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Abstract:When points of clusters are confronded with points having a uniform
density (noisy background) . the separation of the clusters from the
background is computed by heuristic statistical method, where the
distribution of each point in the clusters is assumed to be bivariate normal.
We try to maximize the log likelihood function of the clustering
configuration. A modified hill-climbing pass algorithm is studied and the
simulation results indicate that the algorithm is reliable and efficient. Also
real data from astronomical photograph are tested and the result is really
good.
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1. Introduction

Cluster analysis has wide applications in biology, sociology, and many other
fields (see Anderberg, M. R. [1]). It's primary concern is on how to separate a set of
data into a limited number of groups, which are called "clusters" (In the following,

. the terms group and cluster are used interchangably.). Based on this idea, various

kinds of "cluster separation" have been proposed according to an extreme large
number of applications. In the simplest case, clustering of data is to divide a set of
data disjointly into groups. Each datum belongs to one and only one group. Cluster

.analysis of this kind can be modeled as searching a partition of data according to a

specific rule (criterion). Other variations of cluster analysis had also been used
which included fuzzy clustering [2], overlapped clustering (or called clumping) [3],
and cluster separation from noisy background.

In this paper, we propose an clustering algorithm which deal with the case of
cluster separation from noisy backgrouhd. Our algorithm concerns on the problem of
separating one or more clusters, each is assumed with normal distribution, from a
uniformly distributed noisy background. Fig. la shows an example of this kind of
problem, which is an astronomical photogra,ph. In this picture, there are two stellar

clusters and the background is full of small stars that are smoothly distributed. Our
_ problem is to separate the two stellar clusters from the sky background. A possible

result of this extraction is shown in Fig. 1b.

"The technique of separating clusters from noisy background is suitable for
any system composed of individual points [4]. Here we apply this technique in
stellar cluster extraction.

Separating clusters from noisy background has been studied by Yahil and
Brown [4]. In their paper,” Yahil and Brown considered methods of maximum

likelihood, minimum y? of the fit of counts in concentric annuli about the mean, and
several ad hoc procedures. These methods are compared by application to computer
simulated clusters where the density of the points in the clusters is assumed to form




a circularly symmetric bivariate distribution. In this paper, we drop the requirement
that the cluster is circularly symmetric. We attack this problem directly by
considering the joint density of points in the plane. The joint density is the product
of some bivariate normal densities and some uniform densities. We try to maximize
this joint density directly by moving points from the set of background points into
the sets of cluster points, and vice versa. A modified hill—climbing pass algorithm is
used (see Friedman and Rubin {5], Fukunaga [6] and also Scott and Symons [7]),
and by simulation we find this algorithm is reliable and efficient. Also some real
astronomical data are tested and the results are really good.

In section II, we show two heuristic algorithms for finding the approximated
" centers of clusters. In section III, we discuss the model of MLE clustering method.
Next we show a heuristic modified hill-climbing pass algorithm for the MLE
clustering method in section IV. In section V, experimental results of both
simulation data and real-data are given to show the performance of the cluqtermg
algorithm.

II Center finding -

Because the .clustering algorithm we proposed needs an initial center for each’
cluster. Therefore in this section, we will show two heuristic algorithms for solving
this problem. It is worth to note that because we only consider the case of

“"9-dimensional data. A set of data can be thought as a set of points distributed on a

plane. So, from now on, the terms point and datum have the same mean.

xS

oo - =Tn the. -follows, we introduce two heuristic algonthms for finding
Aa,ppronmated cluster centers in a set of points. Both of these two algorithms find
the approxxmated cluster centers by first represent ‘the plane using a quadtree and
then locate the regions that are "dense" from the quadtree. The approximated
cluster centers are obtained by computing the means of the points contained in
these "densed" regions. Before the details of these two algorithms, we should give
some brief descriptions of quadtree.




Given a picture (or an image). its quadiree representation is obtained by
recursively decompose the picture into four equal-sized quadrands. A tree of degree
4 can be constructed to represent this decomposition process. The root node
corresponds to the entire picture. Each son of a node represents a quadrant of the
region represented by that node. The division process of a region is terminated
based on some criterion (gray level, density, coverage, etc.). In our problem, we
divide a reigon by considering the number of points contained in this region. If the
number of points contained in this region exceed a predefined threshold then the
division process is continued, otherwise the division process in this region is
terminated. A leaf node in the quadtree is called a block. Fig. 2 shows a picture and
its quadtree representation. Two further items, 4—connected region and 8—connected
region, are explained as follows:

4 connected region: A region R is said to be 4 connected region if for
any block p, q in R, there exist a sequence of blocks p=py, D1, ....P1=4
in R such that pjs is 4 adjacent to'pi, 0<i<l. Two blocks are called 4
adjacent if they are adjacent to each other in the horizontal or vertical
directions.

8 connected region: The 8 connected region is defined analogously
except the diagonal  adjacencies are included in adjacency
consideration.

For a survey of quadtree, the reader is urged to consult {8].
In ‘the following, two heuristic algorithms for cluster center finding are
introduced. We will use.the data plane in Fig. 3 as the illustration example for both

algorithms.

Algorithm 1:
The following algorithm describes a method for finding approximated cluster

centers in a set of points on a plane. This algorithm first convert a plane of points




into its quadtree representation. Then uses the k—means clustering method to find
the approximate cluster centers.

Input: Given a plane of points X={xy, Xo, ..., Xn}, Xi= (Xi1, Xi2), 1 <1 <, and m,
the number of clusters. '

Output: Find m approximate centers O={0;, 0, ... , On}, 0k= (Ok1, Ok2), 1 k <m.

1. Convert the plane representation of X into its quadtree representation
(see Fig. 4a).

2. Assume the quadtree has s leaf nodes. Labeling these leaf nodes as
Ly, Lo, ...., Ls.

3. Compute the block center for each leaf node L;, 1<i<s, obtain
L, b, ..., ks }j is computed as lj= [Li.right margm—Ll left ma.rgm]/ Ljo=

[L1 -upper margm - L1 lower margm] / 2 '
4. Arbitrary choose m block centers &, ts, ..., tn a8 the initial means from

L. b, ... L

5 Using k—means clustering method with k équal m to find a partition of
L. b, ..., L, and therefore a partition of Ly, La, ...., Ls. We label this
partition as Py, Py, ..., Py (see Fig. 4b).

6. Obtain the approximate cluster centers o1, 0, ...,0n Dy computing the
means of the points contained in the blocks in each set of Py, Py, ..., Pu.

Algorithm 2:
~ 'This algorithm will yield a better accuracy and a smaller computation time.
Input: Same as algorithm 1.
Oliptut: Same as algorithm 1.
. Same as algorithm 1's step. 1.,convert the plane representation of X into
A quadtree representatlon .
A
~mi=-——w= - =3 Delete.all leaf nodes-that are in the ith level in the quadtree.
4. Check if there result m distinquish S—connected regions. If not, set
§=i+1, go to step 3, else go to step 5 (see fig 5.2, b. ¢).
5. From the above, obtain the approximate cluster centers i, 02, ...,0n by
computing the means of the points contained in each one of the m

distinquish 8—connected region.




ITI. The clustering model

We consider the astronomical photograph as a plane which contains a set of
points X = {x, X, ..., Xn }, where x; = (xj1, xj2), 1 < i < n. Each point corresponds
to a bright pixel on the photograph. Some points in X belong to stellar clusters,
some are not. Our goal is to extract the points belong to stellar clusters from X, and
partition these extracted points into m groups, where m is the number of stellar
clusters.

We assume the points in cluster i come from bivariate normal distribution
with mean gr and covariance matrix %, 1 <k <m, and each point in the sky
background comes from uniform distribution in & circular disc with center a and
radius . Let the set of xi's assigned to kth cluster denoted as Cy, 1 < k < m, and the
set of xi's in sky background as B. Futhermdre, we assume that all points are
independent so that the joint density function of X is

L= TT(x;, 1, %) L #(xi, o, 3) -+ IT (x5, e )

Ci1 -Gy Cn
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To simplify the computation. we take log likelihood function, and find it is

_ 1 Xit = fha1 y2
{=log % = —ylog( 270110194 5) — T[4 )
| 5 . 1—p1 2(1‘—9%) C, 711
21( Xila;iml ) Xiga:2ﬂ12 ) + (J@_;%g )2 fllzlog( 27091099 l_—l—pg ) —
1l _» [ ... ] —n3slog(...) — .... — nplogsr? + logIT1 (x1) .
2(1-p3) C» B {|xial <1}

Where ny is the number of points in cluster Cy, 1 <k <m, and ny, is the
number of points in sky background. Thus the maxinum lkelihood estimates of gy,
Iy are '

ﬁkj=ﬂj=é—‘§—ii— I<sk<ml<j<?
k o

‘r, T ] N 3 - 3
= o ?}k(h’]_ﬂm)‘z' I<k<mlgijg?2

Lk = ) (a0 — i)
and pp= —2k

Dkok10k2

To find the maximum likelihood estimates of a and 1, note that when r is t0o
small, then log 11 T (x;) = — can happen with high probability, and when T is
B {|xal <1}
too large, —log(s1?) tends t0 —w. Thus the maximum likelihood estimates exists and
they are




and T =max |x;— &l
B

By substituting these estimates back into log & we get log likelihood
function V

~

= 1Og "g(@l) &: vy ﬁ.'m') &y -eos .&Jna }611 e mes é: i)

: ! =-nglog{ 12: TE (xp — x)2xirn — X12)? — [ (xu — Xn)(xie — x12)}2
| 1 AGCs C
| -z log{ if 152 (- Xon)2(xiro — X22)? — (T (xu — Xor)(xiz — Xao)P?

2C )

27 - — — .
—nplog{—= | T (xu — Xm)2(xir2 — Xm2)? —[I (X1 — Xmp)(Xi2 — Xm2))?
.nm A Cmcm . Cm by

—nplog(712).

IV. The heuristic MLE clustering algorithm

Let Cyi, Ca, +++, Cp be the sets of points considered to be bivariate normal
and B be the set of points considered to be background points. Initially. each of Cy.
1 <k <m, should contain at least 3 points. The heuristic MLE clustering modified
hill—climbing pass algorithm is described as follows.

1. Find the cluster centers ox, 1 <k <m, by appling one of the cluster
center finding algorithms, which are discussed in section II, on the plane.

Set, €=—108.

2. For each cluster center oy find three points which are nearest to it and
include these three points into Ci. 1 <k {m. Thus we obtain m sets.

each contains three points. After the completion of this algorithm. Cx
will contain the set of points belong to cluster k.

—9—




Let the sets Es, Eg, - -+, Ey 10 be empty.
Let k=1. Repeat step 5 to step 9 m times. Each time consider the set Cy.
Compute the center of Cy.

Find a point, called nearest point, in B which is besides those points in
l . _ Ey, nearest to the center of Cy. Then compute new log likelihood

S oo

*
function £ by considering C;j, j#k, and Cy with the nearest data point as
m bivariate normal distributions.

* .
7. T ¢ >{, go to step 8, otherwise go to step 9.

' ' . 8. Letl= E*‘ Put the nearest point into Cy and return points of Ey to B.
. Let Ex to be empty. Set k=k+1. If k>m, then go to step 10., otherwise
sl o 030 Step 5. | -
"~ 9. Put the nearest point mto Ei. Let k=k+1. If k>m, then go to step 10.,
otherwise go to step 5.

10. If the numbers of points of Ey, 1 ¢ k < m, are all greater than a properly
choosen number, say 10, then stop. Otherwise go to step 4.

V. Experimental results

. -Both 51mulat10n data and real data have been used to test the performance of
- *l;he MLE clustermg -algorithm. "The results show a good performance of the
algonthm '

T T Sy S e p—

background with np pomts. The generation of bivariate normal and uniform points
“.--can be seen in [9].

Two kinds of simulation data have been generated, one is with 2 clusters, and
the other kind of simulation data is with 4 clusters. We show two examples of these

—10 —
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simulation data and the results after applving cluster center finding algorithm and
then the MLE clustering algoritrhm.

Fig. 6a shows a 2—cluster simulation data. One cluster in this 2—cluster

1. . ) ; .
simulation data is with ;gz[ 3 }, o7=1, ¢1>=1.5 and p;=0.8. The other one is with

o= :g , 631=1, ¢3=1.5 and po=0.8. Each cluster has 50 points. Also there are

100 uniform points on a disc with radius 5 and center at (0.0). Fig. 6b is the result
after applying the MLE clustering algorithm to Fig. 6a. 73 points are classified as
cluster 1 including the original 43 cluster 1 points. 29 noisy background points and 1
cluster 2 points. On the other hand, 76 points are classified as cluster 2 with 42
points from cluster 2, 34 points from noisy background and no point from cluster 1.

Fig. Ta shows another simulation data with 4 clusters. The parameters of the
4 clusters are

=\ % ] 611=0.5 012=0.5 p1=0.5
p= 8 ] 031=0.5 03:=0.5 p2=0
3= :%} 731=0.3 o 639=0.3 p3=—10.5
py= _'ﬂ | 03=0.7 030=0.4 ps=0.7

, each cluster has 50 points. The noisy background is same as Fig. 6a, that is 100
uniform points on a disc with radius 5 and center at (0,0} are generated. The result
of applying the MLE clustering algorithm to this simulation data is showed in Fig.
7h. The relationships of points before and afier applying the MLE clustering
algorithm are shown in table 1.
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original clusters) ROISy cluster{cluster|cluster|cluster}total

result clusters background 1 N 3 4
noisy background 51 2 0 2 1 58
cluster § g 47 1 0 0 57
cluster 2 12 1 47 0 0 60
cluster 3 14 0 0 48 0 62
clugster 4 14 0 2 0 49 65
total 100 50 50 50 50 300

Table 1

Other simulation work has been done with simulation data with only 1
cluster. The mean of the only 1 cluster is kept constant since its change has little

effect on the separation. the range of ¢3 is 1, 2, 3. 4, 5, whereas o7 is kept to be 1

(By symmetry, ¢1 need not be changed). The range of p is 0, 0.2, 0.4, 0.6, 0.8. Thus

_ there are 25 cases to be run. For each case 100 uniform data, with radius 10 and

center at (0,0), and 50 bivariate normal data are genera.téd. It is found that the rate

of misclassification increases with increase ¢3. The change of p has no significant

influence on the separation. However when ¢3 has values 1, 2. and 3. the rates of

-

misclassification are all less than 5 percent. This indicates that the proposed

algorithm are reliable when ¢3 is not too large.

Real Data

Beside the simulation data, we have applied the MLE clustering algorithm to
several astronomical photographs. The photographs are first scanned by a Microtek
M—-300A scanner with 75 dpi to obtain the binary image data. And then the
clustering algorithm are applied to extract the stellar clusters. Fig. 8 shows three
pictures of the binary image data of photographs with stellar M46 and M47, M33,
and M31 TFig. 9 shows the results of cluster center finding. Fig. 10 shows the
extracted stellar after applying the MLE clustering algorithm to Fig. 8 with the
cluster centers found in Fig. 9.




VI. Suramary

In this paper, we consider the problem of cluster separation from noisy

background. The problem is modeled as a number of clusters superimposed on a set
of uniformly distributed points. All clusters are assumed with normal distributions.
The clustering method is try to separate clusters from background by maximizing
the joint density of the points of clusters and the points of background. A heuristic
modified hill-climbing pass algorithm is used for the clustering method. Both
exprimental and real data from astronomical photograph have been used to study
the performance of the clustering algorithm and the results are really good. '
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Fig. la. An example of astronomical photograph with two atellar clusters.

“1b. A possible result of cluster extraction from-Fig. la,

Fig 2. A picture and its quadtree representation.




cluster 1

Wizam

mean of x = =2.0000000000E+O0

mean of y =  2Z.0000000000E+D0 T A dtree representation Of 1
variance of x = 2.0000000000E+00 Fig 4 a Qua : Fig. 3.
varlance of y = 2,3000000000E-0%L

correlation = .?.5000000000E—Ol

cluster 2

mean of x = 2.0000000000E+00

mean ot y =  ©0.0000000000E+07

variance gf x =
variance of vy =

2. 00000D0C000E+00 »
2.5000000000E=01

correlation = ~%.5000000000E~01
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Figz. 3. A plane of data. .
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x level =2
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4 level =T

cemter I X= 1.%751351351E+00 Y= -5.7BI7BI7EIBE-LC
center o x= —1.9938775510E+00 Y=  1,.9775510204E+00

Fig. 5a, 5b, 5c and 5d. Four sequential pictures result from iteratively

executed the step 3 and 4 of algorithm 2.
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6a. 2—cluster simulation data.
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Fig. 7a. Another simulation data with 4 clusters.
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Fig. 8a, 8b and 8¢c. Three piciures of the binary Image data of photographs with

stellar clusters M46 and M47, M33, and M31.
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center 1 X= S.2601941748E+01 -¥= 5.0440774699E+01 result
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center 1 X= &.310913I7056E+01 Y= 5.4351945B54E+01

C.
Fig. 9a, 9b and 9c. Results of approximated cluster center finding of Fig. 8a, 8b,
and &c.
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Fig. 102, 10b, and 10c The: extracted stellars after applying the MLE clustering
\ algorithm to Fig. 8a, 8b, and 8c.




