TR-88-014
A SIMPLE ALGORITHM FOR THE MAXTMUM
INDEPENDENT SET PROBLEM ON CIRCULAR-
ARC GRAPHS

TR

0087



A SIMPLE ALGORITHM FOR THE MAXIMUM INDEPENDENT SET -
PROBLEM ON CIRCULAR-ARC GRAPHS

Wen-Lian Hsu

Department of Industrial Engineering
and Management Sciences

: Northwestern University

, : Evanston, IL 60208

' , Key Words: graph, independent set, algorithm

Abstract

j An arc family F is a collection of arcs on the unit circle. An independent set of arcs
| in F is a set of pairwise nonoverlapping arcs in F. The maximum independent set
(MIS) problem on F is to determire a maximum size independent set in F. Given
that the endpoints of all arcs are sorted clockwise, Masuda and Nakajima gave an
O(n) algorithm for the MIS problem based on the idea of reducing F to its proper

subfamily. We simplify their approach by further reducing F to a strictly proper

subfamily.,
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A Simple Algorithm for the Maximum Independent Set Problem

on Circular—Arc Graphs

1. Introduction L ¢

An arc family F is a collection of arcs on the umt ci;cle. An independent set
of arcs in F is a set df"pairw'ise' nonoverlapping arcs in F. The mazimum
independent set (MIS) problem on an arc family F is to determine a maximum size
independent set in F. A graph G with vertex set V and edge set E is said to be a
circulﬁr—arc graph if there exists. an arc family F and a one-to—one correspondence
between V and F such that two vertices in V are adjacent in G iff their
corresponding arcs overlap.

Without loss of generality, assume all arc endpoints are distinct and no arc
covers the entire circle. Now, label the n arcs arbitrarily from 1 through n. Label
the endpoints from 1 to 2n according to their clockwise order. Denote an'arc that
begins at endpoint p and ends at endpoint q in the clockwise direction by (p,q).
Define p to be the head (or counterclockwise endpoint) of the arc and q to be the tail
(or clockwise endpoint). An example is shown in Figure 1. Define a head
(tespectively, tail) block to be a set of maximally contiguous heads (respectively,
tail) in the clockwise endpoint order. The term "block" is used to refer to either a

head block or a tail block.
Figure 1. A circular—arc family F

The continuous part of the circle which begins with endpoints ¢ and ends with
d in the clockwise direction is referred to as segment (¢,d) of the circle. We use
"arc" to refer to a member of F and "segment" to refer to a part of the circle
between two endpoints. By. this definition, an arc (p,q) of F is also a segment (p,q).

A point on the circle is said to be in arc (p,q) if it falls within the segment (p,q).
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Two arcs that do not ovérla.p with each other are said to be independent. An
arc i of F is said to be properly contained in another arc j if both endpoints of i are
contained in arc j. An arc family F is said to be proper if no arc in F is properly
contained in another. Given any arc family F, let C(F) be the collection of arcs - -
which are propetly contained in some other arc in F. Define F'= F\C(F) to be the
proper subfamily of F. Clearly, F' is proper. Given any I(/JZIS P of F, one can find
an independent set P' in F! .of the same size by suitable exchange. Hence. cz(F) =
o F').

In [2], an O(n) time algorithm is given for the maximum independent set
problem on circular—arc graphs with n vertices assuming that the endpoints of their
corresponding arcs have already been sorted in the clockwise direction around the

circle. The main steps in their algorithm are the following:

(1) Reduce the MIS problem on an arc family F to that of its proper subfamily F'.
(2) Determine a MIS in F'in O(n) time.

In this paper we further simplify their a.lgoritlim by removing more arcs in
step 1 which are not crucial in forming an MIS of F so that step 2 becomes trivial.
More precisely, define an arc i to be dominated by another arc j if every arc
overlapping with j (including j itself) also overlaps with i. Clearly, if a MIS
contains. i, then one can replace i by j and obtain another MIS. Define an arc family
I to be stﬁ&lg proper if no arc in F is dominated by another. Clearly, if i contains
Js then i is dominated by j. 'Hence, a strictly proper family is also proper. The main

steps in our algorithm are the following:

(1) Reduce the MIS problem on an arc family F to that of a strictly proper
subfamily F" such that o(F") = ofF).
(2) Determine a MIS of F" in O(|a(F)[) time.
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Before discussing the properties of strictly proper families, we describe some
properties of proper families which tends to explain why the MIS problem is €asy on
them. For eaéh arc i, define PREV(i) to be the arc whose tail is the first tail
encountered in a counterclockwise traversal from h(i); define _SUCC(f) o be the arc
whose head is the first head encountered in a clockwise traversal from t(i); define
GI(i) (GD is short for GREEDY) to be the maximal independent set of the form i,

i, ..., ik, where iy = SUCC(i) and i; = SUCC(iyy), t = 2, ..., k.

Lemma 2. Let P be an independent set in a proper family F. Let i be any arc in P.
Then |P| < |GD(4)|. Furthermore, if j is in GD(3), then |GD(3)| < |GD(5)] < | GD(1)]
+ 1.

Proof. Denote GD(i) by the set {i,i1, ..,ix} as described above, where k =
|IGD(i)|-1. Denote P by the set {i,il',...,iiPI_l}, in which ti1e arcs are ordered
according to their heads in the clockwise traversal from h(i). If every arc in P is
also in GD(i), then we are done. Hence assume the contrary. Let i;' be the arc in
P\GD(i) with the smallest index. Then because i, = SUCC(i-H), we must have
h(i;) € (t(ie-1),h(is")). Because F is proper, 4(is) is in are iy Hence, Py = (P U
{it})\—{it’} is also an independent set with |Py| = |P|. By induction, for each s > t,
Ps = (P U {i..,is})\{it',-..is'} is an independent set of size |P| and H(is') €
(t(is-1),h(is")). Hence, [P| -1 < |GD(i)| - 1 and |P| < |GD(i)].

Now, assume jis in GD(i). Suppose j = in. We have {in,....ix} C GD(j). Kie
GD(j), then one can easily verify that GD(i) = GD(j). Hence, assume i ¢ GD(j).
Then, GD(j) = {i“‘"“’ik’ik”’""i|GD(j)|+m-1}’ where ig = SUCC(;S-I) for all 5 >
k+1. Let ir be the arc of GD(i) with the smallest r that is common to both GD(i)
and GD(j). Then GD(I)\GD(j) = {i,it..,ir-i}. Now, the arcs in GD(j)\GD(i) must
have their heads contained in-one of segment (t(ix),h(i)) or arcs i, iy, ..., i Since

F is proper, each of shese segment or arcs can contain at most one head of GD(j).
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Therefore, there can be at most 1+1 such arcs and |GD(j)\GD(i)| ¢ r+1. Hence,
[GD(j)] < [GD@)| +1. §

Lemma 3. Lel ¢ be any arc in a proper family F. Let Pgax be o MAS in F. Then .
|GD(3)| is either | Pnax] or | Paax| — 1. '

Proof. If GD(i) N Pyay = ﬁ, then arcs in Ppax must have their heads contained in
one of the segment (t(iy),h(i)} or arcs ay, iy, ..y ix, where k = [GD(i)]—l. Hence,
[Pnax| < |GD()| + 1.

If GD(i) N Ppax # 0, let j be a common element. By Lemma 2, |Ppay| =
|GD()| < [GDE) + 1.

2. A characterization of strictly proper families

A strictly proper subfamily F" of F satisfying o(F") = a(F) can be obtained
iteratively as follows. Imitially, let F be the current family.ﬁ We then start
removing dominated arcs in the current family one by one. This process terminates
when there exists no dominated arc in the current family, which must then be
strictly proper. It is clear that removing a dominated arc does not change the size
of a MIS, since if a MIS contains an arc i which is dominated by J, then‘i can be
replaced by j.- Hence the final strictly proper subfamily F" obtained satisfies o F")
= oF). Note that an arc which is not currently dominated by any other arcs may
become dominated after some other arcs are removed. Since the order of arcs
removed is far from uﬁique, it is possible to obtain different strictly proper
subfamilies at the end. An example is shown in Figure. 2.

Figure 2. Two different strictly proper subfamilies

»

A brute-force implementation of the above iterative algorithm could take




O(n?) time. In Section 3 we present an O(n) algorithm for determining such an F".

The algorithm depends on the following characterization of a strictly proper family.

Theorem 2. Let F be an arc family which is not o cligue. Then F is strictly proper if
and only if F is propef and each block of F contains ezactly one endpoint.
Proof. Assume F is strictijr proper. Then F must be proper. Suppose there is a
block (without loss of generality, assume it is a head block) of F containing more
than one endpoint. Let h(i), h(j) be any two heads in this block. If 1(i) is contained
in arc j, then jis dominated by i. I t(j) is contained in arc i, then i is dominated by
J- In any case, F contains a dominated arc, a contradiction.

Now, assume F is proper and ea'.ch block of F contains exactly one endpoint.
Let i be an arc of F. We show that for every arc j overlapping with i, there exists
another arc u overlappizig with i but not with j. Let iy, ..., ix be the list of all arcs
whose heads are contained in arc i and ordered clockwise from h(i) (see Figure 3).
Let PREV(iy), ..., PREV(iy) be the list .of all arcs whose tails are contained in arci
and ordered clockwise from h(i) (note that PREV(in) could be the same as one of ij,
., Ix). Since there exists exactly one tail between any two heads, iy, PREV(i;), t =
1 .., _k are all the arcs in F overlapping with i. If any ij equals any PREV(ig), then
every arc passes through t(i) and F must be a clique, a contradiction.

" Figure. 3 Those arcs whose heads are contained in arc i
Claim. Arc iy does not overlap with arc PREV(iy) fort =1, ..., k.

Proof. Suppose i, overlaps with PREV(iy). Then we claim that F must be a clique.
First of all, we show that i overlaps with PREV(i), namely, PREV(i) is among i,,
-+ ik. Because F is proper, h(PREV(i)) must be contained in segment

(t(PREV(iy)),h(PREV(iy))). Consider the arc j whose tail is contained in
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(h(PREV(i)),h(PREV(iy)) ané is the most clockwise such tail before h(PREV(i,)).
Since F is proper, h(i;) must bein arc j. Since t(i) is in arc j, this forces j to be arc i
(otherwise, j would properly contain i). Hence, PREV(i) is among arcs iy, ..., ix and
the union of {i}, {iy-...,ix} and {PREV(i)),...,PREV(ix)} is the set of all arcs in F.
Now, every arc in F except i passes throﬁgh h(PREV(iy)). Hence F\{i}is a clique.
Since i overlaps with every arc in F\{i}, F is also a clique. )

End of proof of Claim. ||

Hence, i; does not overlap with PREV(i;). Similar arguments can be used to
show that iy does not overlap with PREV(iy) fort = 2, ..., k. i

A graph G is said to be (n,k)—circular if there exists an (circular) ordéring of
its vertices into vy, ..., vo such that two vertices v and v; with i < j are adjacent iff
either j—i<korn—j+i¢k Gis called circularif it is (n,k)—circular for some
integer k. Note that an (n,k)—circular graph G is a clique iff n < 2k 4 1. Forn < j
< 2n, define v;j = vj, If G is a clique, define GD(vi) = {vi} for each vi
Otherwise, for each v, define GD(vs) = {v1,Visk+1,..-,Vimkm}, where m = [n/k]. If

G is k~circular, then GD(v;) is a maximal independent set for each v;.

Theorem 2. If G is (n,k)—circular and v, ..., v i3 e circular ordering, then GD(v;)

is ¢ mazimum independent set in G for every v;.

Proof. For any two vertices v; and vj with i < j the mapping f : vy - visj-1 is an
isomorphism for G. Hence, |GD(vi)| = |GD(v;)|. Now, let v; be a vertex contained

in some MIS P of G. Then, by an argument similar to that of Lemma 2, we have

[Pl = [GD(vi)|. o

Step 2 of our algorithm is trivial by the following
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Lemma 4. If F is strictly proper, then its corresponding circular—arc graph G is

circular. Furthermore, the clockwise head ordering gives a circular ordering.

Proof. Assume G is not a clique. Choose an arbitrary vertex of G as vi. Then
choose va, V3, ..., Vo according to the dbckwisé head order of their correspondjng
arcs starting from the head of the arc for v,. Denbte the cérresponding arc of vi by
u,i=1, ..., n Suppose,'for some integer k, arcs us, ..., ux:; have their heads
contained in u; but ux.; does not. Then we claim that G is {n,k)~circular. We shall
show that each v; is adjacent to vy, ..., visx but not to v"mm and hence, the
clockwise head ordering gives a circular ordering.

By Claim 1 of Theorem 2, u; overlaps with neither PREV{uy) nor SUCC(u,).
Because F is strictly proper, there must exist an arc whose head is contained in
segment (t(ur),t(uz)). In particular, h(uk.) must be contained in (t(uy),t(us)).
Suppose h(uyx.s) is also in segment (t(u;),t(u)). Then there must exist an arc i
vx;hose tail is contained in (h(uk.),h(uk.3)). Because F is proper, h(i) must be
contained in (h(u;),h(us)), contradictory to the fact that h(us) is the first head
following h(u;) in the clockwise traversal. Therefore, h{ux.;) is the only head
contained in (t(uy),t(uz)); vz is adjacent to vs, ..., V.2 but not to vis. The rest

follows by induction. o

3. An O(n) algorithm for finding a strictly proper subfamily ¥" of F

Qur algorithm for finding a strictly proper subfamily consists of two parts:

L. Reduce F to a proper subfamily F' (a simple algorithm is described in [2]).

1.  Remove additional dominated arcs in F' to ensure that each block contains
exactly one endpoint and obtain, in O(n) time, a strictly proper family F"
satisfying o F) = a(F‘.').

swarp It is not difficull to reduce F directly to a strictly proper subfamily in O(n)
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time. The reason to break this procedure into two parts is to simplify notations.

Assume the given family F' is proper, we use the following algorithm to

further reduce it to a strictly proper subfamily. Construct a doubly linked circular
list L for all the 2n endpoints ordered clockwise. In the following procedure, we use
array A(p) to indicate whether the endpoint p is in L (when A(p) = 1), array D(p)
to indicate whether p should be deleted from L (when D(p) = 1) and array M(p) to
indicate whether p has been encountered (when M(p) = 1). We use a stack S to
temporarily store certain endpoints to be deleted from L. The reason not to delete
these endpoints immediately is that whenever an endpoint is processed, the block

conta:im’ng that endpoint is processed simultaneously (procedure ELIMINATE (B)).
We describe Part II in Figure 4 below.

begin

Initialize A(p) to be 1, D(p) to be 0 and M(p) to be 0 for every endpoint p;
while there exists an endpoint p in L with M(p) = 0 do
pick any endpoint p in L with M(p) = 0; let B be the block containing p;
M(p) + 1; call ELIMINATE (B);
while S # 0 do :
let q be the top element in S; let B be the block containing g;
if A(q) = 0 then S ~ S\{q};
else call ELIMINATE (B);
endwhile;
endwhile;
end;

Procedure ELIMINATE (B)

1. Repeat steps 2, 3 and 4 until |B| < 1. ‘

2. If B contains an endpoint d with D(d) = 0, then if B is a head (respectively,
tail) block, keep the most counterclockwise (respectively, clockwise) endpoint

rin B with D(r) = 0. Set B' = B\{r}. Set B = {}.

Otherwise, let B' = B, B = merger of the two blocks adjacent to B.

Delete all endpoints in B' from L. If B is a head (respectively, tail) block,

place their undeleted tails (respectively, heads) in S. Set the D—entries of

these latter endpoints to be 1.

Ll

Figure 4. Reducing a proper family to a strictly proper family

The A—entry, D-entry and M—entry of each endpoint will be changed at most

once throughout the alzorithm. Furthermore, each endpoint can be placed in S at
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most once. Hence each endpoint is processed at most a constant number of times

and the total running time of the algorithm is O(a).

Correctress of the algorithm:

Each time a block is processed, its size is reduced to é:t mbst oneh (step 1 of the
procedure ELIMINATE). At the end, each block contains exactly one endpdint.
Hence, all we have to show is that only dominated arcs are deleted. If we encounter
a block B which contains some arcs with zero D~entries, then because F is proper,
all arcs with zero D-entries whose heads (respectively, tail) are contained in B
except the one, say r, with the most counterclockwise (respectively, clockwise)

endpoint are dominated by r and deleted in step 2 of the procedure ELIMINATE.
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arc1 = (13,2) arc5 = (7,10)

arc 2 = (1,5) arc 6. = (9,12)
arc 3 = (3,4) arc 7 = (11,14)

arc 4 = {6,8)

Figure 1. A circular—arc family




Two strictly proper subfamilies of F with the same MIS size

. {1,2,3,4,6} and {1,2,3,5,7}

- Figure 2. Two different strictly proper subfamilies -




Figure 3. Those arcs whose heads are contained in arc i




