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ABSTRACT

Let F be a family of arcs in a circle, where each arc is associated with a weight. The
maximum weight clique problem is to find a subset of pa.irwiée overlapping arcs in F
such that their total weight is maximum. This problem was originally solved by
Hsu in O(m-n) timé; Recently, a O(n2loglogn) algo:itilm was discovered by
Apostolico and Hambrusch for the unweighted case, whereas the weighted case was
_ posed as an open problem. We extend their approach to solve the weighted case in
O(min[m- n,n%loglogn]) time. Our algorithm is based on a characterization of
maximum weight independent sets in bipartite graphs, which is not related to

bipartite matching.
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An O(min[m-n,n%loglogn]) Maximum Weight Clique Algorithm
for Circular—Arc Graphs

1. Introduction / o

A circular arc family F is é collection of arcs on é: circle. ‘A graph G is a
circular—arc graph if there is a circular arc family F and a orie-to—bne mapping of
the vertices of G and the arcs in F such that two vertices in @ are adjacent if and
only if their corresponding arcs in F overlap. Circular-arc graphs have applications
in compiler design and traffic light sequencing [2]. Various characterization and
optimization problems on circular—arc graphs have been studied [2]. In this paper,
we consider the mazimum weight cligue (MWC) problem for circular-arc graphs. A
cligue in a graph is a set of pairwise adjacent vertices. Let 7 be the number of
vertices in G and m be the number of edges in G. An earlier result of Hsu B
provides an O(m-n) algorithm for this problem (exroneously, this was quoted as
O(nflogn + m-n) in [1]). Latéi, Apostolico and Hambrusch [I] gave an
O(nZoglogn) algorithm for the unweighted case based on bipartite matching. They
posed the weighted case as an open problém. In this paper, we extend their
technique to produce an O(min[m- n,n2loglogn]) algorithm for the weighted case.
Our algorithm is based on a characterization of maximum weight independent sets
in bipartite graphs, which is not related to bipartite matching.

Consider an arc family F and its intersection graph G. Without loss of
generality, assume all arc endpoints are distinct and no arc covers the entire circle.
Now, label the n arcs arbitrarify from 1 through n. Label the endpoints from 1 to
2n according to their clockwise order. Denote an arc that begins at endpoint a and
ends at endpoint b in the clockwise direction by (a,b). Define a to be the head (or
counterclockwise endpoini) of the arc and b to be the fail (or clockwise endpoind).

An example is shown in Figure 1. The continuous part of the circle which begins
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with endpoint ¢ and ends with d in the clockwise direction is referred to as segment
(c,d) of the circle. We use "arc" to refer to a member of F and "segment" to refer
to a part of the cizcle between two endpoints. By this definition, an arc (a,b) of F is
also a segment (a,b). ' ' =

An arc i is sald to coniain another arc j if both endpoints of j are contained in
arc i. Define a minimal arc of a cligue Q 10 be any arc of Q which does not contain
another a.rﬁ of Q. For each arc u of F, we determine a MWC Qu among all cliques
containing arc u as a minimal arc. Among these n cliques, a QU with the maximum
weight is a MWC of G. .

Hence, we shall now consider a fixed arc u = (a,b) and search for Qu. Note
that arcs which pass through both a and b will naturally be included in Qu.
Therefore, our seleétion is among those arcs which pass through exactly one
endpoint of u. Let A be the set of those arcs passing through endpoint a and B the
set of those passing through éndpoint b. Arcsin A (respectively, B) will be referred
to as Aua.rcs (respectively, B-arcs). lObviously, arcs in A overlaﬁ with each other.
The same holds for arcs in B. Our algorithm is to optimally select a subset of A
and one of B such that every rtwo arcs in these subsets overlap with each other.
Assume all arcs not in A U B have already been deleted. Starting from b, one can
order all endpoints in the interior of segment (b,a) along the clockwise direction into
a linear list L. Starting from a, one can order all endpoirnts in the interior of
segment (a;b) along the clockwise direction into a linear list R. List L contains
heads of all A—arcs and tails of all B-ares. List R contains tails of all A-arcs and
heads of all B~arcs. An example is shown in Figure 1. |

Fig. 1. The two lists L and R

Define the complement G of G to be the graph whose vertex set is the same as
G and whose edges are exactly those missing in G. Since both A and B induce

complete subgraphs of G, the subgraph K of G induced on vertices corresponding to
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arcs in A U B is a bipartite graph. Hence, finding a MWC in AU B in F ié
equivalent to finding a maximum weight independent set (MWIS) of K. In the
unweighted case, there is a close relationship between a maximum matching and a
maximum independent set in a bipartite graph. Howéver, such relationship. does

not exist in the weighted case. Instead, we resort to the following characterization

of MWISs in bipartite graphs.

Theorem 1. Let K = (XUY, E) be a bipartite graph with weights assigned to its

vertices. Then an independent set P ¢ X UY is a MWIS in K if and only if both of

the following two conditions hold:

(1.1) For each subset X' of X\P, the set Y' of vertices in Y n P adjacent to some
vertices in X' satisfies w(Y") > w(X".

(1.2) TFor each subset Y" of B\P, the set X" of vertices in X n P adjacent to some

vertices in Y" satisfies w{X") > w(Y™).

Proof: The "only if" part: Let P be a MWIS in K. If there exists a subset X' in
X\P such that its corresponding Y' satisfies w(Y') < w(X'), then X' U (P\Y') is an
independent set of K with weight w(X') + w(P) — w(Y") > w(P), a contradiction.
Hence, (1.1) holds. Similarly, one can show that (1.2) holds.

The "if" part: Let P be an independent set of K satisfying conditions (1.1)
and (1.2). Let P be a MWIS of K. Let X' be X n (P*\P) and Y be its
corresponding adjacent set in Y n P. Let Y" be Y n (P*\P) and X" be its
correspbnding adjacent set in X n P. Then we have w(Y") > w(X"), w(X") » w(Y"),
PN(X'UY") =6and P n(X"0Y") =9. Since P is the disjoint union of sets (P 0
P*), X'and Y" and P contains the following three disjoint sets (P n P*), Y'and X",

we have

* * : ¥
WP )=wPaP }+wX)+wY)<w(PnP )+ w(Y') + w(X") < w(P)
Hence, P is also a MWIS of K. J |




2.  The MWC Algorithm

| We use u to denote an arc in F, j to denote an arc in A, i to denote an arc in

ﬁ B and Q to denote a MWC among all arcs scanned. The idea of the algo_rithzﬁ can 7
be described as follows. We scan the list L from left to right. Every time the tail of
a B-arc i is encountered, arc i is included in Q. Every ti;né the head of an A—a.;c j
is encountered, we fest whéther there is a clique of'lqé-r_g_é;;e;irg*htﬂc‘éﬁaﬁnjng j and
update Q. When all endpoints in L are scanned, the current Q is a MWCin A U B.
The testing involves exchanging certain arcs in Q with some arcs not in Q, which is
the main part of our algorithm.

Denote the original weight of each arc u by w(u). Its modified weight at each
iteration is denoted by w'(u). We use a graph H to keep track of the relationships
of all arcs scanned so far and modify H by adding vertices and edges (but never
delete vertices or edges) along the algorithm. Each vertex of H corresponds to an
arc already scanned. Each edge of H connects a vertex representing an A-arc to one
representing a B—arc and is assigned a weight. The edges of H are added so that the
entire graph becomes a forest. Each component of H is a tree which is associated
with a root. If this root corresponds to an A-arc, then the tree is called an A—tree;
otherwise, it is called a B—free. The union of all A—trees is called the A—forest of
H. The union of all B—irees is called the B—forest Denote the vertex of H
corresponding to an arc i in F by #;. Denote the arc of F corresponding to a vertex
vin H by 4. A priority queue AVAIL is used to store the roots of all the B—trees.
The algorithm maintains the following conditions for H:

(2.1) Let v be a vertex in a tree other than the root. Then w(iy) is equal to the
total weight of edges incident to it. |

(2.2) Let v be the root of a tree. Then w(iy) is no less than the total weight of
edges incident to 1t Furthermore, if iy is a B-arc, then w(iy) is strictly

greater than the total weight of edges incident to it.
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(2.3) Every A-arc corresponding t0 a vertex in the A—forest overlaps with eVery
B-arc corresponding to a vertex in the B—forest.. |

’ . The clique Q constructed from arcs scanned so far comsists of éllz A-arcs

ﬂ corresponding to vertices in the A—forest and all B-arcs corresponding to vertices in
the B—forest. An A—tree, once formed, will never be modified in later iterations.

We now describe the modification of H at each iteré';ion. If the tail of a B-arc

i is scanned, then we add a new vertex v; representing i to H as a (single vertex)

B-tree. If the head of an A-arc j is scanned, then we add a new vertex vj to H

representing j and add new edges incident to vj according to the two cases lgeiow.

Let {Vif .y vir} be the roots of the B—forest whose corresponding arcs iy, ..., ir do

not overlap with j and let them be arranged according to the R—order.

T . .
Case 1. w(j) > Elw'(it). In this case, we can show that j is contained in some
MWC among all arcs scanned. Hence, it is included in the current Q. Form an

A~tree T with root vj by adding edges (Vj,Vit), t = 1,...,r with weight w'(i;). Set

uf~lm

wi(i) = w(i) - B w'().
r
Case 2. w(j) < tE_}lw'(it). In this case, we can show that jis not contained in any

MWC among all arcs scanned and our Q remains unchanged. Let ig be the first arc

' 5
in the list iy, ..., ir such that w(j) < tElw'(i.;). Form a B-tree T with root v, by
B 5

adding edges (Vj,Vit), t = 1,..,s-1 with weight w'(it) and edge (vj,v; ) with weight
’ 5
s—1. 8
w(j) - tE_} 1W'(it). Reduce the current weight of i to l_'Z_}l‘w'(it) - w(j). .

We describe the above procedure more formally in Figure 2. Let g be |A U B|.

Procedure FIND-CLIQUE

INPUT: Two sets A, B of weighted arcs ordered according to the list L
OUTPUT: AMWC from AU B

begin

w'(u) « w(u); AVAIL + 9; (* the priority queue storing all roots of B~trees *)
fork=1togdo
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if the k—th arc is a B-arc i then do ,
add v; as a single vertex B-tree to H; o
insert arc i into AVAIL according to its R-order; '
else do (* the k-th arc is an A-arc denoted by j*) -
exchange =. "true"; add v; as a new vertex to H;
while exchange is true & tilere is a B-arc in AVAIL not overlappmg
with j jdo
ig e thehB—arc of the smallest R—order in AVAIL not overlapping
with j; '
connect vj to v, i by an edge and call the new tree T;

if w‘(J) < w'(is) then do * do not exchange *)
el (ls) W (18) w' J)) W(J:IS) =W (.])
exchange =, "false"; make v the root of T,
else do contmue the Frocess )

(J =w'(5) —w'(is); w(jis) + w' (is);
delete is from AVAIL; make Vi the root of T;

endwhile;
endif;
endfor;

Q« all A-arcs corresponding to vertices in the A—forest and all B-arcs
corresponding to vertices in the B—forest;
end;

Figure 2. The clique construction procedure

3.  Correctness of the Algorithm

To facilitate our discussion, denote the graph H formed at iteration k by Hy
and the clique by Qk. Let Hy' be the subgraph of G induced on vertices of Hy, k =

L,...8. It is easy to verify that Hy is a spanning forest of Hy' Denote the

' complement of Hy' by Hy'

Theorem 2. For k = 1,...,g, the set Qx constructed is a clique of mazimum weight

among all cliques in Hy .

Proof. We prove this by induction. Assume it is t1ue for @y, ..., Qx-{ and consider
Qk. .
- First of all, it is easy to verify that the subgraph Hy satisfies properties (2.1)

and (2.2). We show that Qg is a clique in_G and, as an'independent set in Hy',
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satisﬁeé (1.1) and (1.2). We do this by proving the following three claims. Denote
the root of a tree T in a subgraph by r(T). Denote the R-order of the arc i
corresponding to vertex v of Hy by R(vj). |

_ f
Claim 1. Let i and i' be two B-arcs so that v; and vy' are coniained in two different
B-trees Ts, Ts' of Hg, respectively with R(r(Ts)) < R(r('fs')). If v; and vi' are also
-~ ¢ontained in two different B-trees Tp, Tp' of Hp, respectively, with p > s, then

R(x(Tp)) < R(x(Tp"))-

Proof. We show this by induction on the subgraph index. Assume this is true for
all subgraphs H, with 1 ¢ £ < p and consider Hp. Let the two trees containing v;
and vi' at iteration p-1 be Ty and Ty, respectively. By induction, R(z(Tp)) <
R(r(Tp-1'). If the p—th arc is a B-are, then Tp = Tp.y, Tp' = Tp-' and the claim is
true by induction. Hence, assume the p-th arc j* is an A-arc. Let S = {iy, ..., i}
be the set of arcs corresponding to rfoots of the B—forest in Hp.; which do not
overlap with j* and let them be arranged according to the R—order. Becausei and i’
are contained in different B-trees at iteration p, vj* cannot be adjacent to both
1(Tp.1) and r(Tp-y') in Hp.. If vj* is adjacent to neither 1(Tp-1) nor r(Typ.,'), then
again, Tp = Tp-y, Tpi = Tp.,' and we are done. Otherwise, consider two cases:

Case (a). vj*is adjacent to r(Tp.y) but not r{Tp"): then r(Tp') = r(Tp.y') and the
arc for 1(Tp") must be in 8. By Case 2 of the algorithm, v; and v;* are contained in
the same B-tree with root r{Tp) and R(zx(Tp)) < R(z{Tp")).

Case (b). v;* is adjacent to r(Typ-y') but not r(T(p-1)): then r{T,) = r(Tp) and
R(x(T5") 2 R(x(Tp-) > R((Tp-1)) = R(H(T)). I

Claim 2. Qx is a clique in G, namely, Hy, satisfies (2.3).
] ' Proof. This is obvious if the k—th arc is a B-arc i because Qx = Q- U {i} and i

overlaps with all A-arcs in Hy. Hence, suppose the k—th arc is an A-arc j. Let i,
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..., iy be the arcs corresponding to roots of the B—forest in Hy_; which do not overlap
with arc j and let them be arranged according to the R—order. Consider the two

cases discussed in the construction procedure.

T . f )
Case 1. w(j) 2 t2_11W'(i,;): In this case, the algorithm connects vj to each of iy, ..., iz

and make vj the root of this new A—tree in Hy. Tt also adds to Qx all A-arcs in T
and remove all B-arcs in T from Qx.;. Hence, we need to show that the A-arcs
corresponding to vertices in T are overlap with all B-arcs corresponding to vertices
in the B—forest of Hx. For each A-arc j'in T, let S;' = {i}', ..., 14"} be the set of
B-arcs whose corresponding vertices appear in Hy which do not overlap with j'. All
arcs in S;' must have their tails scanned before j'. We show that S;'is contained in
the A~forest of Hy. |

Suppose, to the contrary, there is an arc ig' of Sj' with viq, contained in a
B-tree of Hy. Let s be the iteration in which the head of j' is scanned. Let T be
the B—tree containing v;' and Ts' be the B—tree containing viq. at the s-th iteration.
Then R(r(Ts)) < R(x(T4")). Since v, is in the same B-tree udth v;'in Hy.y, V!
and Viq’ must be in different B—trees in Hy_;. Let Tk.; and Tyk-,' be the subtrees in
Hy.; containing Y, and iy respectively. By Claim 1, R{r(Tx-)) < R{r(Tk-1")).
This implies that the arc for 1(Tx-') is among iy, ..., ir and would have been made
adjacent to vj' at the k-th iteration, a contradiction to the assumption that iq' is in

a B-tree in Hy.

r
Case 2. w(j) < tE—J lW'(it): in this case Qx = Q-1 and the claim is trivially true. |}
Claim 3. Q satisfies (1.1) and (1.2) in Hy".

Proof. Let Ay be the set of vertices in Hy that correspond to A-arcs and By be

those correspond to B-arcs. We first show that (1.1) holds for the set Vi of vertices

corresponding to arcs in Qx. Let A' be any subset in Ax\Vy. Because Qy contains




all A—arcs corresponding to vertices in the A—~forest of Hy, the vertices in A' must be
contained in the B—forest. Hence, A' does not contain any root. Let E; be the set of
edges of Hy incident to some- vertices in A'. Let B, be the subset of vertices in Vi
which are adjacent to some vertices in A' through edges in E;. Let B' be the subset . .
of vertices in Vi which are adJ:a,cent to some vertices in A' through edges of Hy'
Then, By ¢ B'. By property (2.1), w(A") = w(Ey) < w(B'l) < w(B'). The fact that
(1.2) holds for Qi can be pioved similarly. ||

4. Conclusions

‘We claim that QU can be found in O(min{m,n2oglogn]) time for each u.
There will be g iterations in the FIND-CLIQUE procedure. Since the graph Hg
constructed has O(g) edges, it is easy to see that the ma.jor- work involved is to
process the set AVAIL. Dépending on which of m and nloglogn is smaller, We can
adopt one of the following two strategies:

The first strategy is used in Fig. 1. Following the idea of Van Emde Boas [4],
we use a priority queue over the fixed list R to process the active arcs in AVAIL.
QOur . algorithm uses operations insert, successor, delete, each of which can be
implemented in O(loglogg) time. The total number of such operations is bounded
by O(g) and the total time spent in finding Qu is O(gloglogg), which is bounded by
O(nloglogn).-

The second strategy does not require any sophisticated data structure. It
results in the same complexity as that in Hsu [2). However, the approach used in
this paper is simpler. For each arc (e,f), order its adjacent arcs according to their
first endpoint encountered travérsing from f along the clockwise direction. This can
be done in O(m) time assuming all endpoints are sorted in the clockwise direction.
Initia]ly, set AVAIL to b(.a all arcs in A U B, represented by a linked list ordered
accc;rding to R. At iteration k, update AVAIL to be the set of all A-arcs and the

—9—




set of all B—arcs that are roots of the B—forest of Hy. That is, every time a root of a

B-tree becomes a non-root, we delete it from AVAIL. If the k~th arc is a B-arc, |

then AVAIL is not changed. If the k-th arc j is an A-arc, then root arcs of the
B-forest in Hx-1 (whose weights are to be compared against w'(j)-" one by one) are
exactly those in AVAIL but not in the adjacency list of j. Since both lists are

ordered according to R, we can find the first (and s_ﬁi)sequent ones, if necessary)

such B-root by a linear scan of AVAIL and the adJacency list of j. Thus, the total
time spent in finding QU is proportional to O(m).

In the current algorithm, we have not been able to pass the maximum clique
information from one arc to another. This appears to be the only approach which
could lead to a more efficient algorithm for the maximum clique problem on

circular—arc graphs.
References

1. A. Apostolico and S.E. Hambrusch, Finding mazimum cliques on circular—arc
graphs, Inform. Process. Lett. 26 (4) (1987), 209-215.

2.  M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York, 1980.

3. W.-L. Hsu, mazimum weight cligue algorithms for circular—arc graphs and
circle graphs, SIAM J. Comput. 14 (1) (1985), 224-231.

4. P. Van Emde Boas, Preserving order in a forest in less than logarithmic time

and linear space, Inform. Process. Lett. 6 (3) (1977), 80-82.

-10 -




Arcs in A: 1, 2, 3 Arcs in B: 4, 5, 6
List L 6,5,1,2,4,3 - List R: 6,5,1,3,4,2

Figure 1. Thetwo lists L and R




