- TR-88-21

BRESENHAM'S ALGORITHM IN QUADCODES

l\II\IIHIHIIHINIIIHH\IIU\IIIIIH\HI H \Il i

0094 2

0094

Bresenham's Algorithm in Quadcodes

J. P. Hwang and K. Y. Cheng - -

Department of Computer Science and Information Engineering
National Taiwan University
Taipei, Taiwan, R.0.C.
and
Institute of Information Science

Academia Sinica

ABSTRACT

An algorithm for drawing line-segment between two pixels in a binary

raster image coded in linear quadtree representation is presented. It is a
Bresenham's algor:thm in quadcodes and is as efficient as the ongmal
Bresenham's aloomthm when 1mplemented i hardware. ‘

1. Introduction

Using quadtree to represent image data structures has gained its popularity

in dealing with raster scan graphics recently [1,2 3 4,5,6,7]. The major advantage
- of using quadtree representation lies in the fact that the 1 lrnaoe p1xe1 data stmctured"

in a recursive quadrant-division-tree can provide parallel computation on

extracting local image information. However, image data coordinates are lost in
the quadtree represeﬁtation, because now the pixel data are in terms of strings of
codesﬁ Therefore, a conversion process to transform codes into their
corresponding image coordinates must be provoded when using quadcodes in
graphics. _

In this paper, we present a method that uses quadcodes in Bresenham's
algorithm. Bresenham's algorithm [8] has been accepted as a standard approach to
draw any line segment between two points in raster scan graphics. As stated
préviously, in order to extend the application of Bresertham's algorithm to the
image structured in quadcodes, we have to find the adjacent relation of quadcodes
as well as the distance between quadcodes in the generation of the line segment. In
the following, we shall divide our discussion into sections. Section 2 briefly
introduces the definition of quadcode. Section 3 shows the formula for neighbors
finding and distance measure between quadcodes. Section 4 shows the original
Bresenham's algorithm. Sect1on 5.demonstrates poruons of the original alcronthm]
which need be converted into quadcode expression and then shows the complete

Bresenham's algorithm in quadcodes.
2. Quadcode Definition

The quadcode is a quaternary-based string code. Let S = {0,1,2,3 } bethe

code character set. Then a quadcode of length n is of the form

Q=9192-dn

whereg; € S fori=1,2,..,n

The code characters are arranged into quadrants as shown in Figure 2.1,
Each quadcode character represents an operation of _sﬁbdividing the image or its
‘subimage into quadrants. The continuation of the subdivision is'represented in.a '
quadtree structure [9,10]. And, coded similar to the linear quadtree approach [11],
a quadcode represents a region of square quadrant with i)lack pixels [12]. Hence a
quadcode represents-a black node of a linear quadtree, i.e., a region which needs

no further subdivision in that particular quadrant. Figure 2.2 shows an example of

a 23x23 image represented in quadtree, the quadcodes are 030, 031, 033, 12, 132,
2, 30, and 32, they represent the regions : R, S, U, L, X, D, N, and P, repectively.

) 2 3

Figure 2.1. Quadcode characters in quadrants.

Figure 2.2.- Quadtree representation of a 23x23 image.
3. Quadcode Relations
3.1 Neighbors Finding

To each quadcode, its eight adjacent neighbors (of same size) can be

obtamed from the detection of adjacent relations. For example, consider the node

N, with quadcode a;a,...a,_10 and two of its neighbors N and N, shown in Figure
3 1. Suppose their quadcodes are each of lencth . As can be seen, the father node
of both Ny and Ny is Ng, = (a1a2 an_l) thus N = a1a2 an 1. However ‘the father
node of N, is Ng,, which 1s different from that of N,. But we see that the last code

character of N, must be 2, so N, = uqu,...u,_12. Also, the direction of Ng, relative

to N¢, is an above relation. This observation suggests us to use a row function
to(0,4)) = (a;,dj) where dj="1, 4,4, >\, 7, , N, 8 =1,2,3, and ¢ =

T, ¢, N\, ¢ repectively, to denote the observed adjacency relations, With the
same reasoning, an adjacent relation table ta(al,d) (al,d Vi=1,..,4and =

1,...,8, can be constructed also. The adjacent relation table which indicates both the

location of neighbors' ancestor (or descendant) nodes as well as the direction to

search them is shown in Figure 3.2.

Figure 3.1. Adjacency relations between N, and its eight neighbors;

0 l ¢« SN 2 < N

0 | @M @) @l @, G G G G.8)

1 | 3, (3,¢) (0,6)] (0,2 2,7 2,70 2,6) (2,7)

2 | (0,9 (0,4 B,)] (B, (L&) (1,8 (1,«)) (1,4)

3 (L) (L) (2,8) (Z2,2)] (0,¢)] (0,-2) (0, (0,)

. . Figure 3.2. The adjacent relation table.

Using this adjacent relation table, we can start from a node N, with

quadcode aja,...a, to find its eight adjacent neighbors by the following (recursive)

formula (3.1):

(3.1) AN(ajap.ap, &)=
(a1a5...a,)(A) ,ifn>0andD' = ¢,

(AN(2122, 1,D)) (A) ,ifn>0andD' # ¢,

Nil , if (AN(€ ,d;)(b;b,...b,) is reached.
‘where A'=ty(apd)ay and D'=tyand).d.

- The foliowing procedure uses formula (3.1).‘to find an appropriate

neighbor. We propose two versions, recursive and nonrecursive, in this
procedure.

Procedure 3.1: Neighbor)
Input: N=ajay..a; and Dir=1T,{,=>,¢,N\, 7, or N
QOutput: The neighbor of N in direction Dir

/* Recursive version */
if ta(an,Dir).dj' = ¢ then
return((a;ay...a;_1)(ty(a,,Dir).a;))
else
if n=1 then
return(Nil)
else

return((Neighbor(a;a;...ap_1,t,(a,,Dir).d))(t, (2, ,Dir).a;))
end if _
end if

/* Nonrecursive version */
"D=Dir - - o e
forp=ndowntol
if t,(a,,D).d; = ¢ then
return((a;a;...ap_1)(t3(a5,0).2;)(by41bp42---by))
else .
bp = ta(ap,D).ai
D = t,(a,D).d;
end if

nextp
return(Nil)

3.2 Distance Measure

In order to measure the distance between two quadcodes, we need to
perform both the horizontal and vertical projections to-calculate the X- and
Y- -components of the distance. The horizontal projection honzonta]ly moves the
quadcode node to the leftest position, while the vertical projection vertlcally moves

- the quadcode node to the uppermost position. For example, the projections of two
nodes N, (123) and Ny, (213) of a 23x23 image in Figure 3.3 obtain Ny, (022), Ny, -
(202), N, (101), and N, (011) repectively. .

NvH

"NhY

Figure 3.3 Horizontal and vertical projections.

Notice that each code character in the horizontal projection is either 0 or 2,
e have to change them to 0 or'1 respectively. This can be obtained by dividing
each original code character by 2. While each code character in the vertical
projection is either O or 1, we need not change them, and this can be obtained by
operating to each original code character with mod. 2. Based on the above
observation, we have the following two procedures for horizontal and vertical

projections :

Procedure 3.2: HP (Horizontal Projection)
Input: N=a;a;...a,
Output: Ny, =h;h,...h, (the quadcode after horizontal prolecnon)

7

fori=1ton

hi =g / 2
next i
return(hyh,y...hy)

Procedure 3.3: VP (Vertical Projection)
Input: N=2a12,..., |
Output: N, =vyvy...v, (the quadcode after vertical projection)

fori=1ton

Vi = &i mod 2
nexti
return(vyvsy...vp)

To measure the distance between two quadcodes, we perform the horizontal
projection to find its vertical component and the vertical projection to find its
horizontal component. Hence the distance can be calculated as follows:

Distance(Ny,N,) = Sqrt{[Diff(VP(Ny), VP(N,))]2 + [Diff(HP(Ny),HP(N,))]2},

where Diff is obtained from the following procedure:

Procedure 3.4: Diff (horizontal or vertical distance compornent)
Input: N, =aya,..a, and Ny =Dbb,...b, (projected nodes)

Output: The distance between N, and Ny, or N, - N,

fori=1ton
d=d*2+(a;-by)
nexti

return(d)

|
| d=0
‘

4. Original Bresenham's Algorithm

Bresenham's algorithm seeks to find the raster locations of a line segment

between two points (x1,y1) and (x,y,). The basic idea of this algorithm is to

8

incrementally seek a neighbor (ohe unit a time) in either X or Y depending on the
slope of the line. Suppose one unit of a line segment is in the first octant as shown in

Fig. 4.1. The increment is either 0 or 1 is determined by examining the distance

between the. actual line location and the nearest gnd location (1, 0) and (1 1). The
distance between the actual line location and (1 0) is called the error. If error = 0-
then plot (1,1) and update the error value to the distance between the actual line

locati_on and (1,1), else if error < 0 then polt (1,0) and propagate the error value to

the next unit. This process is repeated until (X5,y,) is reached. For later discussion,

" the original Bresenham's algorithm is shown as follows:

y -
A |
©,1) /‘D<1,1)

1/72= Ay/ Axs 1
(error 2 0) Plot (1,1)

0= Ay/ Ax<1/2
(error < () Plot (1,0)

@ > x

©0) (1,0)

Inidalize error to -1/2
error =error + Ay/ Ax

Figure 4.1. Basis of Bresenham's algorithm.

Original Bresenham's algorithm:
/* the line end points are (xy,y1) and (X;,y,) assumed not equal

all variables are assumed integer
the Sign function returns -1, 0 1 asits argument is < 0,=0,0r>0*/

/* initialize variables */
X= Xl
Y=y
Ax = abs(xy-Xy)
Ay = abs(yy-y1)

F s1 = Sign(xy-x1)
| s = Sign(y2-y1)

/% Interchange Ax and Ay depending on the slope of the line */
| 1fAy>Axthen
Temp = Ax
Ax=Ay
Ay=Temp
Interchange = 1
else
Interchange = 0
end if

-/* Initialize the error term to compensate for a nonzero intercept */
e=2*Ay-Ax :

/* main loop */ -
fori=1to Ax
Plot(x,y)
ife 2 Othen
X=X+ Sl

Y=Y+$§
e=¢- 2*(Ax Ay)
else
if Interchange =1 then .
Y=y+35;
else
X= X+Sl

endlf o
e=e+2*Ay
end if

nexti
finish

Notice that the sign s;, i = 1, 2, are determined by what quadrant the line

[segment lies, as shown in Figure 4.2. For example, if the line is in the first

quadrant then s; =X, - x; > 0 and s, = y; - y; > 0. Also notice that in each

quadrant, there are two regions seprated by a slope line. These slope lines are used
to indicate conditions for the interchange of Ax and Ay. For instance, note that in

10

the first quadrant, if the slope angle is less than 45" then x is incremented by 1 else
y is incremented by 1.

y
A

Increment Increment

Increment Incfément
x by -1 y=y+1 —\—%x-by L~ - -

> X
Incremen Increment
x by -1

x by 1

Increment | Increment
y by -1 ¥ by -1

Figure 4.2. Conditions for original Bresenham's algorithm.
5. Bresenham's algorithm in Quadcodes

In order for using quadcodes in the implementation of Bresenham's
algorithm, few things need be considered. First, the increment in X or y must be
changed to a searching direction for finding a neighbor. Fig. 5.1 shows these
searching directions in four quadrants. For example, suppose the line segment is in
s} - the lower region of the first quadrant (or-the first octant) and if the plot is(1,1).
then the searching direction is NE (North-East) or if (1,0) then E (East). Observe
that there are only two searching directions in each octant, the diagonal and

coordinate directions. The procedures to find these directions can be stated as

follows:

Figure 5.1. Conditions for Bresenham's algorithm in quadcodes.

Procedure 5.1: Diagonal_Direction S .
Input: Ax and Ay. ,
Output: The diagonal searching direction \ or / or ¢ or N o

don't-care, depending on the signs of Ax and Avy. '

if (Ax>0and Ay > 0) then return(”) end if
if (Ax<0and Ay > 0) then return(\) end if
if (Ax<Q0and Ay < 0) then return(«”) end if
if (Ax>0and Ay <0) then return() end if
return(don’t-care) /* Ax=0or Ay=0%/

Procedure 5.2: Coordinate_Direction
Input: Ax and Ay.
Qutput: The coordinate searching direction T or 4 or =, or ¢ or
C g;m;—care,- dependng on the signs of Ax and Ay and the slope of
e line.

if (Ay>0and abs(Ay) > abs(A x)) then return(‘T) end if
if (Ay<0and abs(Ay) > abs(A x)) then return(J.) end if
if (Ax>0and abs(Ax) > abs(Ay)) then return(—>) end if
if (Ax <0Q.and abs(A x) > abs(A y)) then retumn(¢-) end if
return(don't-care) /* abs(A x) = abs(A y) ¥/

Let the initial variables x = x; and y = y; be N =N, and (x,,y,) be Ny,. Since
in the original algorithm, ‘Ax and A y are vertical and horizontal distance

components repectively and we use Diff(N1,N,) to denote a projection distance,

12

—

then Ax = Diff(VP(Np),VP(N,)) and Ay = Diff(HP(Ny,),HP(N,)).
‘P As stated previously, sign s;, i =1, 2, inust be changed to the searching

direction when using quadcodes. Since at each octant, there are diagonal and
coordinate directions only, we use Dird = D1agona1 D1rect10n(A X,Ay) and Dzrc
= Coordinate_Direction(A x,Ay) to denote the diagonal and coordinate searching

directions respectlvely Based on these modification, the complete Bresenhams

algorithm in quadcodes can be shown below:

Bresenham's algorithm in quadcodes:
/* the line end points are N, and Ny, assumed not equal */

~ /* initialize variables */ -
N=Na
Ax = Diff(VP(Np),VP(N,))

Ay = Diff(HP(N,),HP(N,)))

Dird = Diagonal_Direction(A x,Ay)
Dirc = Coordinate_Direction(A x,Ay).
Ax =abs(Ax)

Ay=abs(Ay)

/* Interchange A x and Ay depending on the slope of the line */
if Ay>Axthen
Temp=Ax
Ax=Ay
Ay =Temp
" “end if

/* Initialize the error term to compensate for a nonzero intercept */
e=2*Ay-Ax

/* main loop */
fori=1to Ax
Plot(N)
ife = (O then
N = Neighbor(N,Dird)
e=e-2*(Ax- Ay)

else
N = Neighbor(N, D1rc)
e=e+2*Ay

13

;I« ‘ ' |

end if
next 1
" finish

6. Conclusion

'
In this paper, we present a quadcode version of Bresenham's algorithm.
Although from what we presented, this version seems not as efficient as the
original one in computational complexity. However, when thé quadcode algorithm
is implemented in hardware then they have the same cbmputational complexity.
The reason is as follows. Suppose the image pixel location x and y are coded as
X,.1%q-2---Xg and yn_lyn_z...yo binary bit strings repectively. Then the
corresponding quadcode string will be Ty, ixp11 Tyqo%q00 " Tyoxed
where 1 denotes a quadcode character. Hence the neighbor finding can be
-arranged into a unit increment circuit such that a néighbor finding in a coordinate

searching direction 1S an incremental x + 1 or y + 1 in the original algorithm. Thus -
the neighbor finding implemented in this way requires one operation only. Also,
to the extend of authors' knowledge, there seems no quadcode version of

- Bresenham's algorithm has ever been published, we believe this paper can fill up |

this vacancy.
REFERENCES
{1] C.H. Chien and J. K. Aggarwal, "A Normalized Quadtree Representation,"
Comput. Vision, Graphics, Image Process. 26, 1984, pp. 331-346.
[2] 1 Gargantini, “Translation, Rotation, and Superposition of Linear
Quadtrees," Int. J. Man-Machine Studies, Vol. 18, 1983, pp. 253-263.
[3] W. I Grosky and R. Jain, "Optimal Quadtrees for Image Segments," J[EEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-5,
No. 1, 1983, pp. 77-83.

14

)

4]

[5]

[6]

(8]

[9]

- (101

[11]

[12].

E. Kawaguchi and T. Endo, "On a Method of Binary Picture Representation
and its Application to Data Compression," IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. PAMI-2, 1980, pp. 27-35.

D. M. Mark and D. J. Abel, "Linear Quadtrees from Vector,representations
of Polygons", IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. PAMI-7, No. 3, 1985, pp. 344-349.

M. Shneier, "Calculations of Geometric Properties Using Quadtrees,” .
Computer Graphics and Image Processing, Vol. 16, 1981, pp. 296-302.

J. R. Woodmark, "The Explicit Quad Tree as a Structure for Computef
Graphics,” The Computer Journal Vol. 25, No. 2, 1982, pp. 235-238.
Bresenham, J. E., "Alcronthm for Computer Control of a D101ta1 Plotter
IBM System Joumal Vol. 4, 1965, pp. 25-30.

G. M. Hunter and K. Steiglitz, "Operations on Image Using Quadtrees,”
[EEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-1, No. 1, 1979, pp. 50-60.

H. Samet, "An Algorithm for Converting Rasters to Quadtrees,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-3,
No. 1, 1981, pp. 93-95.

1. Gargantini, "An Effective Way to Represent Quadtrees,” Communications
of the ACM, Vol. 25, No. 12, 1982, pp. 905-910.

Shu-Xiand Li and M. H. Leow, "'The Quadcode and its Anthmetxc
Communications of the ACM, Vol. 30, No. 7, 1987, pp. 621- 626.

15

