TR-91-016

A Linear Time Optimal Via Assignment Algorithm
for Three-Dimensional Channel Routing

F

— #oF
801,28
£ ¥ |

R A

UlllIIIJWIIJHWIHWIINIIIHWNIINIIIWHIIINHIIIWWIINIIII

000349 0




A Linear Time Optimal Via Assignment Algorithm
for Three-Dimensional Channel Routing

Jan-Ming Ho'
Institute of Information Sciences

Academia Sinica
R.O.C.

Abstract

" A three-dimensional channel refers to a 3-D rectangular block with multiple routing
layers. Terminals exist only on the top and the bottom layers and they form two well-
aligned 2-D rectangular channels. In this paper, we consider a special version in which
the three-dimensional channel contains only three layers. The routing algorithm is as
follows. First, a channel routing algorithm is applied to both the top and the bottom
layer to route the terminals belonging to the same net on the same layer. The second
step is to form another channel routing problem as defined below. A net IV is said to
be an inter-layer net if it contains terminals on both the top and the bottom layers.
Two via positions in the middle layer are selected for each inter-layer net. The first via
is chosen from the position immediately below one of the terminals belonging to N,
while the second is chosen from the position immediately above one of the terminals
belonging to N. Notice that it defines a channel routing problem containing only two-
terminal nets. The channel routing algorithm is then applied. In this paper, we present

a linear time optimal via assignment algorithm for the second step decribed above such
that number of incompletely routed nets are minimized.

'This work has been supported in part by the National Science Council, R.0.C., under Grant NSC
79-0404-E-001-01.
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Figure 1: A three-dimensional channel; where nets 1 and 2 are inter-layer nets, while nets 3
and 4 are not.

1 Introduction

The three-dimensional channel routing problem has been studied by C.C. Tong and C.L.
Wu [2). In a two-dimensional chanuel routing f)roblem, a channel is a rectangular region.
Terminals to be connected by wires exist on the upper and the lower boundaries of the
channel. Interior of the rectangle is used as the routing region. A three-dimensional channel
(see figure 1) is defined as a multilayer rectangular block containing two well-aligned channels
on the top and the bottom layers respectively. Terminals does not exist in the middle layers.
A net specifies a set of terminals to be connected. A net is said to be an winter-layer net if it
contains terminals on both the top and the bottom layers. Vias must be used to complete the
connection of an inter-layer net. she subset N’ of terminals of an inter-layer net N is called

the upper subnet (lower subnet) of N if N’ contains all the terminals of N on the top (bottom)




layer. Both upper and lower subnets are also called intra-layer subnets. In [2], channels are
defined as having three layers. Their routing model first performs channel routing algorithm
on the top and the bottom layers to complete the connection of the terminals on the same

layers. For the inter-layer nets, two vias, one for the upper subnet and the other for the

- lower subnet, are assigned to bring the subnets to the boundaries of the middle layer to

form another two-dimensional channel routing problem. The via assigned to a upper (lower)
subnet locates immediately below (above) one of its terminals. A terminal #' is said to be the
tmage of the other terminal ¢ if £ and ¢’ align on the same z-axis. Note that a terminal and its
image cannot be assigned vias at the same grid point between them. This pair of terminals
1s said to form a positional conflict in [2]. The upper (lower) subnet of an inter-layer net
N is said to be blocked if no via is assigned to it, i.e., each grid point immediately below
(above) its terminals belongs to a via assigned to other nets. An inter-layer net is said to be
blocked if either its upper subnet or its lower subnet is blocked. The objective of the optimal
via assignment problem for three-dimensional channel routing, OVA problem for short, is to
minimize the number of blocked intra-layer subnets.

In [2], a constraint graph is defined as follows. A vertex of the constraint graph is a
terminal of an inter-layer net. An edge exists between two vertices if the corresponding
terminals either belong to the same upper (or lower) subnet of an inter-layer net or form a
positional conflict. Note that the construction of the constraint graph takes O(n?) time. Tong
and Wu give‘characterizations of the constraint graph and presented an O(n?) algorithm for

the OVA problem. In this paper, we present an algorithm for the OVA problem with linear

. time complexity. In section 2, we give a new formulation of the OVA problem based on the

notion of a constraint hyper-gmph and we also descnbe the linear-time algorithm OVA. Note
that constructmn of the initial constraint hyper-graph takes only linear time. Correctness
of the algorithm OVA is asserted in section 3. We also consider the objective of minimizing

the number of incompletely routed nets. In section 4, we present a modified algorithm OVA

which optimizes the new objective.




2 The Constraint Hyper-Graph and the OVA Algo-
rithm |

The constraint hyper-graph is a dynamic data structure used to describe the OVA problem
at its current status. An intra-layer subnet is said to be active if no via has been assigned to .
it. A super-node is associated with each active intra-layer subnét and it can be implemented,
say, as a linked list. Note that a super-node corresponds to a clique in the constraint graph
defired in [2]. A terminal is said to be active if it belongs to an active inter-layer subnet and
its adjacent grid position in the middle layer has not been assigned to any via. We associcate
a vertez for each active terminal. An edge connecting two vertices is called a P-edge if the
corresponding terminals form a positional conflict. Note that an edge is the candidate of
a via position for its adjacent alctive intra-layer subnet. A via can always be assigned to
a terminal, if the corresponding vertex does not have an edge connecting to it. In which
case, the terminal is called a leaf. A constraint hyper-graph can thus be denoted as a triple
H = (V,N, E), where V denotes the set of vertices, N denotes the set of super-nodes, and
E is the set of edges. Notice that N is a partition of V. The associated constraint graph of
H is the graph Gy = (V, E'), where E’ is the union of E and the edges contained in the
cliques defined bjr super-nodes in V. Edges in E' — E are referred to as the N-edges.
Initialization of the constraint hyper-graph H can be done as the following. We are going

to use four arrays UZ, L1, U2, and L2 to store information of the terminals belonging to

each side of the two channels, where UZ and U2 belong to the upper channel and LI and L2

belong to the lower channel. Since a net is specified as a set of terminals in their coordinates
in the channels, we can easily determine if a net is an inter-layer net and whether super-
nodes should be.crea,{ed for it in time proportional to the size of-‘the net;‘"a.nd information
of each terminal can be written to the corresponding position in one of the four arrays in
constant time a;s it is retrieved. Ul and LI are then examined simultaneously to create the
set of edges E and the set of vertices V. In this way, the constraint hyper-graph is created
in a total of O(n) time, where n is the number of grid point on each side of the upper
and lower channels. Tong and Wu's algorithm constructs the associated constraint graph

Gy explicitly. Since every intra-layer subnet constitutes a clique in Gy, the construction of

Gy takes O(n?) time. Note that our data structure maintains the cliques implicitly in the



linked-lists representing the super-nodes to keep the time complexity down to O{n). In our
paper, we are going to use the notations super-node and cliques interchangeable since they
only differ in the implementation details. 7

The vertices are given priorities 1, 2 and 3 as the following. A vertex is given priority
L 1f it is not contained in any P-edge. If a P-edge connects two vertices corresponding to
terminals in the same inter-layer net, then the two vertices are also given priority 1. A vertex
is given priority 2 if it correponding to the last terminal £ left in the super-node containing
t. All the other vertices are given priority 3. Note that priorities of the vertices can be
computed in a total time of O(n).

A variable INCOMPLETE is used to store the number of failures in assigning a via to
an intfa—layer subnet and is initialized to 0. Algorithm OVA then iteratively selects from
V a vertex v of the Jowest priority, assigns a via for the net containing ¢ and updates the
data structures, where ¢ denotes the active terminal corresponding to v. Let s denote the
super-node containing v. If v is a leaf, algorithm OVA assigns the adjacent via to v and
calls CLEAR(v). If v is not a leaf and the priority of v is 1, then algorithm OVA assigns
the via associated with e, the edge connecting v and its image v, to v and e is deleted from
E. Procedure CLEAR(O ) is then performed on both v and v'. If the priority of v is 2 or 3,
then algorithm OVA performs the following before calling CLEAR(v). Let v’ be the vertex
connected to v by an edge e and. s’ be the super-node containing v'. If s’ contains v’ as
its last vertex; then INCOMPLETE is incremented by one and s is removed from N IS
contains more than one vertex, then v’ is deleted from s’. Then the edge ¢ is deleted from
E. The procedure CLEAR(v) (see figure 2) first examines every vertex T in s, T #£ v. f 7
is a leaf, then it is simply deleted form s. Otherwise, let 7’ be the vertex connected to ¥ by
the edge e. Tlleq, V' is marked as a leaf with its priority being raised to 1 and the edge &
is deleted from E. After all the other vertices in S is removed, v is deleted from s and s is
deleted from N. The algorithm terminals when there is no vertexin V. Obviously, algorithm

OVA runs in linear time.
Theorem 1 Algorithm OVA runs in O(n) time.

In the O(n?) time algorithm of Tong and Wu’s, most of the time is spent in identifying

and breaking loops in the graph obtained by contracting the cliques in Gg. Qur result shows
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Figure 2: The procedure CLEAR (v).

that these steps are unnecessary.

3 Correctness of Algorithm OVA

Let H = (V,N, E) be the constraint hyper-graph describing a given three-dimensional chan-
nel routing problem, and Gy = (V, E’) be the associated constraint graph. Let Gy, G, ..., Gy
be the connected components of Gg. Tong and Wu [2] has shown that they can always assign
vias to the intra-layer nets cqnta.i;ied in each connected component G; such that at most one
failure occurs:. Algorithm OVA basically takes advantage of this characterization. To assert

the correctness of algorithm OVA, we first point out when a failure in assigning vias should

OCCur.

Definition 1 A connect component G; is said to be distinguished if G; has the following
properties:
(1) G does not have a leaf nor a pair of images belonging to the same net;

(2) G is a tree of the cliques corresponding to the intra-layer submets.

Lemma 1 There is at least one failure in assigning vias to a distinguished connected com-

ponent G;.

Proof:  Let q be the number of cliques in G;. In other words, G; contains ¢ intra-layer




subnets. Since the cliques form a tree, there are ¢ — 1 P-edges. Also note that each P-edge

allows at most one via, thus at least one of the intra-layer subnets fails to attaining a via.

<

Notice that algorithm OVA always assigns vias to the intra-layer nets of G; with at most one

failure if G; is distinguished.

Lemma 2 Algorithm OVA assigns vias to the intra-layer nets of G; with at most one failure
if G; is distinguished.

Proof: 'We shall prove by induction on the number of vertices contained in G;. According
to the definition of a d1$t1ngu1311ed component, the minimum size of G; is two, v and o,
each belongmg to a distinct super-node s and s’ , respectively. Obviously only one of the
intra-layer subnets corresponding to s and s’ will get the via while the other fails. Now, let’s
assume that for every distinguished component G’ containing less than % vertices, there is
at most one failure in assigning vias to the intra-layer nets of G’ by algorithm OVA, where
k is the size of G; and k > 2. Since G; is distinguislled, a clique s at the leaf of G; must be
contain only one vertex v. By our priority scheme, v gets the priority 2. Also notice that
the priority of a vertex w at an internal clique of G; gets priority 3. Thus the first vertex
selected by algorithm OVA has a priority 2. Let’s denote this vertex as v and v’ as the vertex
connected to v by a P—edge e. Denote s’ as the super-node containing v'. If s’ contains v’ as
the only vertéx, since G; is a connected component, we immediately induce that there are
two vertices in G;. Which contradicts our previous assumption of k > 2. Thus s’ contains at
least two vertices (see figure 3). In processing v, algorithm OVA will assign the via associated
with e to v and it will delete v’ from s'. Obviously, G; remains distinguished at its new state
and its size is decreased by two. Thus, we can apply the principle of induction to conclude

that elgorithm OVA will process G; with a single failure.

<&

Lemma 3 If there is o vertez with priority 1 in the connected component G;, then vias can
be assigned to the intra-layer nets of G; without fatlure.
Proof: This can be proved by using induction on the number of vertices in G;. If v is the

only vertex in G, then it must be the leaf and we can assign a via to v without conflict.




-
.
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Figure 3: Hlustration of the processing of a distinguished G;




Figure 4: Tllustration of the proof of lemma 3-(1).

Now, let’s assume that the lemma is true for every connected component having less than
k vertices, where k > 1 is the number of vertices in G;. Now let’s consider the first vertex
v in G; selected by algorithm OVA. v is either a leaf or is contained in an image pa.u: both
belonging to the same inter-layer net according to the definition of priority 1.

(1) vis aleaf. Then a via can be assigned to v without conflict and we can apply the

procedure CLEAR (). Denote 5 as the super-node containing v. Note that s contains at

- least two vertices. After applying CLEAR (v), G; is decomposed into smaller components

GLG,...,GY (see figure 4). Each G contains at least a leaf v} which is the image of a
vertex v; # v containing in s. Note that the size of G is smaller than k. By the hypothesis
of induction, vias are also assigned to G? without failures.

(2) v is contained in a P-edge e = (v,v'), and both v and v’ belong to the same inter-layer
net. Denote s and s’ as the super-nodes containing v and ' repectively. Note that e can
be (a) contained in a cycle of G; or (b) otherwise (sce figure 5). algorithm OVA will assign
the via associated with e to v, and perform CLEAR(s) on both v and v’ and yields several
connected components G}, G2, -+, GY in both cases (a) and (b). Similar to the discussions
in (1), we know that the components each contains at least a leaf and size of each 7 s

smaller than k. Again, by the hypothesis of induction, vias are successfully assigned to G;f .




) (a) {b)

Figure 5: Illustration used in the proofs of lemma 3-(2) and 4.




Lemma 4 Algorithm OVA assigns vias to G; optimally.

Proof: Equivalently, we show that algorithm OVA assigns vias to G; with

(1) one failure if G; is distinguished;

(2) zero failure if otherwise.

Again, we are going to use induction on the numBer of vertices in G;. It’s obvious that
the equivalent statement is satisfied when the size of G; is one or two. Now, we assume
that the equivalent statement is satisfied by every connected component G’ of size less than
k, the size of G;. (1) is the result of lemma 1 and 2. If G; contains a leaf or a P-edge
connecting two vertices belonging to the same inter-layer net, then (2) is satisfied as asserted
by lemhma 3. Thus, we can assume Gy as having neither a leaf nor a P-edge connecting two
vertices belonging to the same inter-layer net, and G; is not distinguished. We are going to
show that G; satisfies (2) under these assumptions. First, we know that the priority of a
vertex of G; must be either 2 or 3. If G; contains a vertex of priority 2, i.e.,-the super-node
s contain v has only one vertex. Then similar to the arguments we used in the proof of
lemma 2, we conclude that dlgom'thm OVA will recursively delete such vertices until none
is left. Note that Gj is still connected and still holds the three properties of G; mentioned
previously, ie. it does not have neither a leaf nor a P-edge connecting two vertices belonging
to the same il;lter-la,yer net, and 1t is not distinguished. Algorithm OVA will now select a
vertex v with i)ﬁority 3. Denote v' as the vertex connected to v by a P-edge e. Note that the
priority of v is also 3. Let s and s’ denote the super-nodes containing v and v’ respectively.
e can be (2) contained in a cycle containing both s and s'; or (b) otherwise (see figure 5).
Since s’ contains no less than two vertices by the property of G,, the via associated with e
can be assigned to v without conflict. Furthermore, since s also contains no less than two
vertices, after applying CLEAR(v),.the connected component G} (illustrated in figure 5-(a)
and 5-(b)), contains at least one leaf. Lemma 3 shows that Algorithm OVA will successfully
assign vias to all the intra-layer submnets in G}. While for the connected component G2,
since its size is now smaller than k, the size of the previous G;, Algorithm OVA will also

successfully assign vias to all the intra-layer subnets in G? by the hypothesis of induction.

<
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Summarizing the above lemmas, we have the following theorem.

Theorem 2 Algorithm OVA optimally assigns vias to the intra-layer subnets of a three-
dimensional channel routing problem such that the number of intra-layer subnets failed in

getting a via to the middle layer is minimized.

4 The Modified Algorithm OVA>

In this séction, we study the problem of optimally assigning vias to the inter-layer nets such
that the number of unrouted nets is minimized. As we’ve seen in the above lemmas, algorithm
OVA yields one failure in assigning vias to the intra-layer subnets of a connected component
G; if only if G is distinguished. An extra unrouted net is incurred if the two intra-layer
subnets s; and s, of an inter-layer net N happen to appear in two distinct distinguished
components G; and G;,7 # j, while algorithm OVA fails to assign vias to intra-layer subnets
s and s’ respectively, where s and s’ belongs to different inter-layer nets. Whenever one such
pair is selected simultaneously, the number of unrouted nets is decreased by one. We readily
recognize that the problem of minimizing the number of unroutable nets is equivalent to
that of finding the mazimum cardinality matching. We'll first present a formal discussion of
the approach, theh present the algorithm. 7

First, we are going to construct a component graph G° = (V°, E°), where a vertex v;
in V¢ denotes:a distinguished component and an edge e = (v;,v;) in E° denotes the set of
inter-layer nets with one of its intra-layer subnet in G; and.the other in G;. Let M C E be
the maximum cﬁrdina]ity matching of G°. For every edge e = (v;,v;) € M, let s = sy U s,
denote one of the inter-layer nets associated with e, where s, in G; and s, in G; denote the
two intra-layer subnets of s. We can modify G; and G; by removing s, and s; respectively
whiéh yields several connected components. By removing s; and G;, for each edge ¢’ = (v,v')
connecting a vertex v in s; to another vertex v/ € V, the vertex v* is now designated as a leaf
whose priority becomes 1 and the edge € is removed from E , and we also remove the vertex
v from V and s; from N. Here H = (V,N,E) is the hyper-graph representing the OVA
problem. Each of the connected components, say G; yielded by removing the super-nodes
(the intra-layer subnets) contains at least one leaf and no more failures will be incurred in

future assignments of the vias to G;.

11




We can now present the algorithm OVA’ as the following.

1. Perform a depth-first search to identify the connected components of the associated

constraint graph Gy;
2. Run algorithm OVA to identify those connected components which are distinguished;
3. Construct the component graph G¢;
4. Compute the maximum cardinality matching M of G¢;
5. Remove the selected super-nodes from the hyper-graph H according to M;

. Berform another phase of algorithm OVA to assign the vias.

=2

Proof of correctness is not difficult and is omitted.

J Theorem 3 Algorithm OVA minimizes the number of unrouted nets for the three-dimensional

channel routing problem.

Note that every step except step 4 of algorithm OVA’ takes O(n) time and step 4 can be
performed in O(m'/?n,) time [1], where n, and m denote the number of edges and the

number of vertices in G° respectively.

Theorem 4 Algorithm OVA’ rins in O(n + m*?n,) time, where n, and m denote the

number of edges and the number of vertices in G° respectively.

5 Conclusion

.~

In this paper, we've studied the problem of three-dimensional channel routing. Note that the
projections of the problem on the top and the bottom layers are each two-dimensional channel
routings. The intra-layer subnets can thus be connected simultaneously using traditional
(two-dimensional) channel routing algorithms. To electrically connect the intra-layer subnets
belonging to the same inter-layer net, we can assign proper vias to one of the terminals per
intra-layer subnet to connect it vertically to lthe middle layer. This defines another (two-
dimensional) channel routing problem in the middle layer in which only two-terminal nets

are given. Unfortunately, in general, the vias can not be completely assigned to all the

12




intra-layer subnets. We presented a linear time algorithm to minimize the number of failures
in doing via assigment. We also presented an almost linear time algorithm to minimize the

number of incomplete nets under this routing method.
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