left to right.
For level i, from node ik, 1<k=<L, to node iL. must be
updated to maintain any leaf element of the node ik. That
is, all the leaf elements of node ik have the same value

of ¢, which is L-k+1. Thus the value of I; j<p ¢; can
be calculated as follows:
Ticjem G=F1 gk M H{L—k+1)
=m " HL(L+1)/2 3)

From (1), (2), and (3), the value of TC is then given by

TC = Ijeje, ML +1)/2]
= M(N+n)2 = MN/2, N >> n. (4)

'Thus, the average'maintenance cost of a leaf context is
TC/M = N/2. = [

THE ECHO MODEL

Definition 6: ECHO tree. An ECHO tree is a con-
text tree representing a context structure of a given text.
In the ECHO tree, each node uniquely denotes a context
of the context structure and carries a local name and a
vector (D,L). For the root, the D denotes the beginning
position of the whole text. For each of the other nodes,
the D denotes the distance between the beginning posi-
tions of the contexts denoted by the node and by the parent
of the node. And for any node, the L denotes the length
of the context denoted by it.

Given a node X of the ECHO tree, assume that its
path name is N| ...N;. Asa convention, the D-value and
L-value of the node X are denoted by D(X) and L(X),
or by D(N...N,) and L(N,...N,;), respectively. And
the beginning and the end positions of the context X are
denoted by BP(X) and EP(X), or by BP(N,...N,,} and
EP(N, ...N,), respectively.

— |

e

8.8, Tseng, C.C. Yang & C.C. Hsieh: An Experimental Model of Chinese Textual Database 613

Theorem 3: In an ECHO tree, the D-value and the
L-value of any node X, i.e., D(X) and L(X), except for
D{root), can be computed as follows.

(1} If the node X is a leaf node, then L(X) is actually the
length of the leaf context X; otherwise, L({X)=L
(Y +...+L(YY, where Y|, ..., Y} are all children
of the node X. '

(2)If the node Y is the leftmost chiid of its parent, then
D(Y)=0; otherwise, D(Y)=D{(Z)+ L(Z), where Z is
the nearest left’sibling of the node Y, i.e., the node
Z has the same parent of the node Y and is in the posi-
tion immediately preceding the node Y.

Proof: From Definition 6 and Property 3, it is easy to
show part (1). Part (2) is then proved as follows. For each
non-leaf node X, assume that its children are nodes Y,
.eer Yy, from left to right. From Definition 2, it is ob-
vious that the contexts Y, and X have the same beginn-
ing pposition. Hence D(Y;)=0. In addition, it is trivial
that

D(Y) = DYy + L(Y;_p, 1<i=k, o)

where node Y,;_, is the nearest left sibling of node Y;.
From the above, this theorem has been proved. ~ m

Theorem 4: BP(N, ...N,) and EP(N,...N,), i.e.,
the beginning and the end positions of the context denoted
by a node N,...N,, of an ECHO tree, can be computed
by _

BP(N,...Np) =L <jcm D(N;...Np), and (6)

EP(N;...Np)=BP(N,...N)+L(N,..Np)~1 (7)

The proof of Theorem 4 is trivial and therefore omitted. =

From Definitions 3 and 6, it is clear that an explicit
context tree H and an ECHO tree E are equivalent if they
represent the same context structure. That is, they are the
same except that each vector (BP,EP) of the tree H is
replaced by a vector (D,L) of the tree E. In addition, the
trees H and E have the same number of nodes. The ex-
plicit context tree H can be transferred to the equivalent
ECHO tree E by the following method. First, let the
D(root) of the tree E be the BP(root) of the tree H. Se-
cond, for each leaf node X of the tree H, the L{X) is com-
puted by

L(X) = EP(X)~BP(X)+1 (8)

Last, compute all the D- and L-values of the tree E by
applying Theorem 3. For example, the ECHO tree which
is equivalent to the context tree shown in Fig. 5 is shown
in Fig. 6. Reversely, the ECHO tree E can be transfer-
red to the equivalent explicit context tree H by applying
Theorem 4.

‘tation (T,H,, ..

a
(1.?29}

i - i
b b2 b3 b4
(0,18) (18.?35) (354, 395) (7491180)
[R— ‘-t F R

1
+ P
|- | |
cd
|

| { 1
cl c2 [c5 cb cl
(0,12) (12.?24\ {0,18) (15.188) (204]191) (0.!1)(11.}60)

—————————— +

+ + * -+ b o—et $ommee +

1T T R
d d4 d5 dé d7 d3 d9
(©,9) (9,105 (114,210) (0. 15} (15,1733 (0, 100 (10, 181) (0, 9) (9, 160}

Definition 7: ECHO structure. The ECHO struc- -
ture of the context structures of a text T is defined as a
finite set consisting of the text T and k ECHO trees E,,
.--» Ey, denoted (T,E,, ..., E). An ECHO structure (or
sub-ECHO structure) consisting of a text and only one
ECHO tree is called a singular ECHO structure.

From the above, it is clear that an explicit represen-
., Hy) can be transferred to an equivalent
ECHO structure (T,E,, -.-, EY) by replacing each con-
text tree H; by an equivalent ECHO tree E;, 1=i=k.
For example, Fig. 4 can also be used to depict a textual
database based upon the ECHO structure if the context
trees Hc,Ht and Hs are replaced by the equivalent ECHO
trees Ec, Et and Es, respectively.

1. Search operations-on ECHO structures

A search operation on an ECHO structure
(T,E,.-.-,Ey) is an operation that retrieves information
from an ECHO structure. The information includes
context-ids, beginning and end positions of contexts and
texts of contexts. A search operation is always constrain-
ed to search one type of informaiton from a singular
ECHO structure (T,E;), 1 <i=<k. The search operations
are get-ptrs, get-text, get-id, get-leafts and ger-ids.

Definition 8: get-prrs and ger-text. Assume that an
ECHO structure (T,E,,...E,) and a context-id N,...N,
are given.

(1) The search operation gef-pirs computes the beginn-
ing and the end positions of the context N...Ny,
i.e., BP(N[...N,) and EP(N,...Ny).

(2)The search operation gei-rext reads the context
N;...N,,, i.e., the subtext between the positions
BP(N,...N,) and EP(N;...N_}, from the text T.

The search operation ger-ptrs is easily performed
by applying Theorem 4. Let us take node d; in Fig. 6 as
an example. The context-id of context d; is ab; cs dg.
From Theorem 4, we have

BP(ab,csd;) =D(a) + D(by) + D(cs) + D(d5)
=1+354-+204+10 = 569, and
EP(abscsdy) =BP(abscsdy) + L{d7) — |
=569+181—1=749.

614] Journal of the Chinese Institute of Engineers, Vol. 13, No. 6 {1990)

The result (569,749) is the same as (BP,EP) vector of node

d7 in Fig. 5. The search operation get-text is performed

as follows. Apply first the operation get-pirs to find the

positions BP(N,...N) and EP(N;...N.)). Then read a

subtext between the positions BP(N,...N_.) and

EP(N,...N,,) from the text T. The subtext is the result.

Definition 9: ger-id, get-leafs and get-ids, Assume
that the root N, of a singular ECHO structure (T,E), the
beginning and the end positions of a subtext §, and an
integer m (only for the operation ger-ids) are given.

(1) The search operation get-id finds the smallest con-
text containing the subtext S from the singular ECHO
structure (T,E).

(2) The search operation ger-leafs finds a series of leaf
contexts from the singular ECHO structure (T,E) such
that the subtext S is contained in these leaf contexts.

(3) The search operation get-ids finds a series of contexts
(X1s ..., Xp) from the singular ECHO structure (T,E)
such that these contexts satisfy the following condi-
tions. First, each context X;, 1 <i=n, is either a leaf
context having the length of context-id no more than
the integer m or a non-leaf context having the length
m of context-id. And second, the subtext S is con-
tained in these contexts.

Algorithm 1: Perform the search operation ger-id.
Input: The root N, of the singular ECHO structure
(T,E), and the beginning and the end posmons of a subtext
S, say BP and EP, respectively.

Output: A context-id N,...N; of the tree E, .which

denotes the smallest context cntaining S.

Procedure;

if BP=D{N,) and EP<D(N\)+L{N;) —1 then

begm

=0 !
repeat
=i+ 1; smallestflag: = true;
BP:=BP—D(N ...N});-EP: =EP~D(N,...N));

if there exists a child of the node N,...N,, denoted
N\...NiN;y\, such that BP =D(N,...NN;.)
and EP<D(N1 Nilea 1) + LN NN) — 1
then smallestflag: = false;
until smallestflag =true;
return the context-id N,...N; as the result;
end; :

The search operation ger-leafs is performed as
follows, A method similar to Algorithm 1 is applied first
to find two leaf context-ids C; and C, from the ECHO
tree E, scuh that the BP(S) is located in C, and the EP(S)
is located in C,, i.e.,

BP(C)) < BP(S) < EP(C,) and
BP(C,) < EP(S) < EP(cy). (9)

Then, alt the leaf context-ids from C; to C, are search-
ed from the ECHO tree E and are returned as the result.

The search operation get-ids can be performed in a way
similar to the one mentioned above,

2, Constructing operations on ECHO structures

There are two operations with respect to construc-
ting an ECHO structure: tree-constructing operation and
ECHO-combining operation. The tree-constructing opera-
tion constructs an ECHO structure from a marked-up text.
The ECHO-combining operation combines a number of
ECHO structures into a larger one.

Definition 10: Tree-constructing operation. Given
atext T associated with a number of k context structures,
the tree-constructing operation constructs k ECHO trees
representing the k context structures from the text T.

In order to construct k ECHO trees representing the
k context structures from the text T, these context struc-
tures must be previously marked up. That is, for each of
the context structures, an individual set of markup tokens
must be previously inserted into T to identify each con-
text of the context structure [12,22,23]. The markups have
been discussed in {3,12,13,17]. When a marked-up text
is available, the k ECHO trees can be constructed using
Algorithm 2.

Algorithm 2: Constructs ECHO trees from a
marked-up text.

‘Input: A marked-up text T.
Output: k ECHO trees each of which represents a con-

text structure of T.

Procedure: -

Step 1: A context parser scans the text T to recognize each
markup token and to construct k intermediate ECHO trees
each of which reflects a context structure of T. In an in-
remzedtare ECHO tree, only the L-value of each leaf node
is given while the other L-values and all D-values are not
defined.

Step 2: For each intermediate ECHO tree, let D(root)
of the tree be the BP(T). And then apply Theorem 3 to

-compute the other D-values and L-values of the tree.

- Definition 11: ECHO-combining operation. Given
a 'number of j ECHO structures (T,,E,,...,E,)),
(T1.Eyj,..., By, the ECHO-combining operation com-
bines these ECHO structures to form a larger ECHO
structure (T,E, ..., Ey). That is, each given text T, and
ECHO tree E;, I<n=k, I si=<j, becomes a subtext of
the text T and a subtree of the ECHO tree E,. respec-
tively.

From Definition 11, it is easy to infer that the
ECHO-combining operation has to invoke one concatena-
tion of texts and a number k of combinations of ECHO
trees. The following are necessary constraints to the
ECHO-combining operation. First, each given ECHO
structure has exactly k ECHO trees each of which
represents a kind of context structure. That is, there ex-
ist k different kinds of context structures. Second, these
ECHQ structures must be previously ordered by a cor-

L

S5.8. Tseng, C.C. Yang & C.C. Hsieh: An Experimental Model of Chinese Textual Database 615

rect sequence. Assume that the nth ECHO tree of each
given ECHO structure, denoted E;, 1 =n=<k,l=i<j,
represents the n-th kind of context structure. And third,
only the ECHO trees that represent the same kind of con-
text structure are able to be combined.

Algorithm 3: Perform the ECHO-combining
operation.
Input: j ECHO structures (T, E{, ..., Exh ...,_(TJ-
E[j’ ey Ekj)'
Output: A combined ECHO structure (T,E,, ..., Ey).
Procedure;
T: = null;
Jori: = 1 to j do append (T,T});
forn: = 11 kdo

begin
create a new node E,;
fori: =1ltojf

do link the node E,; to the node E, such that E,;
becomes the rightmost child of E,;
D(E,): = the beginning position of T;
D(E,): = 0;
Jori: =2tojdo D{E,): = D{E, ;.) +L(E,;\);
L(E): = D(Ey) +L(Ey);
end; -

3. Basic updating operations on ECHO structures

A basic updating operation is an operation that
maintains a singular ECHO structure. That is, for a
singular ECHO structure (T ,E), a basic updating opera-
tion can insert a new context into it, delete an old context
from it, or modify an existing leaf context of it. These
operations are named echoinsert, echodelete and leaf-
modify, respectively. In general, an updating operation
on an ECHO structure (T,E, ..., Ey) has to invoke a
series of basic operations and some optional search
operations. .

Definition 12: echoinserr. Assume that an ECHO
structure (T,E), an object .of insertion (Tx,Ex), and a
parameter either N; ...N:1 or N; ...Ngr are given,
The updating operation echoinsert performs either of the
following operations, depending upon which parameter
is given. ’

(1) If a parameter N; ...N:1 is given, then the text
Tx is inserted into the text T in -the position im-
mediately preceding the context N, ...N,, and the
node Ex is linked to the node N; ...N, as the
nearest left sibling of the node N ...N.

{2) If a parameter N ...N,:r is given, then the text
Tx is inserted into the text T in the position im-
mediately following the context N, ...N,, and the
node Ex is linked to the node N, ...N,., as the
nearest right sibling of the node N ...N,,.

It is obvious that after the text Tx is inserted into
the text T, the following occur. First, the BP(Ex) is
changed, i.e., D(ex) is changed. the new D(Ex) has 1o be
computed by applying Theorem 3. Second, each context

denoted by a right sibling W of the node Ex is moved
right by L(Ex) from its original position, i.e., D(W) must
be increased by L(Ex). Third, the length of each context
U containing the text Tx is increased by L(Ex), i.e., L{U) -
has to be increased by L(Ex). And fourth, for each
ancestor U of the node Ex, each context denoted by a right
sibiling W of the node U is also moved right by L{Ex)
from its original position, i.e., D{W) must be increased
by L{Ex).

Definition 13: echodelete. Given an ECHO struc-
ture (T,E) and a context-id N, ...N, of the ECHO struc-’
ture, the updating operation echodelete removes the con-
text N ...N, from the text T and removes the subtree
N, ...N,, from the ECHO tree E.]

It is clear that after the context N ... N, is remov-
ed, the following occur. First, each context denoted by
a right sibling W of the node N; ...N,, is moved left by
L(N, ...N_) from its original position, i.e., D(W) has to
be reduced by L(N, ...N,). Second, the length of each
context U containing the context N, ...N,, is reduced by
L{N; ...Ny), i.e., L(U) must be reduced by L{N, ...N_).
And third, for each ancestor. U of the node Ny ...N,
each context denoted by a right sibling W of the node U
is also moved left by L(N; ...N,) from its original posi-

“tion, i.e., D(W) has to be reduced by L(N; ...N,».

Definition 14: legfimodify. Given a leaf context X
of an' ECHO structure (T,E) and the modified version of
the context X, say context X’, the updating operation leaf-
modify replaces the context X by the context X°. In addi-
tion, the operation leafmodify updates the relevant D-
values and L-values of the ECHO tree E if L{X") # L(X).

The modification of a context is actually realized
by modifying some leaf contexts of the context. The
modification of the leaf context X may cause a change
in LX), i.e., L) =L(X). When L(X) is changed,
adopted from the above, the following occur. First, for
each right sibling W of either the node X or any ancestor
of the node X, the D{W} has to be changed to
D(W)—L({X)+L(X"). And second, for each ancestor U
of the node X, the L(U) must to be changed to
L{U)— LX) +LxN).

Theorem 5: For a nearly balanced singular ECHO

- structure (T,E), the maintenance cost of a context is O{log

N}, where N is the number of nodes of the ECHO tree E.
Proof: We first consider the cases of insertion and dele-
tion. From the discussions following Definitions 12 and
13, the maintenance cost MC, of a context N, ...N,, is
given by

MCI = m+225i5m Ki for m=n, (lO)

where K; is the number of the right siblings of each node
N, ...N; and n is the height of the ECHO tree E. Because
the ECHO tree E is nearly balanced, it is reasonable (o
assume that the average number of children of each non-
leaf node of E is K and n = log N. Thus we have

RS

616 Journal of the Chinese Institute of Engineers, Vol. 13, No. 6 {1990)

m=<MC; = 1+K(n—1)<K(log N). (11)

[t is clear that MC, = O(log N). Then consider the case
where a leaf context N| ...N,.is modified. From the
discussion following Definition 14, the maintenance cost
of this case, MC,, is given by

MG, = n+Ly 4., K. & (12)
From the assumptions given above, we have_ '
n=log N=MC, < 1+K(n—1)<K(log N) (13)

Thus the MC, is also O(log N). From these cases, the
theorem is proved. L]
From the discussion following Theorem 4, an ex-
" plicit context tree H and an ECHO tree E have the same
number of nodes if they represent the same context
strucutre. Hence from Theorem 5 and the discussion
before Theorem 2, it is obvious that the maintenance cost
of a context can be reduced from O(N) to O(log N} if the
explicit context tree is replaced by the equivalent ECHO
tree.

4. Set operations on ECHO structures

Definition 15: Context set. A context set, denoted -

C=(X,; ..., X, is defined as a set of some contexts of
.an ECHO strucutre, which satisfies the followmg
properties.

(1) In the set, there does not exist any repeated context,
i.e., X;#X; for i#j, 1<i<m and 1<j<m,

(2) In the set, for each context x;, I <i=m, there does
not exist any context X;, I=j=m and i#j, such that X;
is contained in X;. -

In addition, each X, I'<i=<m, is a member of the set C.

A traditional set is defined as a collection of entities.
A context set differs from a traditional set in members
and operations. In general, a member (entity) of the set
is not divisible. For example, given a set S= {(a,b),c,d 1,
(a,b) is a member of S but neither (a) nor (b) is a member
of 8. It is clear that if a context X is in 2 context set C,
then each subtext of X is also in C. That is, if the context
X consists of a number of smaller contexts Yy, ..., Yy,
then each Y;, 1 <i<k hastobea member of C. Hence
a member of the context set, except for a leaf context,
is divisible. The traditional set operations are union, in-
tersection, difference and the Cartesian product. It is ob-
vious that the Cartesian product is not applicable to con-
text sets. [n addition, there are some differences between
the union, intersection and difference of context sets and
those of traditional sets,

Theorem 6: A context set C=(X,, ..., X} is uni-
quely denoted by 2 context-id set C'=(X,’, ..., X'} in
which each context X; is uniquely denoted by the
context-id X;", l =i<m. In addition, the context-id set
satisfies the following properties:

(1) In the set, no repeated context-id exists, i.e..

A=K,

X #=X; fori#j, 1=i<mand |<j<m.

{2) In the set, for each context-id X, 1<i=m, no
context-id Xj', exists 1=<j<m, such that X is a
proper preﬁx of X;".

Proof: From Definitions 6 and 15, it is easy to prove this

theorem, [

Definition 16: A context X is said to be in a con-
text set C (or X is a member of C) if and only if either
the context X or a context containing X is a member of
the set C.

It is clear that Definition 16 also holds for the
context-id set, Assume that the context X and the context
set C are denoted by the context-id X* and the context-id
set C°, respectively. Definition 16 can be interpreted as
that a context-id X’ is said to be in a context-id set C’
(or X is a member of C’) if and only if either the context-
id X* or a proper prefix of the context-id X’ is a member
of the set C'. ‘

Definition 17: The union, intersection and dif-
ference of context sets are defined as follows.

{1} Union. The union of two context sets A and B,
denoted AUB, is a context set in which each context
is in A or B or both.

(2) Intersection. The intersection of two context sets
A and B, denoted AMB, is a context set in which
each context is in both A and B.

(3) Set difference. The difference of two context sets
A and B, denoted A—B, is a context set in which
each context is in A but not in B.

Because a context set is uniquely denoted by a
context-id set, the union, intersection and difference of
context sets can be actually represented by these opera-
tions of context-id sets. Given two context sets A and B,
assume that they are denoted by the context-id sets
X and B’=(Y|, ..., Y), respectively.
AUB, AMB and A—B can be respresented by A’UB’,
A’MB’ and A’—B’, respectively, In addition, the opera-
tions performing the union and the intersection of two sets
are named by OR-merge and AND- -merge, respectively.

Union of context-id sets. A’UB’ is performed by
OR-merging the sets A’ and B’. First, for each context-
id X;, 1 =i=m, if there does not exist any context-id Y.,
I=j=n, such that Y; is a proper prefix_of X;, then X,
appears in A'UB’. Second for each context-id Y;.
l=j=n, if there does not exist any context-id X
l1=i=m, such that either Y; = X; or X; is a proper
prefix of Y., then '1’J appears in A'UB’. And third,
nothing else appears in A"UB".

Intersection of context-id sets. The A'NB” is per-
formed by. AND-merging the sets A’ and B'. First, for
each context-id X;, F<i=m, if there exists a context-id
Y, 1=j=n, such that either X; = Yjor Y;is a proper
prefix of X, then X; appears in A'NB". Second for each
context-id Y;, | <j=n, if there exists a context-id X,
I<i=m, such that X; is a proper prefix of Y;. then Y
appears in A'MB’. And third. nothing clse appears m

» .

8.8. Tseng, C.C. Yang & C.C. Hsleh: An Experimental Model of Chinese Textual Database

ATB.

Difference of context-id sets. The A’ —B’ is per-

formed as follows. First, for each context-id X;,
I<i=m, if there does not exist any context-id Yj,
I <j=n, such that X;=Y; or Y; is a proper prefix of X
or X; is a proper prefix of Y}, then X; appears in A’—B’.
Second, for each context-id X;, 1 =i<m, if there exists
a context-id Y;, 1 =j=n, such that X; is a proper prefix
of Y;, then each context-id of the set difference (X, ...,
Xin)—(Y;) appears in A’—B’. Each Xy, 1<k=<h, is a
descendant of X;, which is either a leaf context-id with
length(Xy) < length(Y;) or a non-leaf context-id with
length(X;)=length(Y;). And third, nothing else appears
in A”—B’. ’

The set operations of context sets (or context-id sets)
provide an important basis for processing the query of
textual databases. In general, a query consists of some
predicates which are combined by Boolean operators.
Given two context sets A and B as an illustration, sup-
pose each member of the set A satisfies a predicate P and
each member of the set B satisfies a pedicate Q. It is clear
that each member of AUB satisfies P or Q or both, each
member of AMB satisfies both P and Q, and each member
of A —B satisfies P but not Q. Hence the context sets AUB.
AMB and A—B are the results of the Boolean expression
“P OR Q”, “P AND Q" and ‘P AND NOT Q7,
respectively. '

THE ARCIM

A text-access method is the method of identifying,
retrieving, and/or ranking contexts in a collection of con-
texts, that might be'relevant to a given query. The text-
access methods, as discussed in [6,16], can be classified
into four categories: full text scanning, inversion of terms,
surrogates of contexts and clustering. The basic idea of
an inversion method is that a context is considered as a
list of terms, which describe the contents of the context
for retrieval purposes. In an English text, a term is ac-
tually a word. A fast retrieval can be achieved if one in-
verts terms. An inversion method uses an index structure
in which each entry consists of a term zlong with a posting
list. The posting list is a list of pointers each of which
points to a context containing the term. The disadvantages

of the inversion method are: the storage overhead.

(50-300% of the size of the text files [8]); the cost of up-
dating and reorganizing the index, if the environment i§
dynarnic; and the cost of merging the posting lists, if they
are too long or there are too many of them. [n contrast,
the advantages are that it is relatively easy to implement
and is fast. Hence the word iaversion has been adopted
in most commercial systems, such as BRS, DIALOG,
MEDIARS, ORBIT and STAIRS [18].

The word inversion is not applicable o Chinese
text, The reasons are as follows. A Chinese sentence does
not contain any natural detimiters, such as blanks in an

. CIT
_________ e
CNT(CD) | PIR(CI) [~--mmnmv LU
————————— m————
CHT(C2 ===
T2 1 PR(CD) |-on | LD
____i____+ _________ PL(C2)
CNT(C?) | PTR(Ci) |---- :
_________ e \ .
: d
: PL(Ci)

Fig. 7. The index structure of ARCIM.

English sentence, to separate Chinese words, While some
automatic methods of identifying the words in a Chinese
sentence have been proposed [7,11,19], it is still impossi-
ble for words in a Chinese sentence to be completely iden-
tified by any computer technology. Hence a character in-
version isntead of the word inversion is used for retriev-
ing Chinese text. A refined character inversion method
{abbr. ARCIM) will be proposed in this paper.

) The ARCIM uses an ARCIM structure as its index
siructure. The ARCIM structure, denoted (CIT,PLT), con-
sists of a character index table CIT and a posting list table
PLT, as shown in Fig. 7. An entry of the PLT, denoted
PL(C)), is a posting list consisting of a variable number
of ordered leaf context-ids. Each context-id X of the

" PL(C;) stands for the condition that the context X con-

tains the Chinese character C;. In the CIT, each entry
consists of a count CNT(C)) and a pointer PTR(C;). The
CNT(C;) denotes the number of leaf context-ids of the
PL(C;) and the PTR(C) points to the starting location of
the PL(C;). Because the coding space of Chinese
characters of a computer system is fixed [21], the CIT
can be organized with a constant size and may be per-
manently located in the main memory. If a Chinese
character C; is given, then the CNT(C) and the PTR(c;)
can be easily searched from the CIT by using a specific
hash function. An example of the hash function has been
introduced in £20]. If there exists a Chinese character C;
which does not appear in any context, then the CNT(C;)
and the PTR(C;) must be set to zero and nil, respective-
ly. And the PL(C;) does not appear in the PLT. There
are three types of operations provided for the ARCIM
structure: the search operations, the creation operations
and the maintenance operations. The search operations
are discussed tn Section 6 rather than in this section.

1. The creation of ARCIM structures

Definition 18: ARCIM-creating operation. Given
a singular ECHO structure (T,E), the ARCIM-creating
nperation creates an ARCIM structure (CIT.PLT) from

618 Journal of the Chinese Institute of Engineers, Vol. 13, No. 6 (1990)

the ECHO structure (T,E).

Algorithm 4: Perform the ARCIM-creating
operation.

Input: A singular ECHO structure (T,E).

Output: An ARCIM structure (CIT,PLT) for the ECHO

structure (T,E).

Procedure:

Step 1: Create a new CIT in which the number of entries

is equivalent to the number of Chinese characters used

" in the computer system. For each entry of the CIT, let

CNT(C;) =0 and let PTR{C;} =nil. Then create a new

PLT which contains nothing.

Step 2: For each leaf context X of the ECHO structure

(T.E), perform the following operations.

(1) Sequentially scan the context X. If the scanned
character is not a Chinese character, then remove
it from the context X. The result is a string consis-
ting of only Chinese characters, called string X".

(2) Sort the string X' by a nondecreasing order of
character codes.

(3) Sequeniially scan the sorted string X'. If the
scanned character is the same as the preceding
one, then remove it from the string X°. The result

is the string without any repeated character, called

CLIST(X).

(4) Append the leaf contexi-id X to each character C:
of the CLIST(X}. The result is called CIDLIST(X).
In the CIDLIST(X), each entry is a pair of a
character Ci and the leaf context-id X, denoted CID-
PAIR (C,X).

Step 3: According to the sequence from the leftmost leaf

context to the rightmost leaf context of T, concatenate all

the CIDLISTs to form a CIDTABLE.

Step 4: Sort the CIDTABLE in nondecreasing order of the

character codes. The result is an initial PLT. In the in-

itial PLT, it is clear that all the CIDPAIRs having the same
ckaracter C; are grouped together to form a segment,

, an initial PL(C;). And in an initial PL{C)), it is
clear that all the CIDPAIRs are ordered in ascending
order of the leaf context-ids.

Step 5: Scan the initial PLT to find each initial PL(C,).

At the same time, for each initial PL(C;), perform the

Sfollowing operations.)

(1) Compute both the starting address (in number of
CIDPAIRS) and the number of CIDPAIRs of the in-
itial PL{C,), which are the PIR{C,) and the
CNT(C,), respectively.

(2) Write both the CNT(C;) and the PTR(C}) into a
proper entry of the CIT and append the context-ids
of the initial PL(C,), i.e., the PL{¢;), to the PLT.
Algorithm 4 has been successfully applied to create

an ARCIM structure of the CED, which is an experimen-

tal Chinese electronic dictionary [22]. In the CED, the
space overhead required to store the ARCIM structure,

1.9 Mbytes, is about 30 % of the size of the text files, 6.2

Mbytes. The work requited to create ARCIM structures

has to be done only once. Even though the ARCIM-
creating operation consumes a lot of computing hours,
it is endurable.

2. The maintenance of ARCIM structures

For a singular ECHO structure (T,E) and an attach-
ed ARCIM structure (CIT, PLT), it is clear that the AR-
CIM structure has to be maintained if the ECHO struc-
ture is updated. According to the updating operations
echoinsert, echodelete and leafimodify, there are three cor-
responding updating operations of ARCIM structure pro-
posed in Algorithms 5, 6 and 7, respectively.

Algorithm 5: Update the ARCIM structure
(CIT,PLT) when a leaf context X is inserted into the
ECHO structure (T,E).

Procedure:

Step L: Construct the CLIST(X) by using step 2 of
Algorithm 4. Then sort the CLIST(X) in ascending order
of the character codes. Assume that CLIST(X) =C,... G
Step 2: According to each character C; of CLIST(X),
l<i<j, insert the context-id X into the FPL(C}), keep—
ing the ascending order of context-ids.

Step 3: Scan the CIT from the entry for C, to the end.
Assume that the entry currently scanned is.of a character
A .
(1) IfA=C;, 1=ixj, then CNT(A):=CNT(4)+1.
(2) IfC<A=sCiyy, 1<), then PTR(A): =PTR(A) +i.
(3) For each A, A > C;, do PTR(A):=PIR(A)+].

Algorithm 6: Update the ARCIM structure
(CIT,PLT) when a leaf context X is deleted from the
ECHO structure (T,E).

Procedure:
Step 1. Construct the CLIST(X) by using step 2 of

. Algorithm 4. Then sort the CLIST(X) in ascending order

of the character codes. Assume that CLIST(X) = C...CG,
Step 2: According to each character C; of CLIST(X),
l=i=j, remove the context-id X from the PL(C;).
Step 3: Scan the CIT from the entry for C| to the end.
Assume that the entry currently scanned is of a character
A
(1) Ifd= C,, I=i=<j, then CNT(A):=CNT(4) - 1.
(2) If Ci<Ad=Cyyy, 1<), then PTR(A)}:=PTR(A)
—i
(3) For cach A, A>C;, do PTR(A):=PTR(A) —j.
Algorithm 7: Update the ARCIM structure
(CIT,PLT) when a leaf context X of the ECHO structure
(T,E) is modified. Assume that the modified version of
the context X is named context X,
Procedure:
Step: Construct the CLIST(X) and the CLIST(X") by us-
ing step 2 of Algorithm 4. Then sort the CLIST(X) and
the CLIST(X') in ascending order of the character codes.
Step 2: Compare the CLIST(X) with the CLIST(X") to
obtain two strings B, ...B,=CLIST(X’) — CLIST(X)
and D\...D,,=CLIST(X) — CLIST(X"), where the svm-

SR}

N

5.5. Tseng, C.C. Yang & C.C. Hsieh: An Experimental Model of Chinese Textual Database 619

bol — denotes a set difference operation. It is clear thar
the characters By ...B, are added 10 the context X and
the characters D, ... D, are removed Sfrom the context X.
Step 3: Apply steps 2 and 3 of Algorithm 5 1o the string
By ...B,. And apply steps 2 and 3 of Algorithm 6 to the
String D, ...D,,.

QUERY PROCESSING

The steps involved when a user queries informa-
tion from a textual database can be roughly summarized
as follows. He first selects some terms {(keywords) which
stand for his topic of interest. These terms have to be con-
joined by some operators, as mentioned in [9], to form
a predicate. Then he queries the database to find the con-
texts that satisfy the predicate. In our system, a query ex-
pression has the following form: '

FIND context-clause
CONTAIN search-clause
scope-clause; - {14

In a query expression, the context-clause specifies
which type of context is retrieved. A context clause has
the following form:

context-clause
.7 = LEA CONTEXTS | CONTEXTS OF
LENGTH k (15)

The symbol :: = means “‘is defined as’* and the ver-
tical bar | stands for “‘or””. The phrase ““LEAF CON-
TEXTS" denotes that each retrieved context must be a
leaf context. The phrase “CONTEXTS OF LENGTH k*
specifies that each retrieved context is either a leaf con-
text having a context-id length no greater than k or a non-
leaf context having a context-id length of k.

The search-clause specifies a condition the retrieved

conlexts must satisfy. The basic form of a search clause
is shown below. '

search-clause ‘ o

1= search-phrase {OR search-phrase) (16)
search-phrase

22 = term {AND [NOT] term) (17
term .

it = string | wild-card-term | ordered-term (18)

The braces [...} denote a repetition and the brackets [...] '

denote an optional itern. The operations for a search clause
will be discussed later. .

The scope-clduse specifics the search Space a query
invokes. A scope-clause has the following form:

scope-clause

1 = UNDER conrext-id |
FROM context-id| TO context-id, |
FROM SETS context-name | .contex:-
ser-name (19

An ECHO structure may have more than one ECHO tree,
as shown in Fig. 4. In this case, the phrase “UNDER
context-id”’ is necessary in order to specify a singular
ECHO structure in which the retricved contexts are con-
tained. For example, assume that the following query ex-
pression is given,

FIND LEAF CONTEXTS
CONTAIN “‘textual data?base™ OR

“‘information retriev*"’ -
UNDER Eg; ‘ 20)

A paragraph, i.e., a leaf context of the logical structure
Ec, containing **textual database’’, ‘“textual data base’’,
“*information retrieve’’, ““information retrieval’’ or “‘in-
foramtion retrieving” will be retrieved, The phrase
“FROM conrext-id| TO context-idy”” specifies a subset
of contexts of a singular ECHO structure, from the con-
text denoted by context-id, to the context denoted by
context-idy, as the search space. A constraint of this
phrase is that the context denoted by context-id, must
precede the context denoted by context-id,. Sometimes,
a user needs to search the contexts from the results of
previous queries or from a specific context set such as
the titles of the documents. The FROM SETS phrase is
provided for.these purposes. The constraint of the FROM
SETS phrase is that all members of the given sets must
belong to the same ECHO structure,

The query processor invokes three phases for
evaluating a query expression, namely consistence check,
search process and post process. When a query expres-
sion is given, the query processor first checks whether
the scope clause is valid, i.e., the consistence check. There
are three cases that must be cfonsidered.

Case 1: If a phrase ““UNDER N, ...N,” is given, the
query processor applies the operation get-ptrs to confirm
that Ny ...N, is a valid context-id.

Case 2: If a phrase ““FROM A ..A;TO B, ...B,” is
given, the query processor confirms first that the context-
ids A, -..Aj and By ...B, are of the same ECHO tree,
i.e., A;=B,. Then the operation gef-pirs is applied to
confirm that Aj...A; and B,...B, are valid context-ids

‘and A,...A; precedes B,...B,. The context Ay.. A is said

to precede the comtext B;...By if EP(A;...A) <
BP(B,...B)).

Case 3: Assume that a phrase **FROM SETS Sts cens
Sy’ is given. The query processor OR-merges these con-
text sets o form a larger one and at the same time it checks
that each context-id of the sets has the same root name.
If the consistence check fails, then the query expression
will be rejected. The search process and the post process
are discussed in Section 6.1 and Section 6.2, respectively.

1. The search process

After the query expression is confirmed by the con-

620 Journal of the Chinese Institute of Engingers, Vol. 13, No. 6 (1890)

sistence check, the query processor divides the search-
clause into a number of search phrases. The query pro-
cessor evaluates each search phrase to obtain a phrase-
level posting list in which each leaf context-id probably
satisfies the search phrase, i.e., the search process. Then
the query processor processes and OR-merges all phrase-
level posting lists to obtain a clause-level posting list as
the result, i.e., the past process. In order to provide bet-
ter search performance, a bottom-up and greedy method
is used in both the search process and the post process.

Algorithm 8: Evaluale a given search phrase to ob-
tain a phrase-level posting list.

Procedure:

Step 1: Reconstruct each search phrase using the follow-

ing operations.

(1} Eliminate each term following an AND NOT operator
and all operators from the search phrase. The result
is a string containing only Chinese characters.

(2} Eliminate all repeated characters from the string ob-
tained in (1). ’

(3) Using the CIT specified by the scope clause, sort the
remaining characters in a nondescreasing order of
CNTs.

Step 2: For each reconstructed search phrase, say

B\...By, perform the following operations to obtain a

phrase-level posting list. If CNT(B,) =0, then return an
. empty posting {ist as the result. Otherwise, AND-merge

PL(By) and PL{B,) to form PL(B\B,), then AND-

merge PL(B,B,) and PL{B5) to form PL(B\B,B3), and

so on, until either an empty posting list is obtained or

PL(B\B;...By) is formed. The PL(B,...B;), 15i=k,

denotes a posting list in which each leaf context contains

all the characters B, ..., and B;. -

It is clear that the reconstructed search phrase is a
string consisting of a number of non-repeated characiers,
say B;...Bi. The string B;...B, has the following
properties: .

Property 6: B;=B; for i # j.
Property 7: CNT(B)<CNT(B) for i < j.

Property 8: PL(B,...B)=PL(By N ... N PL(B) for

l=<i=zk _

Property 9: PL(B, ...BY) < PL(B,...B.y <...C

PL(B)).

Property 10: CNT(B)=0 implies PL(B,...B)=null,

I=i=sk. '

These properties provide an important basis for step
2 of Algorithm 8. First, by applying Property 10, if
CNT(B1)=0, we immediately let the phrase-level
posting list to null rather than apply AND-merges. Se-
cond, from Properties 7, 8 and 9, it is obvious that step
2 applies a shortest-first strategy to the AND-merges for
a reconstructed search phrase. And it is easy to find the
similarities between the shortest-first strategy applied to
the AND-merges and the solution 10 the problem *‘op-
timal storage on tapes™', i.e., a greedy method [10]. For

a search process, the major factors of the performance
are the number of AND-merges and the number of leaf
context-ids invoked by the AND-merges. Evaluation of
the reconstructed search phrase shows that its performance
is better than that of its original form. The reasons are
as follows. First, it is obviocus that a reconstructed search
phrase contains less characters than its original form.
Hence the evaluation of a reconstructed search phrase
needs less AND-merges and less feaf context-ids than that
of its original form. Second, in Algorithm 8, a greedy
manner is applied. Referring to [10], it is easy to prove
that the AND-merges invoke the smallest total number
of leaf contexi-ids.

However, the reconstruction of a search phrase.is
an information-lost operation. That is, some constraints
provided by an original search phrase are ignored. The
lost information includes the terms following AND NOT
operators, the wild-card operators contained in terms, the
relationships among characters withinterms and the rela-
tionships among terms. Hence some *‘false-drops™ will
occur in a phrase-level posting list. A leaf contexi-id is
a false drop if it satisfies the reconstructed search phrase
but does not satisfy the original search phrase. In addi-
tion, if either the phrase ““UNDER N,...N;"" or the
phrase ““FORM A,...A; TO B,...B,” is given as the
scope clause, then a leaf context-id which does not satisfy

‘the scope clause is also a false-drop.

2. The post process

The post process consists of three operations: the
elimination of false-drops, the adjustment of context-ids,
and the merge operations.

Elimination of false-drops. In order to improve
the precision of the query processing, the false-drops have
to be eliminated from each phrase-level posting list. There
are three cases that have to be considered. First, if the
scope clause ““UNDER N,...Ny’” is given, then for each
phrase-level posting list, all the leaf context-ids having
no prefix N...Nj must be eliminated. Second, if the
scope clause “‘FROM A,...A; TO B,....B,” is given,
then for each phrase-level posting list, all the leaf context-
ids which are out of the range from A,...A; to By...By
have to be ignored. And finally, for a given search phrase
SP;, assume the phrase-level posting list PPL; is obtain-
ed by the search process. For each leaf context-id X con-
tained in the PPLi, the post process must scan the leaf
context X and performs the following actions.

(1) If the context X contains a term which is specified
in the SP; and follows an AND NOT operator, the
context-id X has to be eliminated.

(2) If the context X does not contain all character strings
specified in the SP;, except for the strings following

AND NOT operators, the context-id X must be.

ignored.
(3) If the context X does not satisfy all the constraints

620 Journal of the Chinese Institute of Engineers, Vol. 13, No. 6 {1990}

sistence check, the query processor divides the search-
clause into 2 number of search phrases. The query pro-
cessor evaluates each search phrase to obtain a phrase-
level posting list in which each leaf context-id probably
satisfies the search phrase, i.e., the search process. Then
the query processor processes and OR-merges all phrase-
level posting lists to obtain a clause-level posting list as
the result, i.e., the post process. In order to provide bet-
ter search performance, a bottom-up and greedy method
is used in both the search process and the post process.

Algorithm 8: Evaluate a given search phrase to ob-
tain a phrase-level posting list.

Procedure:

Step 1: Reconstruct each search phrase using the follow-

ing operations.

(1) Eliminate each term following an AND NOT operator
and all aperators from the search phrase. The result
is a string containing only Chinese characiers.

(2) Eliminate all repeated characters from the string ob-
tained in (1). .

(3) Using the CIT specified by the scope clause, sort the
remaining characters in a nondescreasing order of
CNTs.

Step 2: For each reconstructed search phrase, say

B,...B,, perform the following operations to obtain a

phrase-level posting list. If CNT(B,) =0, then return an
_ empty posting list as the result. Otherwise, AND-merge

PL(B,) and PL{(B,;) to form PL{(B\B;}, then AND-

merge PL{B,B,;) and PL(B) to form PL(B,B,B5), and

so on, until either an empty posting list is obtained or

PL(B\B;...By) is formed. The PL(B,...B}), lsi=<k,

denotes a posting list in which each leaf context contains

all the characters By, ..., and B; .

It is clear that the reconstructed search phrase is a
string consisting of a number of non-repeated characters,
say B,...B.. The string B,...Bg has the following
properties: :

Property 6: B;#B; for i # j.

Property 7: CNT(B) <CNT(B) for i < j.

Property 8: PL(B;...B)=PL(By) N ... N PL{By for

l=i<k.)

Property 9: PL(B, ...BY € PL(B...By) E..S

PL(B).

Property 10: CNT(B)=0 implies PL(B,...By}=null,

I=i=k.

These properties provide an important basis for step
2 of Algorithm 8. First, by applying Property 10, if
CNT(B1)=0, we immediately let the phrase-level
posting list to null rather than apply AND-merges. Se-
cond, from Properties 7, 8 and 9, it is obvious that step
2 applies a shortest-first strategy fo the AND-merges for
a reconstructed search phrase. And it is easy to find the
similarities between the shortest-first strategy applied to
the AND-merges and the solution to the problem ““op-
tirnal storage on tapes ™, i.e., a greedy method (10]. For

a search process, the major factors of the performance
are the number of AND-merges and the number of leaf
context-ids invoked by the AND-merges. Evaluation of
the reconstructed search phrase shows that its performance
is better than that of its original form. The reasons are
as follows. First, it is obvious that a reconstructed search
phrase contains less characters than its original form,
Hence the evaluation of a reconstructed search phrase
needs less AND-merges and less leaf context-ids than that
of its original form. Second, in Algorithm 8, a greedy
manner is applied. Referring to [10], it is easy to prove
that the AND-merges invoke the smallest total number
of leaf context-ids.

However, the reconstruction of a search phrase.is
an information-lost operation. That is, some constraints
provided by an original search phrase are ignored. The
lost information includes the terms following AND NOT
operators, the wild-card operators contained in terms, the
relationships among characters withinterms and the rela-
tionships among terms. Hence some **false-drops™ will
occur in a phrase-level posting list. A leaf context-id is
a false drop if it satisfies the reconstructed search phrase
but does not satisfy the original search phrase. In addi-
tion, if either the phrase ‘“‘UNDER Nl...Nj” or the
phrase ““FORM A;...A; TO Bp...By” is given as the
scope clause, then a leaf context-id which does not satisfy

-the scope clause is also a false-drop.

2. The post process

The post process consists of three operations: the
elimination of false-drops, the adjustment of context-ids,
and the merge operations.

Elimination of false-drops. In order to improve
the precision of the query processing, the false-drops have
to be eliminated from each phrase-level posting list. There
are three cases that have to be considered. First, if the
scope clause “UNDER N,...Nj"" is given, then for each
phrase-level posting list, all the leaf context-ids having
no prefix Nj...N; must be eliminated. Second, if the
scope clause “FROM Aj...A; TO By....By” is given,
then for each phrase-level posting list, all the leaf context-
ids which are out of the range from A,...Aj to By...By
have to be ignored. And finally, for a given search phrase
$P,, assume the phrase-level posting list PPL; is obtain-
ed by the search process. For each leaf context-id X con-
tained in the PPLi, the post process must scan the leaf
context X and performs the following actions.

(1) If the context X contains a term which is specified
in the SP; and follows an AND NOT operator, the
context-id X has to be eliminated.

(2) If the context X does not contain all character strings
specified in the SP;, except for the strings following
AND NOT operators, the context-id X must be
ignored.

(3} If the context X does not satisfy all the constraints

;

S.8. Tseng,

specified by the wild-card terms and ordered terms,
the context-id X must be deleted.
The phrase-level posting list PPL;” which satisfies the
original search phrase $P; is then obtained.
Adjustment of context-ids. Two cases have (o be
considered. First, if the context clause ““LEAF CON-
TEXTS is given, the adjustment operation is not
necessary. Second, assume that the context clause ““CON-
TEXTS OF LENGTH k™ is given. In the case, if a leaf
context-id contained in the PPL;" has a length equal to
or less than the number k, it does not have to be adjusted.
If a leaf context-id contained in the PPL;" has a length
greater than the number k, say N, ...N, Ny, ...Np, then
its postfix Ny, ...N,, must be truncated. In addition to

the second case, if the scope clause “FROM SETS §,,

..., 8 is given, then each context-id of the resultant set
of OR-merging sets S, also is adjusted. The adjusted
resultant set is called set S.

Merge operation. If the scope clause is not of the
form “*FROM SETS S,, ..., 8", then the merge opera-
tion is simply OR-merge for all the phrase-level posting
lists and forms the clause-level posting list. From Sec-
tion 6.1, it is also easy to show that the OR-merges in-
voke the smallest total number of context-ids if a shortest-
first strategy is applied. If the scope clause *‘FROM SETS
Sy, ..., 8, is given, the clause-level posting list and the
S have to be AND-merged in order to obtain the final
result.

CONCLUSIONS

The following are the advantages of the ECHO
structure, First, the ECHO structure is applicable to a
Chinese textual database or an English textual database,
i.e., itis language-independent. Second, multiple context
structures of documents can be represented by the ECHO
structure, e.g., the logical structure and the layout struc-
ture, Third, any context of a document can be searched
by means of the ECHO strucutre. Hence the ECHO struc-
ture has the ability to provide a flexible search unit of a
query. Fourth, the ECHO strucutre can provide a
subrange search to speed up the retrieval operation. That
is, a user can specify a subset of the database as the search
space. Fifth, the ECHO structure is relatively easy to
maintain. Only O(log N) nodes of an ECHO tree have
to be updated if a context is inserted, deleted or modified,
where N denotes the number of nodes of the ECHO tree.
And last, it is easy to attach a sophisticated retrieval
method such as the ARCIM to the ECHO structure. These
advantages, except for the fifth one, also hold for the ex-
plicit representation. In addition, for an inversion method,
the major factors of the search performance are the AND-
merges and OR-merges. Referred to in Section 6, the AR-
CIM can reduce the number of AND-merges, and the total
length of posting lists invoked by the AND-merges and
by the OR-merges, Hence the ARCIM improves the

C.C. Yang & C.C. Hsieh: An Experimental Model of Chinese Textual Database 621

search performance,

Adopted from the definition of the text mentioned
:m Section 2, a text component can be roughly classified
into either character type or non-character type. A text
compeonent of the character type is the one that consists
of only characters, such as a symbol, a word, a phrase,
and sometimes a formula or able. The figures such as
pictures, diagrams, drawings, paintings, or images, by
contrast, are text components of the non-character type.
Text components of the non-character type are excluded
from our system at present. In addition, the annexed-at-
tributes of contexts such as bibliographies of documents
and the semantic information of contexts are also exclud-
ed. Representations and operations of these will be studied
in the future.

NOMENCLATURE
ARCIM a refined character inversion method
BP(X) the beginning position (pointer) of the con-
text X
CIDLIST(X} the ordered set of CIDPAIRs of the con-
text X

CIDPAIR(a,X) a pair of Chinese character a and the

context-id X, in which C is contained
in the context C
CiT character inversion table

CLIST(X) the order set of different Chinese charac-
ters of the context X

CNT(a) the count of the contexts containing the
Chinese character a

D(X) the distance between the beginning posi-
tion of the context X and that of the con-
text immediately containing X

ECHO explicit context-hierarchical organization

EP(X) the end position (pointer) of the context X

Ly - the length of the context X

PL(a) the order list of context-ids (i.e., posting
list) denoting the contexts containing the
Chinese character a

PLT posting lists table

PPL a phrase-level posting list

PTR(a) the pointer that points to the PL(2)

REFERENCES

1. Aho, A.V. and M.J. Corasick, **Efficient String
Matching: An Aid to Bibliographic Search,”
Commun, ACM, Vol. 18, No. 6, pp. 333-340 (1975).

2. Boyer, R.S. and 1.S. Moore, ‘““A Fast String
Searching Algorithm,"” Cormmun. ACM, Vol. 20,
No. 10, pp. 762-772 (1977). .

3. Coombs, J.H., A.H. Renear and SJ Dmse.
““Markup Systems and the Future of Scholarly Tex(
Processing,”" Conmiudt, ACM, Vol, op.

933-947 (1987

622

16.

11.

12.

13.

14.

15.

16.

. Faloutsos, C.,

. Haskin, R.L.,

Journal of the Chinese Institute of Engineers, Vol. 13, No. 6 (1990)

Date, CJ., An ltroduction to Database Systems,
4th Ed., Addison-Wesley, Mass. (1986).

. Emrath, P.A., “*Page Indexing for Textual Informa-

tion Retrieval Systems,”” Ph.D. Diss., Univ. of Il-
linois at Urbana-Champaign (1983).

““Access Methods for Text,”’
Comput. Surv., Vol. 17, No. 1, pp. 49-74 (1985).

. Fan, C.K. and W.H. Tsai, ‘‘Automatic Word In-

dentification in Chinese Sentences by the Relexation
Technique,” Computer Processing of Chinese and
Oriental Languages, Vol. 4, No. 1, pp. 33-56 (1988).
““‘Special-Purpose Processors for
Text Retrieval,”” Database Engineering, Vol. 4, No.
1, pp. 16-29 (1981).

. Hollaar, L..A., “"Text Retrieval Computers,”” Com-

puter, Yol. 12, No. 3, pp. 40-30 (1979).
Horowitz, E. and S. Sahni, Furdamentals of Comp-
tuer Algorithms, Computer Science Press Inc., Po-
tomac, Md. (1987).

Hou, W.H., “Automatic Recognition of Chiense
Words,”” Master Thesis, National Taiwan Institute
of Technotogy (NTIT), Taipei (1983) (in Chinese).

Hsieh, C.C., Z.K. Ding, Y.H. Wang, S.F. Tung,

S. Lin and C.C. Shu, “Full-Text Database for

Chinese History Documents,”” Proc. of 1988 Inter-
national Conference on Computer Processing of
Chinese and Oriegntal Languages (ICCPCOL),
Toronto, Canada, pp. 334-340 (1988).
International Organization for Standardization,
Information Processing — Text and Office Systems
— Standard Generalized Markup Language
(SGML), Draft International Standard I1SO/DIS
8879 (1985). .

Knuth, D.E., J.H. Morris and V.R. Pratt, “‘Fast
Pattern Matching in Strings,”” SIAM J. Comput.,
Vol. 6, No. 2, pp. 323-330 (1977).

Knuth, D.E., The Arnt of Computer Programming:
Vol. 1, Fundamental Algorithms, 2nd Ed., Addison-
Wesley, Mass. (1973),

Ozkarahan, E., Database Machines and Database
Maragement, Prentice-Hall, Inc., Englewood Cliffs,

17.

18,

15.

20.

21.

22,

23.

NI (1986).

Peels, A L.H.M., N.J.M. Janssen and W. Nawijn,
“‘Document Architecture and Text Formatting,”’
ACM Trans. Off. Inf. Syst., Vol. 3, No. 4, pp.
347-369 {1985).

Salton, G. and M.J. McGill, [atroduction o
Modern Information Retrieval, McGraw-Hill, New
York (1983).

Sproat, R. and C.L. Shih, “‘A Statistical Method
for Finding Word Boundaries in Chiense Text,’’
Proc. of 1989 Intermational Conference on Com-
puter Processing of Chinese and Oriental Languages,
Changsha, China {1990).

Tseng, 5.5., ““The Design of Chinese Character
Database,”’ Master Thesis, National Talwan Institute
of Technology, Taipei {1982} (in Chinese).
Tseng, 8.5., ““CCCII: The Coding Scheme and the
Applications,” Communications of Computing
Center, Academia Sinica, Vol. 2, Nos. 5-8 and
12-13 (1986) (in Chinese).

Tseng, 5.5., M.Y. Chang, C.C. Hsieh and K.J.
Chen, “*Approaches on an Experimental Chinese
Electronic Dictionary,”” Proc. of 1988 International
Conference on Computer Processing of Chinese and
Oriental Languages, pp. 371-374 (1988).

Tseng, S.5., C.C. Yang and C.C. Hsieh, *‘The
Document Representation and a Refined Character

© Inversion Method for Chinese Textual Database,”

24.

Proc. of 1988 International Conference on Computer
Processing of Chinese and Oriental Languages, pp.
376-381 (1988). _
Ullman, J.D., Principles of Darabase Systems, 2nd
Ed., Pitman Publishing Ltd., London {1982).

Discussions of this paper may appear in the discussion

section of a future issue.

All discussions should be

submitted to the Editor-in-Chief.

Moanuscript Received: July 14, 1989
Revision Received: May 18, 1990
and Accepted: June 6, 1990

