TR-88-011 ,
A FAST ALGORITHM FOR TH

SUMMATION OF SERIES

i

VA

R 3 ;

.

3 00 o
o084 -

W

- TR-88-011

A Fast Algorithm for the Summation of Series
Ning—Yang Baby Wang* and Ruei—Chuan Chang**
+ Ning—Yang Baby Wang is with the Institute of Information Science,
Academia Sinica, Nankang, Taipei, Taiwan, Republic of China.
"s+ Ruei-Chuan Chang is with the Institute of Computer Engineering, National
Chiao Tung University, Hsinchu, Taiwan and Institute of Information Science,
Academia Sinica, Nankang, Taipei, Taiwan, Republic of China.

Correspondence Address:

Professor Ruei-Chuan Chang
Institute of Information Science
Academia Sinica

Nankang, Taipei, Taiwan

Repubtlic of China 11528

A fast algorithm for computing the summation of series is derived. If the error
tolerence is given, the algorithm will try every time in whicﬁ the numbet of terms is
twice as much as the one of the previous time until the error is tolerable. The
required number of operations, which is much lesser than that of the previous result,

s linearly propotional to the number of terms in-the partial sum of the original -

series we wish to evaluate. That is, we can use the same amount of effort to get

more precious result.

1. Introduction:

In the previous papers Longman(2], Longman[3] and Lepora and’ Gabutti[1],
some methods were provided for accelerating the mumerical convergence of finite
series. In [1], a recursive algorithm was used to implement the summation of the
following series

s(x):pl—“2x+p3x2'—“4x3+ cee. ssssssescessecsncss (1)
Let

m
SpE Sm(x) = kgl(—x)k'lpk LM =1,2, 00s, seeesererrecseceens (2)
be the partial sum of the series s(x). The mentioned transformation in [3] consists in

replacing S, by

5, =5,(x)= i%lal(gm)(—x)k-l“% m=1,2, e rrineeeeeen (3)
where - '
al({m) - al(:m)(x) =(1+ x)-m2j\é: (@), e (4)
and k
x#-1.

When x is positive the great advantage of 5(x) over S(x) is evident.
Moreover, if x satisfies 0 < x < 1 a further advantage is obtained. In [1], the
algorithm is as follows. Let

Wayn,t = (1+X)_1(Wn+2,n + X'Wmhn) , ::g:izz,!m (5)
where x # —1. Let S be given by (2), and let

W= Sy, M= 1,2, cne. seeeeseresnesnenaneineinans (6)

Then
Wo,n = _S_I.l" n-— 1, 2, ee, esssesessccssesreasesesicsocs (7)

where 5 is given by (3) and (4) with m replacing by .

If it is required to compute Wo,1, Wo,2 -, Wo,n to make the error tolerable

[teN

eventually, the algorithm runs O(n2) steps. We hereby give a faster (O(n))
algorithm to evaluate the summation that satisfies the same error tolérance.

This paper is organized as follows. In section 2 we give the fast algorithm that
implements the summation. The analysis of the algorithm is in section 3. Finally,

we give the concludinge remarks in'section 4.

2. The algorithms:

We are given the original series and the tolerance of error. First we compute
S,(x) and see if the corresponding error is tolerable. If so, the algorithm stops;

otherwise we advance to comput'e S, and see if the corresponding error is tolerable,

and so forth. If it should evaluate Wo,n to satisfies the given error tolerance in the

algorithm of [1}, Sp*, which algorithm A computes eventually, has the property n*

< 2-n.

[Algorithm A]:
. Imput: 1. the original series in (1)
2. the error tolerance ¢
Qutput: a partial sum of the original series that satisfies the given error
tolerance
Begin
. Step 1. Let m, the number of terms of the partial sum, be 1.

Step 2. Set error = w.

Step 3. While error > € do
Begin

let m = m-2;

call algorithm B to evaluate partial sum S (x};
compute the ‘corresponding error;

End. _
Step 4. Return (the partial sum we get eventually).

End.

Tf we are given the original series and m, the number of terms of the partial
sum we wish to evaluate, algorithm B will compute 5, (x) directly from (3) and (4)

rather than from (5), (6) and (7).

[Algorithm B }:
Input: 1. the original series in (1)
2. m, the number of terms of the partial sum in (2)

| Output: the partial sum S (x) in (3) and (4)

Begin
Step 1. Compute (—x)?, (~x),« - », (-x)m and store them.

Step 2. Compute (), ()%, (9)x% -+, (T)xm and (1-+x)» and store

] ' them.

‘i Step 3. Compute Q; = kgll(—x)k'lpk.
Step 4. Let Q, =0 and a= (14x)m.
Step 5. For i=1 whilei <{m do

Begin

m :
s m=1+1-
moi +1X 7

let o= a—(

let Qz = Q,+ a'(_x)i'ﬂ'ﬁm;
end.

Step 6. Let Q, = Q2-m.
(14x)m
Step 7. Return (Q; + Q,).

End.

3. Analysis of the algorithms:

In algorithm B because step 3, 4, 6 and 7 need O(1) operations while step 1, 2
and 5 need O(m) operations if number of terms of the partial sum we want to
evaluate is m, it runs in tiﬁe O(m) clearly. If it is Tequired to evaluate Wo,n to

make the error tolerable for the algorithm in [1], algorithm A needs

|log,n|+1
0(2)+0(4)+0(8)+- - - +0(2 } = O(n) steps, which is much betier than

O(n2) steps in algorithm in [1]. For-the space complexity, in step 1 and 2 the terms
(—x)?, {(=x)4-+-, (—x)u and (%1), (T)x, .(I;)x%- ., (ﬁ)xm should be evaluated step
by step and stored in order to be completed.in O(m) time; therefore the space

complexity is O(n).

" 4. Concluding remarks:

The algorithm we used is faster than the previous ones. However, some
shorthands are in it. First of all, it needs to evalnate (%1), (I?),- e (ﬂ), which are
quite large when m increases. And, if x is far away from 1, the term (=x)m is either

extreme large or small when m is sufficiently large. Thus these might influence the

error relative to this series.

Reference:)

[1] Paolo Lepora and Bruno Gabutti, An Algorithm for the Summation of Series,
Appl. Numer. Math. 3 (1987) 523-528.

[2] I.M. Longman, The summation of power series and Fourier series, J. of Comput.

Appl. Math. 12413 (1985) 447-457.

[3] I.M. Longman, the summation of series, Appl. Numer. Math. 2 (1986) 135-141.

