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ABSTRACT:

An new approach based on the stochastic model, Autoregressive — Moving Average

( ARMA ) model, to recognize the shape of patterns is proposed. In general, the dimension

of the feature vector is fixed, thus all the feature clusters of the patterns are in the same
space.. So the number of the clusters of the patterns in the feature space is limited. In this
paper, we use an algorithm to determine the order of the ARMA model dynamically, so the
order can be treated as a feature. This increases the degree of freedom of the feature space.
In our expreiment, some patterns can be easily classified. This is because the order is
determined dynamically, so some classes may contain only one pattern. It is easy to
recognize those patterns whose orders belong to the classes contajuing just one pattern.
Finally, three decision functions are used to investigate the recognition rate of our new
approach — Autoregressive-Moving Average model. The results indicate the new method

is reliable.




I. Introduction:

Pattern recognition is an area including broad application domain. such Optical
Character Recognition(OCR){1], and Object Recognition[2]. The research on -pa.ttem
recognition has”been progressing for a long tinﬁe. Thousands of paper have been published.
In convention, the methodologies can be divided into Syntactic and Statistical pattern
recognition. In this paper, we propose a statistical algorit]im to classify shéa.pe patterns.

In general, the first step in pattern recognition is feature extraction. The feature
extraction of a pattern can have definite goals. While analyzing a pattern, we hope the
features selected may be used to reconstruct the original pattern, and can preserve
information as much as possible. In recognition, we hope the features extracted can
obviously distinguish one from the other patterns, and they are orientation and size
invariant and also not noise sensitive. In past, the research of statistical work on feature
extraction has been devoted on three classes [3]:

1) Linear and nonlinear transfor;l1ation to map patterns to _llower—dimensional

spaces for pattern recogm‘tion or enhance the class separability.

2) Feature evaluation criteria trila.t bound the Bayes error probability and

transformations that are bptimum with regpect to such criteria.

3) Search procedures for suboptimal selection of a subset fr_om a given set of

measured or derived features.
The content of this paper belongs to the first class.

In the first class, many transformation techniques have been proposed. In the early
approaches, some algorithms tried to extract the features from the brightness function
f(x.,y) of an image. Typical methods are m‘omentS and Fourier descriptors, etc. In general,
the number of patterns the system iéarzls can not be too large. Otherwise the clusters of
pattern will overlap in the features space, and this will decrease the recognition rate. The
early research [14] on OCR, only 1.0 to 36 characters the system can recognize. It is easy to

understand that the characters set of a successful OCR algorithm should at least have more
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than 92 characters( 52 alphabetic, 10 numeric, 30 special characters). Seven or more
moment invariants seems impossible to classify 92 characters ( clusters ) exactly. In recent
publications, Dudani[5] uses two set of seven moment invariants as features to recognize
aircraft. Although he gives some excited result, the system just handles six types of
aircraft. In [4], Pavalidis says moment is not a popular technique any more. But in image
processing, Tsai[9] has successfully thresholded an image by using moment method. In
general, moments are noise sensitive and hence are not suitabie for recognition task.

A more promising technique is Fourier Transform (FT). It provides a much more

application domain than moment such as handprinted character recognition’ [2]. Pattern

representation and reconstruction using Fourier descriptors still has many problems, such

as variability in the different starting point[6], and the dimensionality of features, etc.

In this paper, we propose an approach based on stochastic model — Autoregressive
moving average model for shape analysis. In literature[7,8], circular autoregressive ( CAR )
model proposed to analyze and classify shape patterns. In both approaches, the model order

is fixed, which is questionable, and a set of coefficients, for example 15, is calculated by

linear regression ( LR ) or maximum likelihood ( ML ) for each pattern. Although three

recognition procedure are proposed in [8]. In fact, because of the order of model limited the
number of patterns to be recognized by the system is not large. If we determine the order
of the model from the boundary of the pattern, and the order can be treated as a feature of
the pattern. This will increase much more degree' of freedom in defining a classification
space. And the classification space is not a fixed dimensional space any more. Apart from
the dynamiq model _o_rder, to imprové the accuracy of a model we use Autoregressive and
Moving Average ( ARMA ) model to fit the shape pattern. By adding moving average
model we can avoid the cyclic ( or preiodic ) phenomenon of the AR model and compensate
the approximation error in deﬁning a model.

The following sections, we will describe the mathematical model about the AR, and

ARMA model, and the solution algorithm for dynamical model of ARMA function is
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described. In section IV, we demonstrate the result of our experiments on shape recognition

by our new method: ARMA model.




II. Mathematical Model:
What is the time series? What is the stochastic process? In [13], Box and Jenkins

define the terms as follow.

A time series is a set of observations generated sequentially in time. A statisticgl
phenomenon that evolves in time according to probilitistic laws and we use a model to
describe the probability structure of a sequence observations is called stochastic process.
The objective of the statistical investigatation is to infer the p'roperties of the population
from those observations. So, for example, we can make a forecast by inferring the
probability distribution of the observation in the future from the past value.

A stochastic process is called stationary process if the model is based on the
assumption that the process is in a particular state of statistical equilibrium about a
constant mean level.

-..There .are three important practical applications that can be handled ‘by these
models very usefully.

1. Forecasting:

If we analysis the observations occurred in the past, and we can forecast its
value in future time. Usually it is applied in the applications of economic and
business planning and production planning, etc.

2. Estimation of transfer function: |

In industry, we can achieve better control of existing plants to improve the
design of new plants.
) 3. Design of discrete control system:

In stochastic models, the Autoregressive model is éxtremely useful in the

representation of certain practically occurring series. It is defined as following:
z =alz +a0z +02Z2 ;....02

1] v + a
t -1 2 t-2 3 t-3 p t-p t
where the z,'s are obserations and a;'s are the random error, and p and o5 i=l..p are

unknown, to be estimated, coefficients.




It is called an. Autoregressive (AR) process of order p.

Another kind of the model is finite Moving Average process. In this process, z
depends linearly on a finite number q of previous a,'s. Thus

L= f lat—l - 2 T ﬁqat_q

We call it Moving Average (MA) process of order g.

To achieve the flexibility in fitting the time series, mixed Autoregressive and
Moving Average is investigated. Thus,

z =0z + @z + B2 e qut_p + 8- [ilat_l - ﬁza,t_2 — s ﬁqat_q

We call it ARMA with order (p,q), in abbreviation ARMA(p.q).

The models described above are all stationary process, that is, a set of observations,
said zy, 2¢2, ... Zem, i:he joint probability distribution associated with these observations at
any time ty, to,...tn, is as same as that associated with another set of observations observed
at time t1-+k, to+k, ... totk, for a constant k. For example, Let m=1, the assumption of

stationary process implies that the probability distribution p(z;) is the same for any time t.

So, the stationary process has a constant mean:
' o
u=Bled = |__ 2pla) dz,
And the variance is also a constant:
40}

(2o 41)°p(z) dz

=0

= El(z—p))= |




III. The algorithm to solve dynamic order of ARMA

7 We have seen the mathematical model of ARMA. How to determine the order of the
model dynamically? An algorithm proposed by Franke in statistical journal [10] called
Levinson—~Durbin recursion for autoregressive moving average processes is invoked. After
the orderisdeternﬁned, we give model coefficients some initial values, and then use the
subroutine ZXSSQ of IMSL mathematical package to calculate the true coefficient values.
The purpose of ZXSSQ is to minimize the sum of squares of function in N variables using a
finite difference Levenberg—Marquardt algorithm. And we invoke subroutine FLIKAM,
proposed in journal Applied Statistics [11} to calculate sum of square for ZXSSQTE\O
approximate the final estimated coefficients.In the following paragraph .we will describe

 the
the detail of computing algorithm.

Let y(n) be observations.
Let c(k) be the covariance of y(n) and v{n+k), then we first determine pure
autoregressive using Levinson—Durbin algorithm.

2 _ .
1) 0.0,0 - C(O) 3

-1 . o
Da () =—{cp)+ La Kcpk}/o?
a (k)= o, &+ a'P,O(p)a'P_l(p—k), (k=1....p-1)
i ap?o ={1- ap?o(p) J Upi,o (3.1)

In [10], Franke proposed a theorem to fit the part of moving average part. Here we
reprint the recursive relation of the coefficients.
. 7 9
1 T = pr =
) 0050 0.0 C(O)
ii) forallq>1

2 9 a1, 2 '
o = — ¢ -h v
pP:Q 0xg-1 (q) ’ 0:q 0.q-1




B (k)=h(k),§ (q+1-k)=h(k=1),(k=1l....q):  (3.2)

0.9 0:q
iii) forallp2>1a (k) (k=1,..,p), o2 . satisfy the Levinson—Durbin recursion eq (3,1)
P P
N = n =1... — 2 . 3.3
and 7 (k) =a (k) (k=1,.p)w > 0 (3.3)

iv) if, for p,g > 1, y(n) is not an autoregressive—moving average process of order

(p_l 1q_l ) ,then

p-
=— - 5 —k)e(k) — o2 3 1-k)h -
e A e L e A C L o I R
T @ =P+ 5 e (Mepk) -2 f (Whkp) }(o? —o?)
PG k=1 p-1:g-1" - k=1 p-laga p- 1aq ~1
2 _ 2 _,2 2 2 _ 2 2
apaq - l‘J'P-lﬂl! El)Paq(p) UP-laq ’ 1VF‘:Q yp-laq 7 (p)( —bq—l ’ )’
K=o (k 1) (k=1..p—1
¢ B=a K+a ()7 (% (@E=L.p-1)

Yy K=7v  (®+7 (e (k) (k=1,.p-1)

P+ p-1+g-1 Paq p-1,g-1

B K)=8  &+a (p)6 (g+l-k) (k=1,..q)

p-q p-1.q P>q p-ihq
‘6p’q(k) = 6p-1,q-1(k) + 7p,q(p)'6p_-1,q_1(k) (k=1,...q-1)
_ 3.4
5p,q(q) 7 q(p) (3.4)

We summarize the algorithm in the following:
Step 1.
Calculate the autocovariance of y(n)

- Tk
¢®) =T T s+ (k=0..X)
j=1

Using Levinson—Durbin algorithm i.e. eq ( 3,1).

Autoregressive estimates o o(k) and ¢ 20 are calculated. Then choose an
H Ps

order h to minimize the criterion function AIC(p). Here we define the range

ofh,5< h<20.




and AIC(p) = log o > +2p/T (p<N)
P

After h is chosen, calculate the residuals

A h ~
e(k) = y(k) + 3‘131 e (i) y(k—i), k=0,1,..T.
Step 2:
Estimate the cross—covariance of y(n) and ;(n) by
. T-k .
¢ ()=T% T yk+j)e(j) (k=0.Q)
ye j=h+1 ‘ :
52— (k) = e (K
Let ¢°= cye(()) , h (k) —.‘cye(k) /o?

Usingeq (3,2),(3,3), (3,4 ) calculate the estimates

Then p , q are chosen by minimize the cri:uerion function
BIC(p,q) =log o ® + (p+q)TMogT (p<P,q<Q)
Here we define Q = 10.

-

Let c;:(k) (k=1..1;), b(k), (k=1..q) bethe coefficients of order ( pq ), then

calculate ¢

-~

(k) = y(®) + 5 o(i)y(i) — $ B0) € (k)
€)= y(k) = 0(k<0)
using e instead ;, step 2 repeated once.

Step 3:
Let p,q be the order determined in step 2, and ofk), k=1..p, A(k),

k=1..q be the coefficients estimated in step 2. Using @, § to be the initial

value, calculate the final estimates a. § by calling ZXSSQ of IMSL and sum
of square by calling FILKAM.




IV. Experiment

In previous section, we described the mathematical model of ARMA process. Tl%e
observation of ARMA is one—dimensional scalar data. We should map two dimensional
image pattern into one dimensional data. .The most reliable information: of
two—dimensional image is the silhouettes in a thresholded image. The most useful
information is the shape of a pattern. For a binary image, the contour is the most
important feature. We can trace the contour of the pattern easily and then calculate the
center point, and the vectors between the centorid and boundary points. Although there
four method is proposed in [7], we believe among them, method 2 is the most reliable. We
use vectors-as data input to our computing algorithm.

For the reason that the number of vectors affects the order determined by the
algorithm described in last section, not all of the vectors are treated as the input data.
Here we use the algorithm of vector selection in [8]. The vector is selected where the
boundary point intersects with the N radius vectors from centorid. For example, in Fig 1.
we select the vectors. Then got one—dimensional time series.

How to choose N? In [7], N is set 64. In coding the shape of a pattern, 64 vectors
will not lose too much information. -But in recogm't‘ion, rotation and séaling must be
considered. 64 seems too less, and the quantity of input data of the algorithm described in
previous section should be lla,rge, so that the result will be more reliable. It is a tradeoff to
increase the number of vectors and to avoid the errors caused by noises. Thus we use the
property:

r(0) = r(N), r(1) = r(N+1) ..

that is, r(i) = r(N+i).

Then we can trace the boundary twice or three times. Experimently, we let N be 120, that
i1s, we calculate each vector from the centroid by three degree apart. And we trace
boundary twice. This can give us more stable result. If we trace the boundary once,

sometimes the orders of the same shape calculated twice will different.
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The results of our experiment are shown in Table I. Most of the variances of the
coefficients are very small, and this means that the final estimates are very sta'ble.'

One point must be reminded. For all convex shape of pattern, the number of vectors
. is 240; but for a nonconvex shape it is not exact, and the number of the vectors of a
nonconvex shape will change. For example, if a contour tracer traces such a shape shown i in

Fig. 2(a), it may generate a sequence vectors,

... OP, 0Q, OF, ....
But next time, the shape is rotated. It will generate the following sequence vectors,
... 0P, OR, ... n

ie. Fig. 2(b)and will lose OQ, because the vector OQ does not intersect with the vector
i27/N from centorid. Thus the number of vectors of with nonconvex shape may be variant.
So is the order of such pattern. For this reason, in Ta.bie I, shape & have two order, 9 and
10. We will consider both cases. -

After features extraction, how to determine what is the input pa.ttern ? In [15], Cash
et.al. proposed 4 decision functlons They are the followings:

1.) Euclid distance:

.n - 2

. 1
1

‘Where FLi is the mean of ‘fhe featuer of the training sample.
Fi is the feature of the input pattern. *
Choose a miminum distance between the feature of input pattern and the center
point of the cluster of the training samples in the feature space.
So far, it seems that Euclidean distance function is a most popular and simplest
decision function for recognizing patterns. In faciz, Euclidean distance function is the
simplest method, but in certain cases, we doubt the realibility of Euclidean function.

2.) Weighted Euclid distance:
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D =|L w(F —F)

w i=t i

Where w_is the i—th weighted factor.
1 .
What value is the weighted factor assigned? Intuitively, the feature which has a
small variance is more reliable. Therefore, it seems reasonable:
w=t
1 J_
1

Ei is the standard deviation.

3.) Cross Correlation:

R=

n P

2 5 2 2
. Fr : }; F
This measure function is -also used broadly. This function is a normalized cross

correlation so that the input pattern is assigned to the one that the value of R is closest to

1.

4.) The Mahanalobis Distance:
o 2
b= § | L)
H™ i P
L;

The Mahanalobis function is a weighted distance between the input feature and the -
mean of the mean of the training samples. This is similar to the weighted Euclid distance.
In [8], Susan et.al. also proposed three recognition decision function, they are 1)
feature weighting method, 2) rotated coordinate S-}"St-em method, and 3) the hyperplane
method. . -
1.) Feature Weighting function:
DF - (jlri Jj )2/m " [ ii ( Fia— lFLi )’ + m}

i
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where ¢_1is the variance of i—th coefficient of feature vector 9. and m is the
1

~ order of the model.

" 2.) Rotated Coordubate System Method:

D =B x ([ 4 [(Fi;\; PLi)*CiF] +m]

where the Ai is the eigenvalue of covariance matrix of the feature vector of

the tra.iniﬁg samples, and S is the element of the eigenvector.
3.} Hyperplane Method:

Hyperplane divides the pattern space into unique convex polyhedral regions
for each class. For each of ¢ class, the linear discriminan_; function can be defined as
following.

gi(p) > gj(p) forallj#iifpe cl;ss i.

A least—square method uses-all ¢ training sets to find the discriminant
function which best satisfy the conditions:

gi(p) =1 for peclassi
gj(p) =0 forallj#i
function g, can be defined as |

g(p) = gL Kt M,

where y is feature vector of input pattern.
R
1 .
9 o
2

s
[

&y
M is the class i mean vector, and
1 .

C
k=3 kK
i=1 12

where x_is the correlation function for class i
W :
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fﬁ=Eﬂny)
The decision rule is

T

p € class i if nys“lM_ >y KM
i j

for all j=1i,2,....c, j # 1.

All of these decision functions listed above, need a number of training samples to
calculate the mean and the variance of each coefficient of learning samples to get a reliable
center point of the cluster of the training pattern. For the flexibility, a technique of mean
and variance calculation proposed in [12] is used. So the system can learn pattern any time.
Here we reprint the equations.

Let the N be the number of the learned patterns.

Xu , Su be the mean and variance of N pattern respectively.

Xhs1 s Sns1 be the new mean and variance, after a new pattern P is a,ddeci.

Then,

N P

Ko = —Rg7 %a

N . 9
Snet = Sa + —xr—(P ~ Xa)

The system can revise the mean and variance any time and immediately. _
In our experiments, 12 patterns are choosen to be tested. They are classified by the
“model order, and the patterns are classified into the same class if they has the same model
order. Table I shows the mean and the variance of each coefficients. The number of the
training set of patterns are variant. It depends on the variance of the coefficient. If the
variance is large, more samples are trained. All training samples are rotated and scaled
with various degree. |
Here we chose three decision functions to descriminate the feature vectors. They are

Featue Weighting function proposed in [8], Euclid distance, and Cross correlation proposed
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1.

in [15]. Why them? There are two reasons:
1)
2.)

They are easy to implement, and need less 6omputation time than the others.

They are disimilar to each other.

Table II shows the recognjtioﬁ rate of each pattem‘i It is éasy to recognize those
patterns whose orders belong to the class containing just one pattern After analysising all

of the error cases. We make the following conclusions: -

The distribution of the clusters of two, or three or more patterns are too

close, so that the decision function makes a wrong decision. Such case is

showed in Table III. In Table III (a),-the input pattern is ¥ | and it is easy
to find out that the distances between input pattern and the pattern “J are
very close. In constract, Table III (b) is an oppositive case. If such case is

occurred, an .auxiliary reéognition function can be applied to choose a

-candidate. This problem can be sloved by learning more samples.

The order of input pattern is computed by the algorithm to a wrong order,
8o that the pattern falls into -another class: It does not compare with the
coefficients of its original pattern. In our experiment, we summarize the

following three cases of this phenomenon.

i) The condition of Fig. 2 occurs, and the system did not train such

case at trainning time. There are two possible occurrences. (1) The

probability of wrong order is very low, so the,system could not detect
from the training samples. (2) The noise affects the order. Beause the

order is determined from data, so it is sensitive in the number of-the

vectors. -

i) The variation of the order of MA part. We can approximate the

pattern with a hlgher MA order. In our experiment, just find one
pattern that is, pattern . The order of pattern Jf§ is ARMA(6,0),
seldom the pattern is classified to ARMA(6,1). Table IV shows the

—~15—




T

coefficients of ARMA(G,I).
3. In some class the variances of the coefficients of the pattern are very large.
So the sum of variances is also very large. It affects the decision function. For
example, in Table V (a).shows the means and variances of coefficients of
pattern ? , this maybe we train a wrong sample. After retraining, shown in
Table V (bj, the variance is reduced, and the recognition rate increases
immediately.

V. Summary

In this paper, we present a new approach based on Autoregressive and Moving

-Average model to recognize shape of the pattern, and an algorithm to determine the order

of ARMA model dynamically. By our algorithm, the dimension of the feature vector is not
fixed any more. Twelve patterns is testéd, and three decision functions is used 10
investigate the recognition rate. After this experiment, we find that Feature Weighting

function works more stably than the other two, and the pattern with a convex shape has a

higher recognition rate than the one with a nonconvex shape. Feature extraction using

ARMA model with dynamic order can reduce the recognition burden. Because the number

of patterns with the same order to compare will be less than the other model such as

Fourier Descriptors, etc.
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_ * ARMA( 5, 0)— '.mﬁ’ﬁy_“

Mean 'Variance - ~ Mean |

Variance -

0.548880  0.052816 1 —0.288765  0.922004
~1.180682  0.021081 2 -1.010653°  0.010627
—1.364043  0.039577 3 ~1.045731  0.030057
4
5

Ot GO bO

—0.787912  0.007784 - —0.505891 0.015576
1.446901  0.019795
Sum of Var 0.039050 Trainning 19

1.798710 - 0.038185,
Sum of Var 0.026512 Trainning - 9

SR

- ARMA(5,0)— — - ARMA( 5, 0) —

Mean Variance 5 ‘ Mean o .Va.rigmce-. .
1 -—1.610439  0.088016 o 1 —1.664040  0.233096
2 073272377 0.347813 2 0.566553 0.709413
3 0.003007 0.726831 - 3. 0.305581 0.816608
4 —0.283206  0.854388 : 4 —0.260440  1.158054
5 0164244  0.153035 - o 0.088515  (.205986 ,
Sum of Var 0.310998 Trainning 14 .- L Sumof Var 0.553040 Trainning 26
© Class A: ARMA(5,0)

) Table I The classes of the classification of the training set.
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.

P ARMA(6, 0)— — - ARMA(6,0) —

Mean = Variance L Mean Variance

. 445190 0.322218 1 2722213  3.367947

% —00.797620 - 0.030530 2 0317246  0.034172

3 —1.124964  0.121688 3 0.119145  0.013555

4 0966168  0.098362 4 -=0.137230  0.023774

5 -0.441238 0.018096 5 —=0.301525  0.057988

6 1.683133 0.198389 6 —3.546528  3.604422

Sum of Var 0.086632 Trainning 8 .. SumofVar 0.140681 Trainning 23

—_— ARMA(6,0) — — .- ARMA( 6, 0)—
Mean = . Variance -Mean ° Variance

1. —1.228174 . 0.211649 = . - 1 2.539408  4.215354

2. —0.799583 0.004482 2 0.667374  0.142986

3 ~0.672452  (.008261 ‘ ) 3 0.220033  0.045774

4 —0.493207  0.008465 " 4 -0.187552  (0.111405

9 ~—0.245768  0.007089 5 —0.594261  0.298251

6 1.208239 0.026091 . P 6 -—3.146580  4.676288 ]

Sum of Var 0.015187 Traimning 16 : ~  Sumof Var 0.403047 Trainning 13

P & ARMA( 6, 0) —
- Mean Variance )

3.358508  5.626099 ;

0280219  0.037964
0.086659  0.006083
—0.133274  0.007241 o o
—0.320491  0.039293 .
—4.923699  5.940062 Class B: ARMA(6,0)

Sum of Var 0.194007 Trainnming 217 |

Sy O Q) B

[T,

Table 1.} (Continued). .




_ - ARMA(7,0)—  -w  —— . =7 . ARMA(S, 0) —
Mean - Variance . Mean - Variance
a 1 —0.434488 0.957934 1 0.715309. 2.319125 -
I 9 -0.706496  0.006965 2 —1.741698  1.744731 |
' 3 —0.708110 0.012502 3 —1.182183 0.702284 : ‘
4 —0.626381 = 0.024305 4 —0.298739 0.090347 ey
5 —.b65838 0.049182 5 0.648069 0.105761
6 —0.361710 0.015944 6 1.491397 0.576681 :
7 1.640734 0.069058 7 1.590033 1.964084 1
Sum of Var 0.037776 Trainning 14 8 —2.219599  2.326059
: Sum of Var 0.719143 Trainning 8 :

Class C: ARMA(7.0) Class D: ARMAGB0) -

\ | - Al
—_— * ARMA(9,0) — —_— _ .. ARMA(10,0) —
Mean - Variance : : Mean  Variance

1 1.208763  2.463917 1 1931679  1.644185
2 0.060551 0.062775 2 —0.002121  0.006528 |
3 -0.698029 0.138676 - ¢ .. 3 —0.601152  0.038638
4 -1.207470  0.438961 4 —1.108928  0.203131 ]
5 —1.312453  0.770789 5 —1.451197  0.501685 -
6 —1.006077 0.403766 6 —1.377268 ~ 0.485426 :
7 —0.420677  0.090661 7 0937727  0.197473 I
8  0.272176 0.017663 8 —0.407609 0.042511 /
9 2.139301 1.586275 9 0.213844 ., 0.008070 b
Sum of Var 0.268842 Trainning 9 10 2.793010 ~ 1.632728 i

Sum of Var 0.136642 Trainning 6

Class E: ARMA(9,0) - . Class F: ARMA(10,0)

TaBle 1.

(Continued)




{ = - | recognitionnumber ——f——
fCIasS’tPE_‘-ttern rate} of test}recognize| TAISS
I { ) .
E ﬁ 92.86 28 26 2
. 3 .: -
o T 92.73 | 55 51 1 4
Ay
: %’ 100.00 40 . 40 0
~[ | !#ﬂ % 10000 | 28 28 0
] A ] . o
LR
L ; ' —
L T . |
| i B '91.67 | 36 .33 13
H : ’ i
! ? 88.24 34 ;30 | 4
| i M : '
' i &D| 10000 | - 30 30 {0
;o 100.00 32 32 0
Ci | 10000 | - 30 | 30 0
i | i i
i ) :
| ;D‘i / 10000 | {34 | -3¢ | !0
| ——= _
Eigy | w0 | 25 | % | o0

P

i
: i




f ' | recognition number-i-- _ ’
!classt‘pa.tterng rate{ of test!recogmze| mISs
! 7 1
r ; A
i ; ﬁ{‘ 9286 | 28 26 2 |
P ' T e 55 47 8 .
Ay 3
L 3}' . 87.50 40 35 | 5
;é@ 10000 |~ 28 | o8 0
@ | 000 | 32 | 32 | 0
B gLatl %6 | 2 |1
| B 82.35 | ‘34 | ‘28 - .6 |
i I
i e . T ™ _
| | BP0 | s | | o |
By T : |
1 10000 | s2 | 3 | O
— : |
E i ' . ; . - |
| o 10000 | 30| -30 | -0 | | |
D 10000 1+ 84 | 34 0 | | |
i ' - A . * I
B i% | 10000 % | 2 | 0 |

Table II (b.) The recogzﬁtio;l rate using Euclid distance function.




?_ .= :}ecognitioninumber g — .]._.-H__ : |
iclassi pattern ' ratel of test'!recogmze! Imiss
{ T i
P W s | e | ! |
o T 5 g . i d
f ' i :
i ! 81.82 55 45 10 '
LA ! |
i . , : |
P ¥ 87.50 40 1 3% | 5 ~ | i|
! ' ] :
g é@ 8214 | 28 23 5
% i 100.00 32 32 1.0 ¢
; 1 _ .
83.33 I .3 | ‘3 | 6
.
B P : ' L
i $ 85.20 | .34 29 5
f - -
: , _ : ;
100,00 1 30 30 0
1 = '
e w000 s |1 osm o
1 1 ol w0l s | o
D | S o | ow | s | o | !
f 1 = . . ;
S R g — ‘
B ! F o : Wt
e % | 100.00 : 25 25 0
N . |
‘Table II (c.) The recognition rate using Cross Correlation function. - _
i
!




input pattern “ '*
order :ARMA(50)

feature vector - : 0.195765 —{.044032 —1.083878
—0.663209  1.508246 "
distance calculated by feature weighting function
X : 0.329706 :
T : 020863
b %0mer0 )
Y  :23.323088

— —

‘Table I1I (a). Two clusters are too close to make an. wrong decision

input pattern : ' .

order D ARMA(50) . T .
feature vector : 0.5684584 —1.187487 -1.412959 o
—0.730302 1799313 7 o

distance calculated by feature weighting function ‘
%* : 0.145649 __
T : 0.187457
e : 26.827008 | o G
¥ : 82458173 T

Table ITI (b). Two clusters are too close to make an: wrong decision

Y NP A Wi e T




input pattern : §

order : ARMA(S6,1) )
feature vector AR : —0.700510 ~-0.780307 0.318456

 0.199838 —0.007714 —0.023481
MA coeficient oo —6.286593

. Table IV. Variation on MA order.

—pattern ¥ ARMA(5, 0) —— o i

Mean Variance
1 —1.305520 0.624432
2 —0.142057 3.628530
3§ 0.940712 ~ 5.066145
& 0744696 5421259
5 0.258233 1.126892

Sum of Var 2.340299 Trainning 10

Table V (a). A training wrong sample:

—pattern ¥ ARMA( 5, 0) ——

Mean Variance
1 —1.692080 0.090668 - ‘
2 0892005 0.455900 | )
3 0115434 0.954488 -
4 —0.231200 0.982637
5 0.153618 0.167591
Sum of Var 0.365214 Trainning 9

Table V(c)Aftern retraining.

i_
!
|
‘




