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Abstract

A tegion query finds all objects intersecting a specified region, usually a rectangular
window. Bucketing, also known as fixed cells, is a data structure especially suitable for
small window queries. The bﬁcketing structure is enhanced in two ways: It is made
dynamic by maintaining a two—level directory structure. By using the technique of
extendible hqshjng, the directories- can grow gracefully as more and more objects are
inserted into the structure. Dynamic bucketing is further enhanced by employing the quad

list structure in order to improve the performance of large window queries.
1. Introduction

Many algorithms in computer—aided design (CAD) applications require region
queries of 'the objects in a plane. A region quéry finds all objects intersecting a specified
region, usually a rectangular window. With the advent of VLSI circuits and the fine-line
PCB technology, such search problems may iﬁw&olve tens of thousands of objects. _Thus a
data structuring technique that orgaﬁizes thiese objects appropriately in order o support

fast region searches is very crucial.

-—

The quad tree was originally proposed for the retrieval of points in a specified query
window [10]. Kedem extended this structure to allow general objects such as rectangles
and polygons [11]. Brown improved the quad tree structure by storing some objects in
more than one quad [5]. Recently, Weyten & de Pauw refined the quad tree by introducing
a quad list-‘structure, making the quad tree especially efficient for large window queries
[19]._ - The multidimensional binary tree (or k—d tree) was originally developed as a search

mechanism for multi—key files [2]. Lauther adopted the k—d tree as a structure for fast

region searches [12]. However, it has been reported that k—d trees use significantly more




) storage than quad trees [16].

Both quad irees and k—d trees use tree structures for searching. The query speed is
thus -affected by the number of objects in the 2—dimensional space (2-space). Bucketing
[1]{8], also known as fixed cells [3], is a data structure that supports the direct access of
objects in 2—space. In this scheme, the 2—space is partitioﬁed into equal-sized rectangular
regions each of which has an associated bucket containing all objects intersecting the
region. Given a query window, it is then straightforward to determine the regions
intersecting the window. And the search time for a small window is constant, independent

. of the number of objects in the 2-space. Edahiro improved the bucketing structure by

incorporating the window list structure from filtering search [6][7].

Different from all the schemes mentioned previously, corner stitching is a sbgcia.lized
data structure suitable for not only region searches but also the report of nearest neighbors
[15]. However, it has been argued that corner stitching has great difficulties with

overlapping rectangles which severely limits its usefulness [16].

[ Bucketing has the adjranta;ge of direct access. However, it has the drawback that it

] is not dynamic. Thus, we propose a dynamic bucketing scheme for on—line region searches.
The 2—space is partitioned into different—sized regfons, thus more adaptable to nonuniform
distribution of certain objects. Two levels of directories are maintained, reflecting the
partition of the 2—space into regions. The directories will grow gracefully as more and
morze objects-a:::e inserted into the buckets. This dynamic directory structure has its root
from extendible hashing, a technique originally proposed for fast retrieval of dynamic data
in 1—space [9]). Like the original bucketing structure, dynamic bucketing can also support

the direct access to objects intersecting a query window.
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The proposed dynamic bucketing scheme is further enhanced by employing the quad
list structure [19]. Bucketing is especially appropriate for small window queries. The quad

list structure is very effective in improving the performance of large window queries. The

~ combination is thus a data-structure efficient-for both small and large window queries.

We have implemented the dynamic bucketing and the well known quad tree
algorithms. Many experiments have been performed in order to compare the performances
of the two structures. Test results from these experiments have been in favor of dynamic

buc-keting.
2. Background'

First of all, let us make clear certain assumptions with regard to the region query
problem. These assumptions are valid in most CAD applications {4] and, possibly, in some
others as well.

1. Al objects and query windows are rectangles. In other words, if an object is not a
rectangle, then it is represented ]Sy its smallest enclosing rectangle.

2. All objects and query windows fall within a large rectangular region, the 2—space.

3. Without loss of generalify, we assume that the 2—space, objects and query windows all
have nonnegative integers as their coordinates.

4. The objects are quite small compared with the entire 2—space.

5. Tﬁe objects are almost uniformly distributed over the entire 2—space.

6. Region querges occur more frequently than insertions. Thus the query speed is more

impbrtant than the insertion time.

7. Insertions occur more frequently than deletions. Thus we can ignore the influence of

deletions on the performance of the technique.




For the rest of this section, we briefly review the directory structure of extendible

hashing [9].

- Assume that the objects are points in 1-space;-each object has an integer as its

d entries where d is called

coordinate. A directory is organized as a linear array having 2
the depth of the directory. Each entry in theA directory.has a pointer to a bucket. A
bucket can contain at most T objects, where T is a threshold number chosen for efficiency.
To locate an object, we use the first d bits of its coordinate as an index to the directory.
Then the pointer in the appropriate directory entry is followed to retrieve the bucket
contaiﬁjng the object. Fig. 1 shows a directory structure when d=3. As shown in this

figure, each bucket has a header that contains its local depth d’¢d. For a bucket with local

depth d’, there are 2(d_d’) director:y entries pointing to it.

When iﬁsérting an object into a full bucket (a bucket containing T objects) with
iocal depth &’, d’<d, we execute a bucket split: We split the bucket into two buckets with
local depth d'+1, distribute the objects between the two buckets according to their
coordinates, and then change the pointers in the appropriate directory entries. As an
example, for the direbtory s_tfucture in Fig. 1, the bucket with local depth 1 can be split

~ into two buckets as shown.in Fig. 2.

When inserting an object into a full bucket with local depth d’=d, we fixst execute a
directory doubling: We double the size of the directory; each directory entry becomes two
adjacent direcf:ory entﬁeé with pointers to the same bucket; directory depth d is then
increased by one. Now a bucket split to the overflow bucket can be executed similarly as

before. For the example in Fig. 2, if the bucket pointed to by the 010 pointer overflows, a

- directory doubling will be executed followed by a bucket split as shown in Fig. 3.




An object can be deleted from the structure in a way opposite to the insertion of an

object; buckets can be merged or the dir_ectory can be halved whenever it is appropriate. -
3. Dynamic Bucketing

In dynamic bucketing, two levels of directories are used for structuring the objects
in 2—space. The top level directory called the horizontal directory represents a partition of
the 2-space into vertical strips. Each entry in the horizontal directory has a pointer to a
vertical directory. There is a one—to—one correspondence between the vertical directories
and the vertical strips in 2—space. Each entry in a vertical directory has a pointer to a
bucket. Correspondingly, each vertical strip is partitioned into regions, and there is a .
one—to—omne correspondence betweén the buckets and the regions. A typical structure of
dynamic bucketing is shown in Fig. 4. Iis associated partition of 2-space into regions is
shown in Fig.. 5.. Note that there are 3 vertical directories; thus the 2-space is partitioned
into 3 vertical strips. These vertical strips are further divided into different—sized regions

associated with the buckets.

¥

In this sfructure, all objects are stored in buckets. A bucket, associated with a
region, containg all objectg--fhat intersect the region. Since an object may intersect more
than one region, some ijects will be stored in more than one bucket. To save the memory -
space used by these duplicate objects, we store pointers to the object rather than the object.
itself in the buckets. This multiple storage strategy has been used in the quad tiree
struc'ture [5]... *

In dynamic bucketing, the horizontal directory and each of the vertical directories

are organized like a directory for extendible hashing. Their data structures are

demonstrated as follows:




The horizontal directory, h_ dir, conmsists of fields h_ dir.depth, h__dir.entry[0],...,
h_ dir.entry[h—1], where h = oh_dir.depth h_dir.depth is the directory depth of h_ dir.
Each h_ dir.entry [i],'i = 0,1,...,h—1, contains a pointer to a vertical directory.

A vertical directory, v_dir, consists of fields v_dir.local, v_dir.depth,

v_ dir.entry|0],..., v_dir.entry[v—1], where v = 2V_dil'.depth

. v_dir.local is v_ dir’s local
depth with respect to h_dir. v_dir.depth is the directory depth of v_dir. Each

v_dir.entry[j], j = 0,1,...,v—1, contains a pointer to a bucket.

A bucket, bkt, consists of fields bkt.local, bkt.count, and a list of object pointers.
bki.local is bkt’s local depth with respect to a vertical directory. bki.count indicates the

number of object pointers stored in bkt.

Dynamic bucketing can be consideréd as a generalization of extendible hashing to
the 2—space. All algorithms sketched in Section 2 thus can be extended for structuring the
directories of dynamic bucketing.

To answer a region queiy, it is necessary to find all regions intersecting a given
window. This can be dene with two loops. The outer loop finds all vertical strips
intersecting the window. For each intersecting vertical strip, the inner loop then finds the
regions intersecting thé window. We use the first h_dir_.depth (resp. v__dir.depth) bits of
the window’s x (resp. y) coordinates as the lower and upper bounds to the outer (resp.
inner) loop- *’:[‘he vertical directories (resp. buckets) are accessed by stepping through

pointers h_ dir.entry[i] (resp. v_dir.entry[j]). To avoid accessing a vertical directory (resp.

- bucket) more than once, the index i (resp. j) is each time incremented by t, where

tzzh__dir.depth—v_dir.local(r esp. t=2

v_dir.depth—bkt.loca.l)-




The above nested loops can be executed very efficiently. For a small query window
which intersects a comstant number of regions, the search time is constant since only a
constant number of directory entries are examined. For example, exactly two directory

entries are examined for a point serach.

When inserting an object, we use the same outer and inner loops just described to
locate the regions the object intersects. A pointer to the object is then stored in each of
the buckets associated with these regions. If some of these buckets are full, we must
execute certain operations such as bucket split and directory doubling in Section 2 to make
room for the mew object. Now there are a bucket split and two directory doubling
-operations:\ vertical directory doubling and horizontal directory doubling. In addition,
there is a vertical directory split in analogy with a bucket split. When executing a vertical
directory split, a vertical directory is split into two; each bucket linked to the vertical
directory is split into two buckets; each directory entry becomes two Hirectory entries each
in one directory and having a pointer to a split bucket. For the structure in Fig. 4, a
vertical directory split is illustrated in Fig. 6. |

Let us consider the ldirectory update strategy upon insertion. Assume that a bucket,
bkt, has been located; bkt is pointed to by pointer v_dir.entry[j] in vertical directory
v_dir; and v_ dir is pointed to by pointer h_ dir.entry[i] in the horizontal directory h_ dir.

If bkt is full, we use the following procedure to create buckets for new objects.

if v:di’-r‘.depth > bkt.local then
execute a.b.ucket split

else if h _dir.depth > v_dir.local then
execute a vertical directory split

else let region_ ratio be the aspect ratio (height/width} of the
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region associated with bkt, and
let object_ratio be the average aspect ratio (total height/total_width)
of the objects in the bucket.
- -if region_ ratio > object_ratio then
execute a vertical directory doubling and then a bucket split

else execute 2 horizontal directory doubling and then a vertical directory split

Using the above procedure, the regions in the 2—space tend to be so partitioned to
have a;pprox:imately equal aspect ratios as the majority of objects intersecting them. This
heuristic has the effect of minimizing the number of objects that intersect more than one

region.

Since deletions occur infrequently, the deletion of an object is simply done by

removing all its pointers in the buckets without merging buckets or halving the directories.

4. Some Refinements

As described in the last section, some objects in the bucketing structure are
duplicated in more than osé bucket. This results in the inefficiency of inspecting an object
more than once on one region research. The quad list structure is employed fo avoid this

inefficiency [19]. The directory structure of dynamic bucketing remains the same as before,

- but each bucket is refined to contain four lists rather than one.

4

-

A bucket, bkt, contains fields bkt.local and bkt.count as befo;e, and four lists of
object pointers,namely, lists 0, 1, 2, and 3. An object i'ntersecting the region associated

with a bucket is stored in one of the four lists depending on the following two tests:

whether the object crosses the lower (resp. left) boundary of the region or not. The



classification is made according to Table 1.

When answering a region query, the same procedure as in Section 3 can be used to
locate all regions intersecting the given window. For each intersectiﬁg region, some of the .
four associated bucket lists have to be inspected depending on whether the window’s lower
(resp. left) boundafy crosses the region or not. Table 2 shows the lists to be inspected in
different cases, In this way, each object intersecting the query vc;indow is guaranteed to be

reported exactly once [19].

A problem that may arise with dynamic bucketing is the nonlinear growth rate of
the directory. The directory size of extendible hashing is quite sensitive to the existence ¢f
clusters of objects. Tamminen ha.s.proposed a refinement of extendible hashing which has
linear average storage utilization [18]. Using this scheme, a lower bound is imposed to the
size of a regigm. When a region reaches this ldwer bound, it can not be subdivided, and
overflow buckets are created. This refinement also solves the problem that more than T

objects may have the same coordinates (T = threshold).

¥

The 2—s§ace is the maximum space that can possibly be used for layout design. For
a specific layout, it is quife. possible that only a portion of the 2-space is actually used.
When this happens, thosé directory entries of dynamic buéketing outside certain ranges
+ will all point to empty buckets or empty vertical directories. The memory space for the
directories can be saved by recording the ranges and omitting those directory entriés

outside the ranges.
5. Test Results

We have coded the dynamic bucketing and the quad tree algorithms [19] in C
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rupning on SUN 3/60. Many experiments have been performed in order to compare the
performances of the two structures. For each experiment, the sizes and locations of objects
are generated by a random number generator, and all objects are generated inside a fixed
- 2—space bounded by-vertices (0,0) and-(32767,32767). For example, for w=h=250+125, the
width and the height of an object are random numbers generated between 125 and 375.
We consider query windows of two different sizes: a large ﬁndow has its width and height
equal to 16000; and -a small window has the same dimensions as the average dimensions of -
an object. For each experiment, 100 query windowé of each size are generated randomly at

100 positions. The reported results are averages taken from the 100 windows.

We use the following notation.
N = total number of objects inserted
T = threshold = number of object pointers a bucket can hold
b = average number of objéct pointers a bucket actually holds
load factor = b/T

duplicate factor = (number of object pointers stored)/N

Fig. 7 illustrates the memory space used by dynamic bucketing and the quad tree.
Dynamic bucketing uses slightly more (8%) memory space than the quad tree when the
average number of objects in a bucket is relatively small. It should be pointed out that in
these tests the buckets (leaf quads) were implementéd as h(iynamica]ljr allocated linked lists.
One may want-to implefnent the buckets by allocating a fixed—sized (depending on T)
consecutive. piéce of stoi:age for some system’s considerations (eg. database, page fault).
When the buckets are allocated consecutive pieces of storage (4—byte‘pointers linking the
quad lists e'mre replaced by one—byte offsets.), dynamic bucketing uses less memory space
than the quad tree since the former has a higher load factor than the latter. The average

load factor of dynamic bucketing is 0.64 while that of the quad tree is 0.52.
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When answering region queries, the dymamic bucketing and the quad tree
algorithms are equally efficient in terms of the numbers of objects they e:ﬁa.mine. This is
shown in Fig. 8 for large window queries. (Small window queries also demonstrate similar
results.) More objects than those really intersecting the query ;vindow must be examined.
This is due.to the boundary effect (regions cross the window boundary may contain objects
disjoint with the window) rather than the duplication of objects. Fig. 9 shows the numbers
of directory entries and tree nodes examined by the dynamic bucketing and the quad tree
algorithms for small query windows. It should be noted that since more operations must be
executed- at each tree node (containing four pointers) of the quad tree than at each
direct-ory entry (containing one pointer) of dyramic bucketing, the difference between the
two methods is more than what Fig. 9 indicates. Since for small window queries, the query
speed is, to some extent, determined by the search time, dyramic bucketing is particularly

appropriate for small window queries.

All test results presented so far have N == 20000 éven though many other values
have also been tested. We have made the following observation: When N and b increase or
decrease propo;tionaily, the storage utilization of dynamic bucketing remains almost
unchanged. For example, the test case N = 20000, b = 20 and the test case N = 40000, b
= 40 showed-approximate}y"_équa.l duplicate factors. The performance behavior regarding
the query speed is not 50 ;e_gular. Test results for different values of N have shown similar -

curves as those in Fig. 8 and 9, but at a different scale.

VLSI J,a.‘yduts usually contain many long narrow wires. Thus, it is important for a ‘
data structure‘ to be able to handle long narrow objects efficiently.” Fig. 10 shows the
memory space used by dynamic bucketing and the quad tree when N = 20000, w = 80420,
h = 780+300. The space efficiency of the quad tree degrades apparently while dynamic

bucketing still maintains an equal storage utilization as the case of squére—shaped objects
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(with reference to Fig. 7). Due to the directory update heuristic described in Section 3,
dynamic bucketing can handle long narrow objects very efficiently. This suggests that

horizontal and vertical wires in a layout should be stored in two separate bucketing

structures.
6. Discussion

The original bucketing structure is not efficient in storage utilization when there are
many long narrow objects such as wires. (The quad iree does not seem to be efficient
either.) Edahiro adopted a special structure, the window ]ist; to handle these long narrow
objects {7]. We have presented a heuristic approach to this problem. The partitioning of
the 2—space is made according to the shapes of the objects. The same effect as that gained
by the window list seems to be achievable by using this simple scheme. In fact, the
window list approach has a good theoretical bound in its storage utilization. However, in
its implementation each long object must be stored for at least three copies which may
severely limit its efficiency in practice.

The region query problem considered in this paper is related to the multikey file
organization problem. THe grid file [13} and multidimensional extendible hashing [14] [17]
are structures for the latter problem which share the same spirit as dynamic -'bucketing.
They use k—dim arrays as their directories while dynamic bucketing uses two—levels of
1=dim arrays. When an array is resized (eg. doubling), the entire array has to be
inspected. -‘I"ilus, using 2 single ﬁ—dim array as directory? the worst—case insertion time is

O(D) where D is the number of directory entries. On the other hand, using the two—level

“directory structure of dymamic bucketing, only 1-dim arrays of size approximately

A Y
O(y D) are to be resized. The time complexity of insertion is thus determined by that of

vertical directory split which is O(by D ) where b is the average number of objects in each
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bucket. Since D is usually much larger than b, we consider the proposed directory

structure more appropriate for its use in interactive programs.
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Table 1. List types

object crossing object crossing  list
lower boundary left boundary type

no no 0

- no yes 1

yes 1o 2

yes yes 3

Sy




Table 2. Lists to be inspected

lower boundary

crossing region

left boundary

Crossing region

lists to

be inspected

no
o

yes
yes

no
yes
no

yes
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