| TR-88-00%

A NEW CHINESE CHARACTER THINNING
ATGORITHM. BASED ON TRACING THE BOUNDARY

I\IIIIIHIHIHHHIIIHNINHIIIIHIHIINIIlll\ll Illlllll\lHNl\HlI!

00042

PRTLE IR

S T

A NE¥ CHINESE CHARACTER THINNING ALGORITHM
BASED ON TRACING THE BOUNDARY

Ching-Sung Lin, Chiou-Feng ¥ang and Jun S. Huang
Computer Vision Laboratory
Institute of Information Science
Academia Sinica-
Taipei, Taiwaﬁ, Rep. of China

June, 1988

Correspondence: me S. Huan.g. —j:‘“{— '(?k j"&-_ , d‘: _‘/J,_\ 'Z'Tf :;:

1
i

N

Abstract : I3

Machine printed Ming-font Chinese characters usually have
large black areas in the sharp turns of strokes, and most
conventional thinning algorithms will produce some spurious
branches in these sharp turns. In this paper we have
develqped a new thinnfng algorithn basea on tracing and
s£ripping the boundary pixels of a character, and this
algorithm will in general produce no spurious branches in
these sharp turns of strokes. Thus we ecan use thé thinning
résults to extracet the topological features such as
end-points, break-points and cross-poiﬁts, etc. These features

will be stable under rotation and noise cerruption.

Key words: Image procéssing, pattern recognition.

1. Introduction

. I
If we want to extract the topological features of a

character, thinning seems toc be a necessary step. This is why
many recent papers on character recognition [1-4] use thinning
as an essential step. However there are many thinning
aligorithms [5-8] and each has its own deficienecy and
imperfeetion for some cases. In this repert we want to do
Chinese character thinning and so the domain is limited in
some sense. In the beginning ve try an algorithm developed bv
Zhang and Suen [5], which is the simplest one for
implementation, but the result is unsatiéfactory. The problem

comes from that a Ming-font character generally has a large

bhlack area in a sharp turn of a stroke, and this vill produce

a spurious branch énd thus produce an extra endpoint and also
an extra forkpoint. Later on we try énother algorithm \
deﬁeloped by Chu and S&én[ﬁ],.where théf have-maéé several
comparisons with other typical thinning algorithms and have
shown that their method is better than others for characters.
Unfortunately we find that in their paper the description of
the algorithm contains a lot of errors and in sonme impoftant
steps the description is unclear. Finally we have to develop
our own algorithm.

The idea of stripping the boundary pixels in Chu and

Suen's paper is nice andiwe follow this idea. We first fill

the holes and define some 3 x 3 window patterns as one-pixels

—4

47

e A RN

3

wart; corner point, break point, end point, crosss point,
trace point and base point(see section 2). Then we trace the
boundary of a character and strip the boundary pixels by
checking each pixels's 3 2= 3 window patterns. After the end of
stripping we delete those too short branchs. Experiments show
that the thinning results for Ming-font characters are
satisfactory, and in general will produce no spurious branches

at the shafp turns of strokes.
2. The New Thinning Algorithm

This algorithe consists of two marts used to -obtain the
skeletong of Chinese characters. The first paft includes
following three steps @ (1) fiil-delete (2) label (3) strip.
The three.steps are iterated for several timés until the

pattern cannot be thinned anymore. Thus we can obtain the

‘rough sketelon of the character. The second part modifies the

skeleton by deleting the error branches caused by thinning.
The following definitions are used te represent
special figures of points and their 8-connected neighbors.

A. one-pixel hole

X represents don't care condition

-
=
>¢ b »2

B. one-pixel wart

= et
< - o
S oo
= oo
i)
— oo
o oD
SO
el
SO
L
[=w

C. coner point

110 00 0 00 0 011 d
1190 110 011 01 1
000 110 011 0 0 0
D. break point
A A 10 4 A 0 1 A A A
01 A ¢ 1 A Al O A1 O at least one "A" is "1"
1 0 4 A A A A A A A 01 -
B BEB B O C
610 B1C at least one "B" is "1",
cc¢c B O C at least one "C" is "1"
E. end point
100 010 0.0 1 0 090
0190 010 010 011
000 000 000 0 0 0
000 000 000 000
010 010 010 11 ¢
0 01 010 1090 000
F. cross point
010
111
010 - v
G. trace point
XA X
A1l A X represents don't care condition,
X 4 X ~at least one "A" is 0"

H. bare point - when the trace point is stripped, its
nonzero 4-connected neighbors are called
bare points,Ae.g.,

X 0 X 0 0 X

101 001 these 1's are bare points

X1 X X 1 X ;
G. non-deleting point -.includes end points and break points

I. contour point - during the stipping process,

contour points consist of trace points,

- 4 -

._

I

bare points and non-deleting points.

This thinning élgofithm consists of following {hree
steps which are done repeatedly until the pattern is reduced
to skeleton.

A. fill-delete
This step smooths the pattern by (1) filling

one-pixel holes (2) deleting one-pixel warts and {3}

deleting ecorner points. e.g.,

(1) X1 X X 1 X

_ 101 — 111
X1 X ' X1 X

(2 100 100 0 0 9§ 0 00
110 — 1 00 010 — 0 00
100 100 111 111

(3 110 110 0 00 ¢ 00
110 —> 1 00 110 — 100
0 00 0 00 110 110

B. label

-

This step label the outer and inner contour points

to be the trace points "T". e.g.,

10060 100 0 00 ¢ 00
111 —1T1 011 —0T1
111 111 111 111

If all points remained are trace points except
cross points, then, after stripping,the final! pattern is
just the skeleton.

C. strip

This step is more complicated in order to strip the

trace points along the outer and inner contours. At

first we define the 8&-connected neighbors of a point,

and the scanning sequences as the following !

¥ is the conecerning point

hs I oy e =
=] < o
L= g RLo~]

Table 1 Start scanning sequence

Type of scanning Start scanning sequence
Quter clockwise scanning CDEFGHATB

Inner clockwise scanning EFGHABTCTD

Juter counter clockwise scanning G F EDCBEB A H

Table 2 Next scanning sequence

Position of X in Clockvise Counter eclockvise
previous window scanning scanning

A FGHABTCDE DCBAHBGTFE

B G HABCDETF EDCBAHGTF

C HABCDETFSG FEDCBAHDG

b ABCDETFTGH GFEDTCBAH

E BCDETFGHA HGFEDTCEBA

F CDEFGHAZB- AHGFETDTCHB

G DEFGHABTC BAHGFEDTC

H EFGHABCD CBAHGTFE D.

Now we begin to strip the pattern by following prdcesses

(1) Search the first trace point by system scanning. If
there is no trace point remained, return to fill-delete
pass.

(2) Look for the neighboring contour point by the outer
clockwise start scanning sequence. !f the first nonzero

point we found is‘contour point, then go to (B).

{3} Look for the neighbering contour point by the inner

clockwise start scanning sequence. [f the first nonzero

- B

point we found is contour point, then go¢o to (8),.
: '

(4) Look for the neighboring contour point by the oﬁter
counter clockwise start scanning sequence. [f the first
nonzero point we found is contour point, then go to (7)

(5) If we cannot find the contour point by these sequences,
strip the point concerning.

(6) Use clockwise next scanning sequence to find next
contour point and check it to see
(a} If it is the starting trace point and is not

non-deiéting point, then delete it and return to
Ilj: ¥henever we delete a trace point,,we'mark its
nonzero 4-neighbors with "B” as bare points.

(b) If it is non-deleting point, mark it .with "N",

otherwise, delete it and mark its bare points.

Search the neighboring contour point by the mext
scanﬁing sequegée. If the first nonzerd pdiht'we
found is "1", reset the starting scanning neighbor
and go to (7)), otherwise return to (6)-(a).

(7) The same as (B) except that we use counter clockwise

next scanning sequence and we will]l always find contour

point by counter clockwise secanning.

3. Modifying

4.

There may be some error branches occurred durring the
thinning process. ¥e wiil delete them according to their
length by the following steps.

A. Find all end-points,

R. Trace the branches from end-points and check the

following conditions

(1) If the point is neither fork point nor end point, go
R on tracing until the length exceeds the thresheld
value, then trace next branch.
(2) When meet another end-point within threshold value,
then trace next branéh.
. (3) ¥hen meet fork-point within threshoid value, delete
-the whole branch, then ttace negt branch.
The modifying procesé {s finished when all end points have

been traced.

Experimental Results

Some experimental results for Ming-font characters are
shown in Fig. 1, where at the sharp turns of strokes there
are no spurious branches. But Zhang and Suen's algorithm
will produce spurious branches as shown in Fig. 2. This

shows that our new algorithm is far better than Zhang and

Suen's and is suitable for Chinese characters.

REFERENCES

1., Hideo Ogawa and Keui Taniguchi, Thinning and stroke ’
segmention for handwritten Chinese character recognition.
Pattern Recognition, Vol. 15, 299-308, 1982.

2. Louisa Lam and C. Y. Suen, Structural classification and
relaxation matching of totally unconstrained Handwritten
7ip-code numbers. Pattern Recognition, Vol. 21, 19-31,
1988. |

3. F. H. Cheng and ¥. H. Hsu, Fuzzy approch to solve the
recognition problem of hgndwritten Chinese characters.
Pattern Recognition (to appear in 1988

4. F. H. Cheng and ¥. H. Hsu, Solving the recognition
problem of handwritten chinese character by stroke's
information. The Transaction of the IEICE (to appear‘in
1988, Japan) |

5. T. Y. Zhang and C. Y. Suen, A fast parallel algorithn
for thinning digital patterns. Conmnm. of ACM, 1984.

6. Y. X. Chu and C. Y. Suen, An alternate smoothing and

: stripping algorithm for thinniné digital binary patterns.
Signal Processing 11, 207-222, 1936.

7. Y. S. Chen and ¥. H. Hsu, A modified fast parallel
algorithm for thinning digital patterns. Pattern
Recognition Letters 7, 99-106, 1983.

8. J. S. Huang and ¥. J.:Lee, A new thinning algorithn
for removing noise-spurs and retaining end-points,
Information Science and Engineering 1, 45-57, 1985, (Taiwan)

- 9 -

Fig. 1 Some thinning resufts based on our new algorithm.

. f I .
E j}ﬁ)

g,

Fig. 2 Some thinning results (from Fig., 1) based on Zhang

and Suen's algorithm.

