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ABSTRACT

Consider families of arcs on a circle. The minimum coloring problem on arc families

has been shown to be NP-hard by Garey, Johnson, Miller and Papadimitriou. It is

easy to show that 2q colors are sufficient for any arc family ¥, where q is the size of
a maximum clique in F and 3q/2 colors are necessary for some families. It has long
been an open problem to find a coloring é.lgorithm which uses no more than a-q
colors, where « is strictly less than 2. In this paper we present such an algorithm
with & = 5/3. Our algorithm is based on: (1) an extension of an earlier result of
Tucker on coloring special fam}HeS and (2) a characterization of the existence of

perfect matchings in bipartite graphs.
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An Approximation Algorithm for Coloring Circular—-Arc Graphs

’ 1.  Introduction
'

A circular arc family F is a collection of ‘arcs on a circle. A graph G is a
circular—are graph if there is a circular arc family F and a one-to—one mapping of
the vertices in G and'the ﬁrés"ii_l'F such that two vertices in G a,ré adjacent if and
only if their corresponding arcs in F overlap. Circular-arc graphs have applications
in compiler design and traffic light sequencing [4]. Various characterization and
optimization problems on circular-arc graphs have been studied [4]. A cliguein Fis
a set of pairwise overlapping arcs. The size of a maximum clique in F is denoted by
? oF). A coloring of F is an assignment of colors to its arcs such that no two’
overlapping arcs have the same color. The minimum number of colors needed in
coloring F is denoted by 4(F). Obviously, we have {F) ¢ 9{(F). The maximum
clique problem for circular-arc graphs can be solved efficiently [2,6])." However, it
has been shown by Garey, Johnson, Miller and Paﬁadimiﬁiou [2] that the minimum
coioring problem for circular-arc families is NP-hard. Based on the property of
interval graphs, it is easy to color circular-arc families using no more than 2q colors,
where ¢ = w(F). It has long been an open problem to find an approximation
algorithm which uses no more than a-q- colors, where « is strictly less than 2; In
this paper, we show that it is sufficient to use at most 5q/3 colors.

Without loss of generality, assume all arc endpoints are distinct. Each arc has
two endpoints. Define the clockwise (resp. counterclockwise) endpoint of arc i to be
the first endpoint of i encountered in 2 clockwise (resp. counterclockwise) traversal
from any interior point of i. Demote the clockwise .endpoint of i by B, the
counterclockwise endpoint by a; and the arc i by (a1,61). Define the continuous part
of the circle from a point ¢ along the clockwise direction to another point d as the

segment (c,d) of the circle. We shall reserve the term "arc" for members of F. An
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+ arc u = (a,b) is said to cross a point p if p € segment (a,b). For each arc i, define
its overlapping set S; to be the set of arcs in F (including i itself) crossing a;. Let g

be max |S4], Wthh is called the number of layersin F.
igF +

In section 2, we describe a special property of an arc 'famﬂy which enables us
to use 3q/2 colors. For an arc family which does not satlsfy th15 property,
describe in Section 3 how to remove some arcs and force the remalmng subfan:uly to

satisly. Those arcs removed are colored in such g way that the total number of

colors used is no more than 5q/3.

2. Using 3q/2 Colors for Special Arc Families

Intuitively speaking, arcs which overlap with many other arcs need to be
colored more prudehtly in order to save the total number of colors used. To make
this notion more precise, we define the following terms. Three arcs covering a circle
a,re‘ said to form a singular triple. Two arcs covering a circle are said to form a

singular twin. An earlier result on approximate coloring is the following

Lemma 2.1 (Tucker [7]). An arc family containing no singular triples needs at most

3s/2 colors.

That 3s/2 is also necessary can be verified by considering a family of five arcs
whose corresponding circular—are graph is a five cycle without chords (edges
connecting non—consecutive vertices). Tucker [7} conjectured that any arc family F
needs at most 3q/2 colors. The special property we considered for an arc family F is

the following:
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(2.2) There exists a clique Q in F satisfying that each singular triple of F contains

exactly one arc in Q.

_ For a clique Q containing neither singular triples nor singular twins, there
exists a point p on the circle such that no arcs of Q crosée_g p- The arc u of Q such
that ay is first encountered in a clockwise traversal from p is célled the left—most
arc of Q. Two arcs which are non-overlapping-aresaid to be independent. For any
arc i = (as,bs), define NEXT(i) to be the arc j such that aj belongs to segment
(bi,a1) and is the first such endpoint encountered in a clockwise traversal from b;.
l;Ioté that arc i and NEXT(i) are not necessarily independent. The basis of our

algorithm is the following theorem, which is an extension of Lemma 2.1.

Theorem 2.3. If F is an arc family satisfying (2.2), then it needs at most 3s/2

colors.

Proof. If F is a clique, then (2.2) implies that there is no singular triples in F and
the theorem follows from Lemma 2.1. Hence, assume F is not a clique. Let Q be a
clique in F satisfying (2.2). Clearly, Q contains neither singular triples nor singular
twins within itself (a singular twin in Q coupled with any arc in F\Q gives rise to a

singular triple in F containing two arcs in Q). The same holds for F\Q if |F| > 3.

* Hence, it is meaningful to define the left—most arc of Q.

The arguments we used are similar to those of Tucker's [7]. Since F and Q
will be updated at every iteration, we use the same notations to denote the
"current" F and Q satisfying property (2.2). We shall repeatedly remove two layers
of arcs in F and use three new colors on the removed arcs until F becomes empty.
The algorithm is divided info two parts. We first execute the procedure described
in Case 1 untll Q becomes empty and then go on to Case 2.

Case 1. Q is not empty: let u. = (aul’bul) be the left-most arcin Q. Starting from

.




uy, we find a sequence of arcs uy, 1y, ..., uyx such that u; = NEXT(ui4) fori > 2 and
uy is the first arc with 3y, € segment (buk_l,b uk). Note that 0 is either in segment
(a 111,buk) or in segment (b uk-:’a'lll)' Let Ly = {uy,...,uk-1}.

I 3, € segment (aul,buk), then assign the same color j;o gll" arcs in L; and
remove them from F. Since each arc u not in L; has a, crossed at least once by
some arc in Ly in the clockwise traversal, s will be reduced by 1.

Now, assume N € ségment (bul‘c'_;,a;ﬁ“l‘);“:SfEr'ting from uy, we find a sequence
of arcs uy, ..., Uy, ..., Uy such that u; = NEXT(u;.) fori > k + 1, uy is the first arc
with 3, € segment (bur-fbur) and uy is the first arc with 3y, € segmen} (but-bet)
(it is possible that ur = uy). Let Ly = {uk,...,ur} and Lz = {up,..., s} I 2y, €
segment (a'ul’but)’ then each arc u not in the sequence uy, ..., uyq has a, crossed at
least twice in the clockwise traversal Thus, removing arcs in the above sequence
reduces s by 2. Now assign one new color to all arcs in L;, another to all arcs in I,
and a third color to all arcs in Lz\{u;}. remove all colored arcs from F.

Assume, now, 3,, € segment (bUt-faul)' In this case, we need to remove all
arcs in L; U Ly U Lj to reduce s by 2. .Now assign one new color to all arcs in L, and

another color to arcs in Ly. All we are left to show is the following

Claim. Arcsin Lj are independent. 7

Proof. Suppose nmot. Then ur # ue. Since arcs in uy, ..., us are independent, uy
must overlap with u;. Because both.u, and ug overlap with Uy, we have a singular
triple ux, ur and u; as shown in Fig. 1. By assumption, both uy and u; cross the
endpoin;c ay of the lefi—most arc u of Q. Hence, neither of them belongs to Q. By
This implies that ur belongs to Q by property (2.2). Hence, u, crosses bul' But

. then, uy, ux and u; form a singular triple with two arcs in Q, a contradiction. | |

. Figure 1. The singular triple uy, ur and u;




Case 2. Q is empty. Then F contains neither singular triples nor singular twins.
As long as s > 2, we can choose an arbitrary arc as uy, construct a sequeﬁce of arcs
uy, ..., U and repeat the coloring procedure as before. Each time, we assign three
rew colors to the removed arcs and reduce s by 2. If s is reduced ’Eo 1 at the final

iteration, then all arcs in the current F are independent and can share one color.

In each iteration of the above two cases, we either reduce s by 1 and use one
new color on the removed arcs or reduce s by at least 2 and use 3 new colors. The

number of iterations is at most [s/2]. Hence, the total number of colors used is at ]

most 3-(s/2) = 3s/2.

3.  Using 5q/3 Colors for General Arc Families

In this section, we describe how to remove arcs from a family F to yield a
subfamily satisfying (2.2). Those arcs removed will be assigned colors in such a way
that the total number of colors used is at most 5q/3. Define a clique Q to be simple
if every arc in Q crosses a common point on the circle. The coloring method
described in Theorem 2.3 is uséful in reducing the number of layers in F, which in
turn reduces the size of largest simple cliques in F. However, reducing s does not
necessarily teduce the maximum clique size q, especially when there are maximum
cliques in F containing singular triples or singular twins. Fig. 2 gives an example in
which q remains unchanged until s is reduced to 2/3 of its original size. Note that
larger examples can be obtained by duplicating arcs.

Figure 2. The relationship between s and q

Instead of trying to reduce the size of maximum cliques in the current

subfamily (which can be very difficult), we pick a specific simple clique Q (initially
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maximum in the original family) and manage to reduce its size q and the number of

layers s simultaneously by removing certain arcs. The advantage of usiﬁg simple
clique is that F\Q becomes a family of intervals, which can be colored optimally.

To do this, we require the fanuly F to satisfy the followmg property

(3.1) There exists a maximum simple clique Q in F such that F\Q contains no

smgular tnples

The next lemma states that, as far as the approximation is concerned, one

could assume that the given family F satisfies (3.1).

Lemma 3.2. Let F be any arc family. Then there exists a su;ierfamﬂy F'J F such
that F') = «(F), «(F') = o(F) and the number s' of layers in ' equals «(F'")

(namely, there exists a maximum simple clique in F'.

Proof. Let s be the number of layers of F. Let i be an arcin F with |Sj| =s. Ifs =
w(F), then we can let F' be F. If s < w(F), then add o(F) —s tiny arcs to F each of
which crosses exactly one endpoint, a;. In this new family ', S; U {new arcs} is a
maximum simple clique. Hence, «{F') = (F). Furthermore, if F is colored using
7(F) colors, then there obviously exist w{F) —s colors for the new arcs in F". Hence,

AF') ¢ 1(F). Since F' 2 F, o(F) < 4(F"). Therefore, 1(F") = A{F). §

From now on, we assume that the given family F:i= contains a maximum
simple clique Q* satisfying (3.1). At each iteration of the reduction, we use F and
Q to denote the current uiada.ted subfamily and the remaining arcs in the clique.

- We use q=lc (resp. s*) to demote the initial (resp. layers of F*) size of Q,zt= and q (resp.
s) to denote its current size. Since Q=i= is simple, szi= = q*. Note that, at each

iteration, property (3.1) is maintained for the current F and Q regardless how we
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remove arcs. However, for the algorithm to work, the current size of Q does not

have to be maximum in the current subfamily F.

We will make use of an important property of bipartite matching, which is
t

stated as follows.

Lemma 3.3. Let Q be a maximum clique of F. Let D be any other clique in F that

s disjoint from Q. Then we can match, for each arc v in D, a distinct arc uin Q

which does not overlap with v.

Proof. Construct a bipartite graph G = (XUY,E), where there is a one-to—one
mapping of vertices in X (resp. Y) and arcs in D (resp. Q) such that two vertices are
adjacent in G iff their corresponding arcs in F are not overlapping. Because Y is a

maximum independent set in G, there is a perfect matching for X in G. |

The main idea of our algorithm is to Témove singular triples and singular

twins from F until either

(3.3) F and Q satisfy (2.2) and we can use the algorithm in Theorem
2.3.
*
or (3.4) the size of Q is small enough (< q /3) so that we can assign each

arc of Q a new color and color the remaining interval family F\Q

optimally.

At each iteration, the arcs removed will satisfy the following condition:

'(3.5) s is reduced by at least 1, q is reduced by at least 2 and at most 2 new colors

are assigned to the removed arcs.




[

Property (2.2} can be violated by one the following three cases in F (1) the
clique Q contains a singular twin; (2) there exists a singular twin with one arc in Q
another in F\Q; (3) there exists a singular triple in F with exactly two arcs in Q.

We shall eliminate these situations one by one below. !

*
Case 1. Q contains singular {wins.

: *
Exhaustively, we find all singular twins in Q and list them as follows: (us,v4), =

(uz,ve); .oy (ux,vx). We first analyze the simple clique Q' obtained by removing
these arcs from the simple clique Q. Because F\Q contains no singular triples, Q'
contains no singular twins or singular triple:;. Hence, there exists a point d on the -
circle wiu'ch no arc of Q' crosses. Define Dzl= to be the set of arcs in F*\Q* crossing
d. By Lemma 3.3, each arc v in D;k can be ma.tche‘d to a distinct arc M(v) in’ Q* ‘

: *
which does not overlap with v (conversely, the arc in D which is matched to an arc
*

3

1 in Q* is denoted by M(u); if an arc u in Q* is not matched with any arc in D
define M(u) to be §).

Now, remove these singular twins one at a time. FEach time a singular twin
(us,vs) is removed we assign one new color to ui;, M(u;) and another color to vy,
M(v;). It is easy to check that condition (3.5) is satisfied at each iteration. At the

end of the Case 1 procedure, Q contains no singular twins and we go on to Case 2.

Case 2. There exists a singular twin in F containing one arc in Q and another in
F\Q.

Again, we find all such singular twins and list them as follows: (u5,vy), (u,v2),
vy (Ur,vr) with vy in Q and v; in F\Q. NOW", remove these singular twins one by

one. Each time a singular twin (uj,v;) is removed we assign one new color to uj,

“M(u;) and another color to vi, M(v;). It is easy to check that condition (3.5) is

satisfied at each iteration. At the end of the Case 2 procedure, F contains no

- singular twins and we go on to Case 3.
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Case 3. There exist a singular .triple in F with two arcs in Q and one arc in F\Q
(which must belong to D).
" Because, Q contains no siﬁgular twins or singular triples, it is meaningful to
define the left-most arc, say uy, of Q. It is easy to verify that if there exists a -
— singular triple in F having two arcs in Q, then we can always choose one of these
arcs to be u;. Let uy, v and v be such a singular triple, where u € Q,veD.

Starting from uj, wé find a sequence of arcs uy, uy, ...y Uk such that u; =
NEXT(uj-1) for i > 2 and uy is the first arc with a € (buk-l,buk). Note that uy is |
the only arc in Q in the above sequence. Consider two subcases: ]

Subcase 1. u; does not overlap with uy as shown in Fig. 3. Assign one new color to

all arcs in {uy,...,ux} and another to arcs v, M(v). Remove all colored arcs. -1

Subca.se 2. uy overlaps with uy as shown in Fig. 3. Then uy must belong to D.

Assign one new color to all arcs in {uy,..., Uk-1} and another to arcs ux, M{uy).
Remove all colored arcs. Note that v is not removed unless v = Ux.

Figure 3. The two subcases in Case 3

Note that the M(v) in Subcase 1 and the M(uy) in Subcase 2 fnust remain
uncolored before this iteration for the following reasons (it suffices to argue for.
M(v)): (a) M(v) cannot possibly be colored in Case 1 or Case 2 (otherwise, v must
have also been colored and removed); (b) M(v) cannot be colored in Case 3
previously beca}use its counterclockwise endpoint has never been the left~most in Q
and its matched arc v in D has not been colored. It is easy to verify that (3.5) is

satisfied in each of the two subcases.

Our algorithm will execute the prbcedures in the above three cases either until

. .
F and Q satisfy (2.2) or until the number of iterations reaches fq /3], whichever
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happens first.

. % *
Theorem 3.6. Let F be an arc family containing a maximum simple clique Q

*
satisfying (3.1). Then the algorithm uses at most 5q /3 colors. -

Proof.' Suppose we have executed all procedures in the three cases and the number t
of iterations taken is still no greater than [q*/SJ. At this point, we have used 2t
colors, the number of layers of F is reduced by at least t and the size of Q=i= is
reduced by at least 2t. Since F and Q satisfy {2.2), we can apply the algorithm in
Theorem 2.3 to color the remaining arcs using at most (3/2)- (q*— t) colors. Hencé,

the total number of colors used is bounded by '
2+ (3/2)-(4 =) = t/2+3q /2 < q /6 + 30 /2 = 5 /3.

Suppose we ﬁave reached the [q* /3]-th iteration in execﬁting the procedures
in the above three cases. At this point, we have used 2 ['q*/ 3] colors, the number of
layers of F is reduced by -at least [q*/B] and the size of Q* is reduced by at least -
2|'q*/3'|. Now, apply (3.3) to assign a different color to each arc in Q and to color
arcs in F\Q based on any coloring algorithm on interval graphs using at most q* -
[ q* /3] (an upper bound on the current s) colors. Hence, the total number of colors

used is bounded by

2[q /81 +(q -2-[a /31) + (4" - [a'/3]) = 24" - [¢"/3] < 54" /3

There are two major steps involved in our algorithm. One is to find a
mximum clique in F, which can be done in O(nZoglog n) time [1]. Another is to
find a bipartite matching, which takes at most O(n2‘5) time [5]. Hence, the entire

approximation takes at most O(n2'5) time.
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Figure 1. The singular triple u

k,urandut




There are 6 arcs in the family. s=3andq=3.

Now, if we remove arcs 1, 2 and 3, then s is reduced to 2 but q stays at 3.

Figure 2. The relationship between s and q
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Figure 3. The two subcases in Case 3.




