TR-88-17

A VISUAL APPROACH TO SIMULATION OF
ICON-BASED CHINESE INPUT
METHODS

I

0090

o

A Visual Approach to Simulation of Icon-Based Chinese In;-)ut'
Methods |

K. Y. Cheng, R. K. Cheng, and M. S. Hwu

Institute of Information Science, Academia Sinica
' ' - and ' ,
Computer Science and Information Engineering Department,
National Taiwan University

ABSTRACT

1

This paper presents a visual programming environment for users fo
develop their own defined icon-based Chinese inprut methods. It will show the
following four aspects. First, Chinese characters are concrete icons
(decomposition graphs or webs). Second, a grammar that generates the above
mentioned webs is a context-free web grammar. Third, an icon-based Chinese
input method defines semantic rules to the production rules of the web
grammar which then becomes an attributed web grammar. Fourth,'a Chinese
input simulator is a machine that accepts these webs. Developing such a
simulator can be regarded as the construction of an user-defined application
program under the proposed visual programming environment. This paper also
shows that a form-based visual approach is included in the environment which
can be used to specify ways of evaluation and simulation in the user-defined
simulator. This demonstrates that visual approach to simulation of icon-based
Chinese input methods is still form-based despite the fact that visual objects

are concrete icons.

I. INTRODUCTION

The programming technique that utilizes certain interactive devices such as
screen cursor, joystick, mouse, touch screen, etc., and certain!screen operations
such as menu, window, form, diagram, icon etc., has become increasingly

popular in recent personal computers and workstations. Under such a
. programming environment, an user who possesses little or no knowledge of
" traditional programming languages can still develop his/her own application
programs effectively. This style of programming requires an user merely to

express his own expertise In terms of certain visual objects and their relations.

The visual objects are often form-based, diagram-based, icon-based, or of
their mixture. These visual objects have been used in office
infomation[21,22,23,27], computer-aided ins:zuction[7,8,9], computer-aided
design[1], data baseinterface{13,14], computer graphics[10,11], image
handling{3,15,25], scene understanding{6], ideograph understanding[4], ..., etc.
Interestingly enough, when one examines these applications closely, one may
find a common fact that form-based or diagram-based or icon-based visual
objects can be represented in graphs{7,8,11,13.16,19,22,23.242527,28]. In
other words, we may view the human visual conception in these applications as
comp031t10n of labeled c’raphs gach with Its labeled node represents a visual

object and a labeled arc a relat1onsh1p

In this paper, we are pafticulariy interested in the discussion of a visual
approach to simulation of icon-bassd Chinese input methods. An icon-based
Chinese input method regards the visualization of a Chinese character as-a
decomposition graph. The graph represents the ideographic formation of the

character code by method-defined rules. Different methods produce different

sets of decomposition graphs. For example, if the rule appiied is to decompose

from left to right, then the visual‘conceptio'n of the character B§ (b?ight) may |
be viewed as a decomposition graph with the character as its root node, the
_ primitive icons = (sun) and A (moon) as the desendent nodes and part- of
and left-of predicates as it labeled arcs (Fig. 2.1). A software program which
simulates user-defined Chinese input methods under the test of some pre-defined
“evaluation procedurﬂs is a simulation program. Different evaluation procedures
" produce different simulation programs. The realization of an icon-based
Chinese input simulator is a typical case where the notion of visual
programming can be applied since the programs may be sketched visually. The
sketched simulation program (or a simulator) can provide an user (or a
designer expert) the ability to define his/her own Chinese input method and get
an. immediate performance evaluation in a manner of

what-being-sketched-is-what-being-e=t.

The main results of this paper are presented in the following sections.
Section Il gives a formal definition of the visual language. Section III shows that
the decomposition graph formed in the realization of a Chinese character may be
regarded as a sentence generated by a context-free web grammar. Section [V
shows that meta rules of an icon-based Chinese input method are semantic rules
to attribute each production rule of the web grammar. Section V gives a formal-
definition of the Chinese input simulator. Section VI shows the development of
the simulation procrram for evaluatmc user-defined icon-based Chinese input
methods under the visual programming environment. Section VII shows a

program construction process and demonstrates portion of its execution results.
II. VISUAL LANGUAGE DEFINITION

As mentioned previously, the visualization(visual conception) of an object

is a graph, called the decomposition graph of the object. A visual language is a

~

collection of visualized objects, which means a decomposition graph may be
regarded as a representation of sentential forms of the visual language.

Therefore, the visual language may be formally defined as

L, = [x Ix1is a graph representation which can be

generated by a visual grammar G,, },

the visual grammar G, is a four tuple
i

G,=(Vy ,Vr.PS)

_where Vi is a set of nonterminals (compositive visual objects), Vris a set of
terminals (primitive visual objects), P is a set of production ruies, and S is 4 set
of starting symbols. Note that the realization of a visual application program is
to infer and then manipulate the visual grammar or its equivalent to obtain a

synthesized program which runs the application.

The language L, is called a t-based visual language if and only if the

graph representation is t-based, where t is substitutable for words such as
"form"(7,8,21,22,23,27,28], "diagram"[2,12,16], or "icon"[15,19,25]. For
example, the visualized Chinese characters in an icon-based Chinese input
method are sentences of an icon-based visual language (or an iconic language
for briefty). Fig. 2.1(a).shows a visualization of the character Bf as a
decomposition graph and Fig. 2.1(b) shows the visual grammar that generaies

it. In practice , more than one t-based visual languages are used simultaneously

in the development of an application program.

i

Ve = (8)
|

. = (8, A

<
It

part-o . art-of

w
1l

(B8)

@ left-of e ¢
o Producton Ruleis: -

B = g left-of B

@ (®)
Fig. 2.1 The ideographic formation of the Chinese character &

(a) the decomposition graph of B, (b) the grammar that generates BF .

The visualiiati‘on process that utilizes visual languages to construct an
application program such that the constructed result is acceptable or realizable
by a machine or an automaton is called visual programming. The environment
under which the users can freely develop tlweir visual application programs by
visual programming is a visual programming environment. Note that the visual
progranuning technique is a two-dimensional graphic construction which makes
its programming stvle quite different from the conventional one-dimensional
string description. As will be seen in later sections, the visual programming
technique is easier to construct certain application programs such as the Chinese
input simulator which would otherwise be rather difficult to implement in

conventional ways.

III. CONCRETE ICONS
An icon may be either primitive or compositive. A concrete icon can zither
be a primitive or a compositive one which, when represented in a decomposition

graph, is a combination of primitive icons in the structure of spatial relations

and descendent relations only. Let D, = (V, E) denote a decomposition graph

which represents a concrete icon. In the node set , V | the concrete icon is the

roof node. Its primitive icons are the leaf nodes. The rest Ccombined compositive

icons are the nonterminal nodes. In the edge set | E » there are twq types of
}

relation shows the adjacency relationship between two icons.

A typical example of using the decomposition 8raph to represent the
concrete icon is the visualization process of the Chinese character in an
icon-based Chinese input method. Fig 3.1 shows such an example, where the
Chinese character ('brain) is represented as a decomposition graph. The |
character f§§ is a root node. The terminal nodes are primitive icons, and the rest
are nonterminal nodes . The part-of predicate arcs are shown by dash lines and
the spatial relation arcs by solid lines.

part-of,-' '-_pan-of
. .,
leit-of
part-of .‘. ‘-.part-of
| Lt .
> A
@ e
Ay
.' .‘ '0 I‘
» 4 ' hd
» . . . +
part-ofs part-of part-of,* T ‘part-of
l' “
(: ’> laft-of (‘:) abova g
[+*
+ -
+ »
part-of’- * past-of

r LI
r +

:<E laft-of f<:

Fig. 3.1 The decomposition graph of the character ES

To understand the formation steps in the visualization, we need to
distinguish the part-of predicate from the spatial relations, thus wé introduce a
new graph called the derivation diagram as follows. A deriyation diagram is
obtained from a decomposition graph by preserving the inherited relationship of
the spatial relations from an ancestor node to all of its descendant nodes.

However, the readers are encouraged to consult [3,20] for a detailed procedure.

Tl
~ EBR B2

~

W
—
R~
]
ey
1]
~

n
N

L QMmoo @ »
1
B

n
E

left
above

i

Fig. 3.2 The derivation diagram of the character f& .

Fig. 3.2 shows the derivation diagram of the character §%. From a formal
language thecretical point of view, a derivation diagram is a graphical
expression of the derivation steps of a context-free web grammar[20]. A web

production rule is defined as

where ¢ and BB are webs and v is an embedding of B. In order to substitute a
subweb o of a web by another subweb B, we have to specify how to embed B

in @ in place of o.. For example, the web grammar that generates the web B is

v & - ’ -
VN= { é§:[‘3:34“)((} ’VT:{E’ {K.! ‘ H }, S:{Hg},

and P = production rules shown in Fig. 3.3.

— e—1 s

[]
S A B
\o ___,..\:\o a\ S = g
B - C . D A= g
, B = &
\A/ \A i / C &K
[-] -_— 0 ———e— g)
C E F D= K
E=1I=7J= ¢
VO - F =«
D G’ H G= -
H=
N/ o/ Ve
®- R O ——————-
12 1 J

Fig. 3.3. The web production rules that generate the character f& .

To derive web production rules from a derivation diagram, we shall
consider two graphs. One is called the skeleton and the other is called the section.
A skeleton is a subdiagram obtained from a given derivation diagram by
removing all of its spatial relation edges and leaving only part-of predicate edges
and their connecting nodes. For example, Fig. 3.4 shows a skeleton of the
diagram of Fig. 3.2. Notice that the skeleton is a tree structure whose root or

subroot corresponds to a web o and its decendents to another web § and thus a

rewritting (or productioﬁ yrule o —fB where 0 € Vy and Be Vy U Vs

obtained. The grammar thus obtained is context-free because of the nature of

tree structure.

&
+
‘0' [
o‘ .
o [O)
" .!
i "

@© (o)

+ . *

“ ‘l ..‘
; ‘ * +
®@ O o

N
OO
Fig. 3.4 The skeleton of fig. 3.2.

A section 1s a subdiagram that corresponds to a sentential form of the
language generated by the web grammar. We are only interested in the terminal

section that shows the external code symbols in order. For example, Fig. 3.5

shows the terminal section of Fig. 3.2. Suppose that ng,.....m; is a path from

root node ng to a frontier node (or leave node) mj of the skeleton, and let

cross-cut set C. together with all the edges of the derivation diagram between

nodes of C, is called a section.

Fig. 3.5 The terminal section of fig. 3.2.

To obtain the web grammar from a given derivation diagram, a skeléton 18
first obtained to derive the pr.oduction rules with ¢ = B, ¢ e Vyand then
another section is obtained to describe the embedding relationship of a
production rule. Notice that the number of preduction rules with o= B, « =

V 1s equal to the number of internal nodes in the skeleton. Also noetice that the

nodes in the termuinal section are primitive icons in V.
IV. ICON-BASED CHINESE INPUT METHOD

There are two types of meta rules adopted exclusively in every icon-based
Chinese input method. One is that of the decomposition rule and the other is of
the decoding rule. The decomposition rule provides an operator a selection
order for the decomposition of each character. For example, suppcse that the
general rule to decompose a character is from left-to-right then from
top-to-down then from outside-to-inside, then the character & may be
decomposed into a string of primitive icons A , L0, ,

this,in s, identifies the character.

The decoding rule sets conditions for an operator to follow since the number

of primitive icons is limited to at most the number of terminal keys.

i0

Therefore,the selected primitive icons can be considered as a reduced version of
the original ones. For example, one may use Hl to represent and & to -

represent © (see Fig. 4.2). Other conditions include the external code length

is limited to within @ maximum number, only the first and last external codes are
selected for decoding the same repeated external code, and so forth. Formally
- speaking, the decoding rules attribute each web production rule with a meaning
in parsing a nenterminal. From Knuth's formal semantics, there are two kinds
of attributes, the synthesized attribute and the inherited attribute respectively
[17,18]. For each production in a context-free grammar, semantic rules aré
specifiéd by defining (1) all the synthesized attributes of the nonterminal on the
left side of the production, and ('2) all the inherited attributes of the nonterminals
on the right side of the production. | |

To illustrate an example, let Exc be the external code, Len the code length,
and Lmt the limited true length. Then, the decoding rules of an icon-based
Chinese input method, called the Tsang-Chi method, may be specified by

defining the following semantic rules

a. Sisastarting symbol,S € V., A,B,C e Vy UVt

The productionruleis S — {A,B}

If A and B are separable, then
Exc(S) = Exc(A) + Exc(B)
Len(S) = Len(A) + Len(B)
Lmt(A) =2
Lmt(B)=3,

else |
Exc(S) = Exc(A) « Exc(B)
Len(S) = Len(A) + Len(B)

11

Lmt(A) = 3
Lmt(B) =4 - Len(A)

b. The productionrnuleis A = {B,C}
If Lmt(A) = 2,then ’
Exc(A) = Exc(B) « Exc(C)
Len(A) = Len(B) + Len(C)

| Lmt(B) = Lmt(A) - 1
Lmi(C) = Lmt(A) - Lea(B)

Exc(A) =Exc(B) - Exc(O)
Len(A) =Len(B) + Len(C)
g | Lmt(B) = Lmt(A)

'1 Lmt(C) = Lmt(A) - Len(B)

,l " If Lmi(A) = 1 and B and C are mutually inclusive, then

If Lmi{A) = 1 and B and C are exclusive, then
Exc(A) = Exc(B) « Exc(C)
Len(A) = Len(B) + Len(C)
Lmt(C) = Lmt(A)

Lmt(B) = Lmt(A) - Lmt(C)

c. AesVyp
If Lmt(A) > 0, then _
Exc(A) = Mk(A)
Len(A)=1

elss

Exc(A)=A
Len(A)=0

where - denotes a concatenate operator, My (A) denotes a pattern matching of

the Exc(A) to the k-th primitive icon, and A is a null element. It is seén that Exc

and Len are two synthesized attributes while Lmt is an inherited attribute.

The grammar with each production rule being associated with a set of

semantic rules is called an attributed grammar[18,26]. Fig.4.1 shows the

L

~ attributed web grammar which describes the visualization of the character & in

the Tsang-Chi method. Fig.4.2 shows its derivation tree(only the skeleton is

shown).

Exc(S) = Exc{A).Exe(B)
Len(S) = Lea(A)+Len(B)

S L Lmu(A) =2
: ® Y a®=3
s A B ,
\1‘ 1 \1\ Exc(B) = Exc(C).Exc(D)
\ A Len(B) = Lea(C)+Len(D)
e - —2 e (2) Lm{C) =LmiE)-l
B C D Lmi(D) = Lmi(B)-Len(C)

LmyE) = Lmt(C)-1

[a l a a Exc(C) = Exc(E).Exc(P)
\0 . \/ ! °/ 3y Len(C) = Len(B)+Len()
c

E F Lmt(F) = Lmi(C)-Len(E)

| 1] _
\ a* a \ Exe(D) = Exc(G).Exc(H)
Sl - =0 —_— () Lan(D) = Len{G)+Len(F)

D G 84 Lmi(H) = Lmt(D)
: - LmG) = Lmt(D)-Len(H)
™ f N ! V sy Exc(®) = Exc(DExc(l)
B ¢ ——re Len(F) = Len{T}+Len(J)
F) I J

Lot(D) = Lmt(F)
Lmt(I) = Lmt(F)-Len()

Exc(A) = Mk(A) Exc(E) = Mk(E) Exc(G)= & Exe(D= a

Len(A}=1 - Len(E)=1 . Len(G)=0 Len(D=0
' ﬁxc(.r) = Mk(D Exc(K) = MK(K) Exc(L) = »

Len(D =1 . Len(K)=1 Len{L)=0

Fig. 4.1 Semantic rules associsated in the web productions of B .

Exc= A
Len=1

Lmtwi

Exc= ¢
Len =1
Lmt = 1

Fig. 4.2 The derivation tree of the character 5 .
V. CHINESE INPUT SIMULATOR

Due to the fact of emploving the constraint decoding rules in the
decomposition of the Chinese characters, a string of primitive icon codes thus
obtaitned may correspond to many different characters which results the so
called collision problem. An useful Chinese input method shall keep the collision
rate low. In addition , requirements, such as the average number of key-in
operations shall be less, the decomposition speed shall be faster, the
decomposition rules shall be easier to use, etc., all nesd to be considered. In
particular, the decomposition speed should be fast enough to meet the ordinary

typing speed standard.

As far as the decomposition act is concerned, the decomposition speed

depends on the aumber of derivation steps (or the pumber of production rules

applied) in character decoding as well as the frequency of the decomposition
rules being used. With fewer derivation steps and easier applications of the
decomposition'mles, the decomposition speed will be faster, As stated in the

- previous section, the number of derivation steps can be obtained from counting
the number of production rules with o = B, oe Vyand § € VU Vo

being applied, and the number of keys depressed is the number of the terminal
nodes. The decomposition speed and the easier use of the decomposition rules
may be directly measured from counting the nodes and the appearence rate of
the decomposition rules used. In other words, one may use the decomposition
graphs as media not only to simulate a Chinese input method but also to derive
production rules from them (from parsing of the decomposition graphs) in

order to obtain its performance evaluation.
A Chinese input simulator 1§ a machine that accepts user-defined

decomposition graphs and comresponding decompesition rules as the input and

produces the evaluation result as the output. Thus a simulator is a six tuple

CIS=(Q,S,4,0,qpF)°

j where:

{ 1. Qs a finite set of states.

2. S= (P, E) is a {inite set of decomposition graphs, the node set P isa
finite set of extermal code symbols and the edge set E consists of two
types of edge, a dash-line arrow specifies a part-of predicate and a

solid-line arrow specifies a spatial relation.

)

. A is a finite set of output values.

. & is a mapping from Q x (S U{X}) to a finite subset of Q X A*, and A

I

denotes a null element.

5. qp € Q is the initial state.

6. F € Qis the set of final states.
t

It is worthwhile to note that some values may be generated and accumulated

areach intermediate state so that the evaluation result is obtained simultaneously
=~ at the state. In the following section, we shall show a visual programming
environment under which an user can define an application software for

developing Chinese input simulators.
V1. A VISUAL PROGRAMMING ENVIRONMENT

To support the development of an user-defined Chinese input simulator, a
visual programming environment provides some facilities and tools for the user
to select during his/her construction of the application program. An user may
first select a table (the decomp'osition rule table) for the description of his/her
own set Qf decomposition fu-les, then select anothar table (the primitive icon
table) to define a set o'r‘primiti#e icons as terminal nodes for the decomposition
graphs, and then select another table (the spatial relation table) to define spatial
relations for arcs construction. After that, the user can then create a working
area (decomposition graph window) to construct each decomposition graph of
the corresponding Chinese character according to decomposition rules and a
reporting form window to display the intermediate evaluatiuon results. The
system then convarts each decomposition graph into a derivation diagram and

.records the information of skeleton and terminal section subgraphs into some

system generated tables for later use in the evaluation process. A build-in

function set defined in the evaluation procedure tabie is called by the system to
generate values to measure the efficiency of the input method just defined. The

evaluation result then shows in the reporting form window with format defined

in a reporting form schema for recording and displaying both the intermediate

evaluation result during execution and the final evaluation result after execution.

Fig. 6.1 shows the system organization of a visual programming
synthesizer. There are four definition languages for users to define the
decomposition rules, the primitive icons, the spatial fé[ations, and the evaluation
procedures. The results are some tables, the dccomposmon rule table (DRT), the
primitive icon table (PIT), the spatial relation table ESE’I:)——f:md the evaluation
procedure tab (EPT). Notice that they are defined by a form-based visual
language although they are going to be used in the construction of icons and icon
related information. After these tables are defined, another form-based
language can be used to define the reporting form schemata for recording and
displaying the intermediate and final evaluation results. A schema defines the
specification of the reporting form which consists of a form heading (defining
the form structu~s) with form fields, the form field sources (where arz they
coming frem), field data types, and specification items. Each specification item
(in a set of build-in function items) selects some form fields for its
specification. Finally, the program structure is described into an internal
representation of the application program via a V-Form interface language. The
internal structure of the application program defined in this way is an extended
version of our previously designed visual programming synthesizer, the EVIPS
(7,8], because by now we have to include two more V-Form types DG (stands
for decomposmon graph) and REPORT. DG is a type of window for the user to
define decomposition graphs and to select the corresponding decomposition

rules, while REPORT is a type of window where the intermediate and final

reports show.

Reporing Form
Spacification

U

Evauazon Reparting Program
Evaluation Brocedure et Farm Structure
Procuduras::*‘ Datinition Dafinition Specification
Languace Languags
. -) ,
.) Cacomg, _ ' A - 'J,,L .
Cecormp. Rutae T ing
Rules Dafmton DAY Recarting V-Farm
Form) Inteslace
_Sc-nem:t Larguage
Primitive _ 4 z::ipwa o
Icans —1 Oatinition d 1
Intarpratar = = =P ‘Intesnal
Spatial ?;,’;‘,'L ———I Repmfamaum <: Dagomgasition
Relationsi Dakaition SRT ¢ i Graphs
anqLp . Application
Program
T ———,
—_
Decompasition Aepoiting
Gragns Form
Fila instances
i Fig. 6.1 The system organization of a visual programming synthesizer.

Fig. 6.2 shows a summary of the command menu used in the visual
programming environment. On the top is a main menu for the selection of
commands such as defining tables, specifying reporting form schemata,
constructing application programs, executing the constructed application
program, setting up or exiting from the system , or asking for help. The table
command menu is for the construction of four tables, the decomposition rule
table, the primitive icon table, the spatial relation table, and the evaluation
procedure table with some editing operations, build-in function calls, and file
manipulations. The reporting form schema command menu is for the

construction of reporting form heading and its body. The program construction

command menu is very much the same as that of EVIPS except the tables are,
PIT, DRT, EPT and SRT. " | |

Tale Asacrng Prageam Program Setup Huo Tt
Sulinition Fors Constrschian | Sxmcubon
Defimtian
/ \ Qiractery
Table | Oporuior] Jwidin [Fila ¥ |Heo 2ot £
Tree Fatnon Asgn Tabie ¥:Form Conval {mance Fila Hap
8
- AT lzwrt Com =
ben Ingert Crans Grauo Com
&r Loduta v
AT usiia Satang Ungraun Cesa
AT Deinta Sava -
= Jwoi AELTY Sna —
T Sara 11
<o) Jiseiny Unhra, Sad
Pring
Seurmy - - ST T

Farm Fom Fitg L T] et
saacry Jocy

(T Sevaia

Fig. 6.2 The summary of the command menu.

VIL. PROGRAM CONSTRUCTION

From the user's point of view, the construction of a Chinese input
simulator, under the previously described visual programming environment,
must follow certain steps in order. Fig. 7.1 shows such an application program

construction flow diagram.

I START '

r
taowe Delinmition
{PIT, DART. EPT, SAT and .
Reparting Form Definition

-

Program Construction

i e = o PrRgream Execution
(Input of the DG of wach charsoter)

—.-—.Evaluation Resuls

maodily
Chinsua input
Muthod 7

Ves Madily
Evalvation
Procedures 7
Fig.7.1 Application program contruction flow.

As mentioned above, the four tables : DRT, PIT, SRT, and EPT (Fig. 7.2
shows their appearence) and a reporting form schema (Fig. 7.3 shows its
appearence) are first defined. To define a reporting form schema, the user can

load in a reporting form heading if it has been defined earlier and select the

proper form fields for each specification item.

Primitve lcon
Table
Intarnal
lean Codse Spauai Hewanan o " Aule T
scompasition Rule ol
A 02 Table il able
lecon |Desecription j[=} T Deacription
= - Yoo)
1 latt-of dr1 s =5 2
33 20 7
r right-al dr2 D 7 !
= 24 d
. 8 asave-al ar2 E =8 N
= 3¢ vy
ar3 E, ¥ BRRES
Svaluation Procadure Table
Mamae |Paramatars Dafinition
1 s SQAT{ 0.8 + 2.2 ~ (NO-POC (IN-ALLE {3)} NO-PA | -
as 1.% 1 % x g Tarminal Nodas
s n.x SOAT{SUM{ asth-1, y)) = f) / SUM [TFUGHT (vh],
¥ ¥ € SHILD{x

. ~ T
Fig.7.2 An example of part of four tables.
Farm File Help Exit
Heading
IRAT ; Chiness_inpul_svaaucn
rCharaciar Rasuil)
(Raczan {PLa)
gnaraciar Qccur,
symoal rate :;::f'“' aame | twat | rame | tom
nam»] acer, accur.
. umas timas
SOLFCT symalcicierateicic| dsicicl pymatiie) peeieie) | rutlier] sratatney
OATA TvoS
WEY v
CONT ~ ~ ~
AVG v | N v v ;
IN v | N (V4 N
MAX vl v v
el iy -

Fig. 7.3 The definition of the reporting form schema.

S QA A v L L

Fig. 7.4 shows an insertion process of a V-Form with type REPORT and name
RESULT onto the V-Form page, the VFORM:Decom_Result (a program

segment), the result is showing in Fig. 7.5.

Begin | TABLE gLOO“{VmOL INSTANGE | FILE
VFORM:Dacarmp_Resu
- DG:Charactar Remove y
Update
Display
Search N

tatag :
_V-Form type : REPOAT . ‘ o

V-Form name

[To use Insert command, notice that
FOAM:MNext V-Form type may be TEXT, GRAPH, VFORM, BIT-MAP

I Next Characer ! V-Form name can have a max. length of 20 characte
If V-Form type is REPORAT, you must specify schemq

Fig. 7.4 The insertion process of a V-Form with type REPORT.

CONTROL

Segin | TABLE | V-FORM
FLOW

INSTANCE | FILE | HELP

weonMiLem)_masuit

23 Charactar

REPORT:Schemal:AESULT

o . -
FORM:Naxt ‘CRM:Fin VFORM:Exit
Next Character Final Resuit
EXIT

Fig. 7.5 The result after V-Form REPORT:Schemal:RESULT is inserted.

Fig.7.6 shows the execudon of the program segment

VFORM:Decom_Result. As can be seen, the user is using two tables, the

primitive icon table and the spatial relation table, to c:onstfuct the decomposition
graph of the Chinese character & "(brain) and describing the decomposition
rules being used associated with the character in a table (t}}e Corresponding
Rule Table). After the construction of the decomposition graph of the"
character, the evaluation result (accumulative updated values) appears in the
right reporting form. To continue the construction of the next decomposition
graph, the V-Form Next Character is selected. When all the decomposition
graphs have been constructed, the V-Form Final Result is then selected to get the
overall evaluation result of the Chinese input method just designed (the result
shows in Fig. 7.7).

Cotess,_loput., oo = PIT F SRY
i . -
sFATIAL AELATION TASLE
1 w lad &
e - * | e] | e
. cHwESE Sy
SAE | ouaeacez ‘E‘J.BL‘.[O I’ =e ? SAVE pmm_:i
" puieg” ¥l { Caamsceer Renult)
Tio input Cuncse chancris ! 8 | ' ied e socur (rutical} | (i)
The chancty el soe = 0527 PRGTIVE 1o symoke —
The nesumenos e = L3Se% e :‘;: s bt by e s
Decnmpasitios Gzl i A = 7 | s
b 24 0.347 - a2l
Q A FEERED
bt EREREEN
R o
L R) F| Q412 = T ld3g .
i ey T
. R x G -
T 1 ‘[_.'1_,:._1_'3 B ENE
Ty Vv Il = a EMIBE
(O (=) -_Ij:t w |03 . R EECIE
st CZ e = o
Al
ary I_J'J'
- Ld - o d i
- »
Nou Chancrr Frud. Result,

Fig.7.6 The execution of VFORM:Decomp_Result.

Chinese_logut oo o L wras f T
The following reporing form is the summary of the evaluadon results
SAVE L PRINT [© HELP
K
Towml Mo of| Averaga . T‘?uE no. ?r’ '\vlcrage no. [Average Awverage no.
s decompositdon Primitive icom pf ey collision bf rule useat
speexl pLsod fepresxed fate N ona
Ehuwracter
1350 0.325 1038 3.2 027 4.5
L=l o -

Fig.7.7 The overall evaluation result of the Chinese input method designed.

VII. CONCLUSION

In this paper presented, we showed thar the visualization of the Chinese
characters in an icon-based Chinese input method is an iconic language. An
icon-based Chinese input method is defined in terms of a set of decomposition
graphs and that of decoding rules. A decomposition graph (or a web) can be
transformed inio a derivation diagram. A web is a derivation diagram for a
contex-free web grammar. The decoding rules assign meaning to each
production of the grammar which then becomes an attributed context-free web
grammar. The nurnber of production rules is the number of decomposition steps
n parsirig the visual routines to decode a Chinese character. Based upon these
observations, a Chinese input simulator can be described as a machine that
accepts the specification languages of the decomposition graphs and the decoding .

rules. We then showed that a visual programming environment can be

-established for users to define their own Chinese input simulators (application

programs) and run their,own defined Chinese imnput methods on it.

REFERENCES

[1] M. Beretta, P. Mussio, and M. Protti, "Icons: Interpretation and Use”, Second IEEE
Computer Society Workshap on Visual Language, June 1986, pp.149-1358.

(2] Alfs T. Berztiss, "Specification of Visual Representations of Petri Nets", Tﬁird
IEEE Compurter Society Workshop on Visual Language,‘Aug. 1987, pp.225-233. ,

[3] J. M. Brayerand K. S. Fu, "Some multidimensional grammar inference methods", in Pattern
Recognition and Artificial Intelligence, (C. H. Chen,-ed:);-Academic-Press, New York,
1976.

, [4] S. K. Chang, "Icon Semandcs - A Format Approaéh to Icon System Design”, Int'l Jour. of

| Pattern Recognition and Ardficial Intelligence, World Scientific Press, 1987.

{51 S.K.Chang, E. Jungeﬁ, S. Levialdi, G. Tortora, and T. Ichikawa, "An Image Processing
Languagc with Icon-Assisted Navigation”, IEEE Transactions on Software Engineering,
August 1985, pp.811-819,

[6] S.K.Chang, Q. Y. Shi, and C. W, Yan, "Iconic Indexing By 2D sirings”, sécond [EEE
Computer Society Worksiop on Visual Language, June 1986, pp.12-21.

(7] K. Y. 'Cheng, C. C. Hse, I P. Lin, M. C. Lu, and M. S. Hwu, "VIPS: A Visua:
Programming Synthesizer”, Second [EEE Computer Scciery Workshop on Visual Language,
June 1986, pp.92-93.

[3] K Y.Cheng. M. S. Hwu. and C. C. Hsu, "An Extended Visual Programming Synthesizer

for Computer Aided Inszuction Applicatons”, Third IEEE Computer Society Workshop on

Visual Language, Aug. 1987, pp.147-160. _
[9] W.Finzer and L. Gould, "Programming by Rehearsal”, Byte, Vol. 9, No. 6, June 1984,
pp.187-210. ' h

[10] G.F. McCleary, Jr., "An Effecave Graphic "Vocabulary"", [EEE Computer Graphics and

' Applications. March / April 1983, pp.46-33. :

(111 F.S. Montaivo, "Diagram Understanding: Associadng Symbolic Descriptions with Images™,
Second IEEE Computer Society Workshop on Visual Language, June 1986, pp.4-11.

[12] E. P. Glinert and S. L. Tanimoto, "Pict : an Interactive Graphical Programming

Environinent", [EEE compuier Magazine, November 1984, pp.7-23.

C. F. Herot. “Spatial Management of Dara”, ACM Trans, on Database Systems, Vol. 5. No.

4, 1980, pp.~93-514. '

[14] K. Hoehne. “The ISQL Language - A unified Toot for Managing Images and Non-Images

—
—t
(Y]

[

Data Managzment Syétem", in Visual Languages, edited by S. K. Chang et. al., Plenum
Pub. Co. 1936.
(15] T. Ichikawa. "HI-VISUAL: A Language Supporiing Visual Interacdon in Programming”, i

25

[16]

[17].

{13]

(27]

(28]

Visual Languages, edited by S. K. Chang et. al;, Plenum Pub. Co. 1986.
R. J. K. Jacob, "A State Transition Diagram Language of Visual programming”, IEEE -

. Computer, Vol. 18, No. 8, Aug. 1985, pp.51-39.

D. E. Knuth, "Semantics of context-free languages,” J. Math. Syst. Theory 2, 127-46
(1968). '
P. M. Lewis II, D. J. Rosenkrantz, and R. E. Stearns Compiler Design Theor},

Addison- Wesiey, Reading, Mass., 1976.
191

M. A. Musen, L. M. Fagan, and E. H. Shortliffe, "Graphical Specification of Procedural
Knowledge for an Expert System”, Second IEEE Computer Society Workshop or Visual
Language, June 1986, pp.167-178.

J. L. Pfaltz and A. Rosenfeld, "Web grammars”, Proc. First Int. Joint Conf. Artif. Intell.,
May 1969, Washingion, D.C., pp.609-619. '
N. C. Shu, et al., "Specification of Forms Processing and Business Procedures for Offics
Automation”, [EEE Transactions on Software Engineering, Vol. SE-§, No. 5, Sep. 1932,
pp.499-512.

N. C. Shu. "A Forms-oriented and Visual-directed application development sysiem for
non-programmers”, First IEEZ Computer Society Workshop on Visual Languags,
Dec.1984, pp.162-170.

N. C. Shu. "FORMAL : A Form-Oriented, Visual-Directed Applicaton Developmen:
Svstem”, IEEE Computer, Vol. 18, No. 8, 1985, pp.38-49.

Tadashi Ae and Reiji Albara, "A Rapid Prototyping of Real-Time Software Using Per
News”, third TEEE Computer Society Worxshop on Visual Language, Aug. 1987,
pp.254-241.

I Yoshimoto. N. Monden, M. Hirakawa, M. Tanaka, and T. Ichikawa, "Interactive Iconic
Programming Facility in HI-VISUAL", Second IEEE Computer Society Workshop on
Visual Language, June 1986, pp.34-41. _
K. C. You and K. S. Fu, "A syniactic approach to shape recocnmon using atributed
grammars,” [EEE Trans. Syst. Man Cybern., SMC-9(6), june 1979.

V. M. Zloof, "Query-by-Example: A Data Base Language", IBM System Journal, Voi 16,
No. 4, 1977, pp.324-343.

M. M. Zioof, "QBE/OBE: A Language for Office and Business Automation,” IEEE
Computer, Vol. 14, No. 5, 1981, pp.13-22.

