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Abstract

In this paper, the problems of computing the Euclidean shortest path between
two points on the surface of a convex polyhedron and finding all shortest path edge
sequences are considered. We propose an O(nflogn) algorithm to find All Shortest Path
Edge Sequences, construct n Edge Sequence Trees, and draw out n{n—1)/2 Visibility
Relation Diagrams for a given convex polyhedron. According to these data structures,
not only can we enumerate all shortest path edge sequences and draw out all maximal
ones, but we can also find the shortest path between any two points lying on edges in

O(k+logn) time where £is the number of edges crossed by the shortest path.

Index Terms Shottest Path, Shortest Path Edge Sequence.
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1. Introduction
'

Recent interest in the fields of robotics and industrial automation has prompted
the study of Motion Planning. One of the basic problems-is to deterfniné a continuous
path for the motion of a given body in an emvironment t'hat imposes— geometric
constraints on the body’s motion. In this paper we consider the problem of computing
the Fuclidean shortest path between two points on the surface of a convex polyhedron P
[10]. This problem is also of considerable interest in terrain navigation, where a moving
vehicle is bound to move along a surface what could be modeled by a polyhedron (here
we treat the vehicle as a single moving point) [4]. The shortest path problem on a convex
polyhedron can be formally defined as follows [4]:

Let S be the surface of a given convex polyhedron P, defined by a set of fa.cés,
edges, and vertices, with each edge occurring in two faces and two faces intersecting
either at a common edge, a vertex, or not at all. A shortest path between two poinis A
and B on S is the Euclidean shortest path between points A, B along the surface of P. A
shortest path edge sequence can be defined as an ordered list of edges of P sﬁch that any
two adjacent edges share a common face, and such that there exists a shortest path
traversing the edges in the list. A shortest path edge sequence is said to be mazimal iff it
is not the subset of any other shortest path edge sequence [8]. If the question is to find
the shortest path between two fixed points on S, we call it Discrete Geodesic Problem. If
only one source point (say A) is fixed and we are asked to-build a structure which allows
one to find out a shortest path from A to any other query point (say B), it is called
Single—Source Discreie Geodesic Problem. For the general case, if two query points are
allowed to be chosen arbitrarily (both are not fixed) on S, we name it General Geodesic

Problem. We can also make.a restriction on the query domain such that the query points




can only be chosen on-edges. In this way, it is called Edge—Point General Geodesic
Problem. The enumeration of all shortest path edge sequences on a convex polyhedron is
named All Shortest Path Edge Sequence Problem. (

The Discrete Geodesic Problem and Single—Source .Discrete Geodesic Problem
were first posed in [11], where an O{n3logn) algorithm was given for the case of a convex
polyhedron. A subsequent result of Mount [5] has reduced the running time to
O(nogn). Both methods are to find the subdivision on the surface of a given convex
polyhedron according to one fixed source point, such that any point in the same region
has the same shortest path edge sequence to this source point. After building the
subdivision, the shortest path problem can be transformed into a’'standard point location
problem and the shortest path from the fixed source point to a given query point can be
computed in time O k+logn) whefe k is the number of edges in the corresponding
shortest path edge sequence. For the nonconvex case, O'Rourke, Suri, and Booth gave an
O(n5) algorithm [7]. Subsequently, Mitchell [4] improved this result to O n2ogn) by
using the "Continuous Dijkstra" technique. He corﬁbined the concepts of the original
Dijkstra algorithm for ﬁﬁding shortest paths in a graph [2], and the subdivision method
in [11]. In [4], edges of the given polyhedron behave like nodes of a graph, but here the
distance from the source to an edge is not the unique value. Instead, Continuous Dijkstfa
Algorithm uses a function that serves as a label for an interval of the edge. Keeping
track of the discrete description of these functions, one can subdivide the edge into
regions for which the shortest path to points in the region have the same shortest path
edge sequence. This method is a generalization of the algorithm proposed in [11].

Since all of the previous algorithms are inefficient to solve General Geodesic

Problem or even Edge—Point General Geodesic Problem, few papers discuss them [4, 11].

The problem of finding all shortest path edge sequences on a convex polyhedron




originated from Sharir [10]. He proposed a method to compute shortest paihs in 3-D
amidst convex obstacles, whose solutions depend on all shortest path edge sequences of
these convex obstacles. Sharir [10] gave an O(nflogn) algorithm to compute these edge
sequences for each obstacle. He also provided a bound of O(n”) on the number of edge
sequences [10]. Subsequently, Mount [6] had further reduced this bound to O(n4) and
gave an example to show that it is tight. Recently, Schevon and O’Rourke [8] used a
graph—theoretic argument to show that the number of maximal sequences of edges
traversed by shortest paths is 8(n?). This result also provided an alternate proof that the
total number of shortest path edge sequences is O(n4). In the same paper he also
proposed an O n7logn- Za(n2)) algorithm to compute all shortest path edge sequences of a
convex polyhedron, wluch improved slightly on Sharir’s algorithm.

In this paper we shall propose an O(nflogn) algorithm to compute all shortest
path edge sequences of a convex polyhedron, by using a data structure with a size of
O(n4). According to this data structure, not only can we enumerate all shortest path
edge sequences and draw out all maximal ones, but we can also find the shortest path
between any two points lying on edges in O(k+logn) time where & is the nuﬁlber of edges
crossed by the shortest path. Our approach consists of two major parts. We shall first
consider all O(n4) shortest path edge sequences as n edge sequence trees, and use the
property of visibility between points on edges to construct these trees. The second part is
that, instead of creating the subdivision on the surface of a convex polyhedron {10, 4], for
each edge paii (es,e,) we construct the subdivision on domain Z=e§fe so that any point
(A,B) in the same region has the same shortesgt path edge sequence from point A to
point B on S. This approach is the generalization of Continuous Dijkstra Algorithm in
{4] and Slice Algorithm in [10].

This paper is organized as follows. In Section 2, we show that all the shortest




path edge sequences can be represented as n edge sequence irees. In Section 3, a data
structure, called Visibility Relation Diagram, is given to maintain the subdivision of each
domain Z=eyxe,. In Section 4, we propose an algorithm to find all ;hortest path edge
sequences of a convex polyhedron, and show that it can be accomplished in O(ndlogn)

time. Concluding remarks are given in Section 5.
2. Tree Representation for All Shortest Path Edge Sequences

Let P be a 3—D convex polyhedron with 7 edges. For each pair of points (A,B) on
the surface of P, we denote the shortest path from A to B as m(A,B), and the sequence of
edges of P crossed by m{A,B) as §(ﬂ(A,B)). To solve the Edge—Point General Geodesic
Problem and generate all shortest path edge sequences, we shall first consider the
restricted case in which the starting point A lies on an edge e, and the ending point B
lies on amother edge e,. These two edges, & and e, are called the starting edge and the
endmg edge Iespectwely Since the shortest paths on a convex polyhedron cannot cross
any edge more than once [11], we can use the brute force approach to form all of the
edge sequences as a permutation tree, and then determine which of these sequences are
shortest pafh edge sequences. |

For a convex polyhedron P, an edge sequence tree T with starting edge e, is a tree
specifying e as the root. Each node N in T is an edge of P, denoted as E(N;). Node N;
is a son of node N, if E(N;) shares a common face with E(N,) on P and E(N;) is not an
ancestor of E(N,) in T. The path from root & to node Nj, denoted as ES(N;), is an edge
sequence of P. If T* is the tree obtained from deleting some nodes of T, such that for
every node N, of T7 ES(N;) is a shortest path edge sequence, we call T' a shortest paih

edge sequence tree. T’ 1s tonsidered mazimal iff it can not be extended to form another




shortest path edge sequence tree.

| For example, the edge sequence tree of a tetrahedorn (see Fig. 1a) with starting
edge e, is shown in Fig. 1b. Hence, the problem to find all shortest pat’h edge sequences
with a fixed starting edge is now reduced to the problem to build a maximal shortest

path edge se@uence tree with this edge.

Lemma 1. If edge sequence t=(eey.-€y-€y) 18 3 shortest path edge sequence, then its
subsequence &=(ee,...6,;) is also a shortest path edge sequence.

Proof: Since £ is a shortest path edge sequence, there exist two points, say X and Y, on
e, and &, respectively, such that the shortest path m(X,Y) crosses ¢. Let Z be the
intersection of ®(X,Y) and e, The subpath of m'(}_(,Y) from X to Z then, must be the
shortest path between X and Z. Otherwise, the concatenation of m(X,Z) and the subpath
of m{X,Y) between Z and Y would be shorter than m(X,Y).- Therefore, ¢, must be the

edge sequence crossed by the shortest pathfromXt0Z. m

Lemma 1 implies that once we have found a sﬂortest path edge sequence § p it 18
very likely that & would be another shortest path edge sequence. Thus, the process to
find new shortest path edge sequences can be considered as the "expansion” on edge
sequence trees. First, we specify the sta;ting edge e, as the rooi of T, and add the edges
which share a common face with e; as the children of the root. Then iteratively select a
leaf ¥;, whose ES(F;) is a shortest path edge sequence on P, and add edges sharing a
common face with E(F;) as the children of F, until all the shortest path edge sequences
are found. |

In the process of expans;ion, we are immediately confronted with two problems: to

determine which leaf F; will lead ES(F;) to be the shortest path edge sequence; and to




decide when to stop expanding the edge sequence tree. To decide whether ES(F;) is a
shortest path edge sequence or not, we use the coﬁcept of visibility b,etween points on
edges [10]. Some definitions are specified as follows. Let ff,..f, be a sequence of faces on

a convex polyhedron P such that edge € (resp. e,) is on the boundary of f, (zesp. f;) and

f., f;,, be adjacent on edge e, for i=1,2,..,n—L. The planar unfolding of P relative to edge
sequence é=(ege 8488} is obtained by unfolding these faces, one at a time, about the
edges that separate them, until they all lie in the plane containing {, (with no two
adjacent faces overlapping one another, see Fig. 2) [1]. Two points A and B, on starting
edge e, and ending edge e, respectively, are visible to each other in edge sequence § if,
after the planar unfolding relative to ¢, the straight line from A to B crosses § (1f £isa
set of edge sequences, it means that A and B are visible to each other in at least one of
these edge sequences). Let 7r§(A,B) be the straight line segment connecting points A and
B in this unfolding. [wé(A,B)I denotes its length. During expanding edge sequence iree
T, the weight of leaf ¥ is defined as follows: -

W(E,) = min({ |7(AB)| : (AB)eese, BS(F)=G
and ¥ N;eT\{Fy}, E(N))=E(Fy),

such that 17r§(A,B)i$|1r§,(A,B)| where ES(Nj)=E’ b

if the set in function min is empty, W(F;) is set to be infinite.

A leaf F, is called with minimal weight if no other weights of leaves in T are
smaller than W(F,). Roughly speaking, the weight of leaf F; can reflect the existence of
shortest paths between the points on E(F;) and the points on & in the planar unfolding

relative to ES(F;). When W(F;) goes infinite, it implies that, for every (A,B)eexE(F;)




either the points A and B are invisible to each other, or we have already had a node N;

in the expanding edge sequence tree T such that the shortest path from A to B crossing
t

edge sequence ES(N;) is shorter than the one crossing ES(F,). In other words, there are

10 shortest paths crossing edge sequence ES(F,).

Lemma 2. [11] If points A and B, on edges e and e, tespectively, are not visible in edge

sequence £, then the shortest path edge sequence between A and B can not be &

Lemma 3. In building edge sequence tree T, if F; is the leaf with minimal weight, then
edge sequence ES(F) is a shortest path edge sequence.
Proof: Assume that F; is the leaf with minimal weight and ES(F;)=¢;. There must be a

pair of points (A,B) such that W(Fi)=|7r§.(A,B)|. By the definition of weight,
1
]'zré_(A,B)l is the smallest one for all possible (A,B) in the planar unfolding relative to
1

£ If rgl(A,B) ‘s not the shortest path between A and B along the surface of P, then

1

there exists another leaf F; (let ES(FJ-)=§J-) such that either ¢; is the shdrtest ﬁa‘sh edge
sequence between A and B, or ¢ is just the subsequence of this shortest path edge
sequence. In the latter case, we have W(F;)<W(F;). This implies that W(F;) is not the
minimal one. In the former case, we have Ivrgj(A,B)K [ 'n'gi(A,B)l. W(F,) should not be

\wg_(A,B)l (by the definition of weight). Thus, wg_(A,B) is the shortest path from A to
1 1

B and ¢; is its shortest path edge sequence. u

From Lemma 2 and Lemma 3 we know when to stop expanding edge sequence
tree T. If all the leaves in T are with infinite weight, there are no leaves to be expanded.

Lemma 3 also tells us_which leaf should be included into the shortest path edge sequence




tree, and this chosen leaf is also the next one to be expanded. In order to compute the
weight for each leaf and find the minimal one quickly, & data structure called visibility

f
relation diagram is used to maintain the visible relations between the points on edges.
3. Visibility Relation Diagrams

In this section we shall describe the structure of visibility relation diagrams in
details. Let T be the currently expa,ndmg edge sequence tree with root e, Assume that S
is a set oi edge sequences in which all edge sequences have the same ending edge e, In
order to determjne whether there are shortest paths crossing the edge sequences in S, by
Lemma 2, we must show the visible Ielatlonshlps between the points on e and the points
on €, in the planar unfoldings relative to the edge sequences of S. Our approach is to
consider the 2-D space Z=egx€; of all possible pairs of starting and ending points, and
partition it into regions, such that for each such region R ¢ there exists an edge sequence
¢ of S such that, for all (A, B)ER§ , m(A, B)= £(A B). In other words, not only are the
points A, B visible to each other in the planar unfolding relative to ¢, but the straigﬁt

line segment connecting A and B in ¢ is also smaller than the others in edge sequences of

S\{¢}-

Definition. Assume that S={§1,£2,..,§n_1,§n} is a set of edge sequences with starting edge
e, and ending edge € Let the function f:egx€q — SU{¢} defined by
fA,B)=¢;iff A and B are visible to each other iI‘l ¢,
and wgi(A,B)gng(A,B) for all £;€S\{{;};

fAB)=¢ iff A and B can 10t be seen from each other in 3.

For a pair of edges, e and 'ee, a visibility relation diagram (short for VRD) restricted to 3




R Sy

is a partition on domain Z=ggxe, defined by f We denote the equivalent class

corresponding to §; as R £
1

In the following, we first consider the special case in which S contains only one
edge sequence, and then we show how to modify the VRD restricted to S to a new VRD
when adding an edge seciuence into S. In the remained paragraphs, the method to
compute weights of leaves from VRD will be proposed.

Initially, let S contain only one edge sequence ¢=(e ey -,.8y). After performing
the plana.r unfolding relative to ¢, we have a polygon, denoted by Gl(g) whose boundary
is composed of e, e;, and the edges connectmg the end points of e;, e;,, for i=1,2,..,0—1
(see Fig. 3a). By using the algorithm in [3], it is easy to.find two shortest paths
connecting the end points of e, and e, in G (¢) such that these two paths are not crossed
with each other (see Fig. 3b). Hence, these two paths together with e, and e, define
another simple polygon G,(¢). For the points Ace, and Bee,, if they are visible to each
other in ¢, their comnecting straight line segment should be contained in G,(£).-
According to visibility between points on e, and on e;, domain Z=exe, can be
partitioned into two equivalent classes R ¢ and R 4 for the point (A,B) in R £ A and B
are visible to each other in & if (A,B)isin R # they can not be seen from each other in
¢. In order to find the boundary between R ¢ and R 60 domain Z, we should formularize

the boundary between these two equivalent classes.

Definition. The boundary—points of R ¢ are the points (A,B)eZ where the straight line

segment AB in G,(¢) contains a vertex of G,(£).

Lemma 4. For a fixed verfex of G,(§) the locus of boundary points is a hyperbolic curve




on domain Z=ex€y.

Proof: Let A and B be points respectively on e, and e, and ¢ be the fixed vertex.
Parameterize A and B as ag+byu and a,+byv respectively, for appr0p;iate vectors ay, ag,
b, by, and real parameters u, . Then the condition that A, B, ¢ are collinear can be
written as

(A—c)=(B—)=0,
ie., 0= (abu—<)x(aztbv—=<)
= (arc)x(ayc) + b<(a;c)lu+ [(ajc)xbjv + (byxby)uy,

which is an equation of a hyperbola in u—v space 11]. =

By Lemma 4, each vertex of G,(¢) has a corresponding hyperbolic curve. The
boundary of R ¢ is c_omposed of these cure segmenfs. For example the boundary defined
by the polygon in Fig. 4b is shown in Fig. dc. |

Since we have found the equivalent class corresponding to just one edge sequence,
our next goal is to show how 10 modify an existent VRD to a new VRD when adding a
new edge sequence 1o edge sequence tfees. Let S={§1,52,..,§n} be the set of all edge
sequences with the same ending edge e, in currently expanding edge sequence iree T.
Assume that we have had a visibility relation diagram VRDj restricied to S. Whenever a
new node N is generated on T, if E(N) is e, we should modify VRD, to show the
existence of BS(N), since it is possible that some paths crossing ES(N) are shorter than
the omes crossing the other edge sequences already existing in S. To simplify the
notation, let ES(N) be ¢. The modification consists of two steps :

Step (1) partition domain Z into R ¢ and R pe
Step (2) for all points (A,B)ER{SQR&, decide whether the shortest path in the

planar unfblding relative to ¢ is shorter than the one in the planar

pren e gt mmee g =]




unfolding relative to §; (determine whether (A,B) should be classified into
R £ O R ¢ ).

i
’

Step (1) can be accomplished by the previous method. For step (2), we perform

two planar unfoldings relative to ¢ and £, on a common plane such that they share the
common e,. However, point B on e, will be duplicated to two points in these two

unfoldings, say B ¢ and B . (see Fig. 5). Let the perpendicular bisector of B §B ¢
1

i
intersect e  at point C. This bisector partitions the plane into two halfplanes. One

contains Bf while the other contains B £ If A is in the same halfplane with B g then

1

IKB'EI <|AB E-‘ Iz other words, the path from A to B crossing ¢ is shorter ¢han the one
1

* crossing ¢;. Hence (A,B) should be classified to R £ On the contrary, if A and B g, ot in

1

the same halfplane, (A,B)' belongs to Rg. When A is just lpcated on C, we have

i

]KBE[ =|AB f-l' It means that if we move point B on the edge &, (the position of point
1
C is well defined) the locus of (C,B) can partition R §nR 3 into two regions, where one
1

shoﬁld be combined into equivalent class R £ while the other should be included into

Rf-' We name these points (C,B) the partition—points. Hence, this new partition on

1
domain Z, obtained by modifying the original VRD, is the visibility relation diagram
restricted to SU{¢}. In the same way mentioned in Lemma 4, it is easy to show that the

locus of these partition—points is also a hyperbolic curve on domain Z.

Lemma 5. The locus of the partition—points of R €nR ¢ is a hyperbolic curve on Z.
: i

Proof: To make the proof simple. We follow the previous motations. Let B 5——-a.-i—bu ,

B §_=a.i+biu , and C=c+dv, for appropriate parameters. Since /B 5B E-C = /B g_B §C, we
1 - 1 1
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have the following equation,

(B Ei_B g)x(C—B f) + (B rf_Bfi)x(C—BEi) =0,

which can be simplified as
¢y e utCqutcaurtc u’=0,

where co=[(ar-a)x(c-a)}+{(a—a)x(c-2;)]
¢, ={(a-a)xd]+{(a—a;)=d]
ci=l(a-a)x(~b)-+(bb)x(c-a)}+{(a—a;)x(~b)+(b-Dy)x(c-a)]
¢y={(by=b)xd]+{(b-by)d] |
¢, =[(by=b)x(=b)]-+[(b—b5)x(~by)]

This equation is also a hyperbola in v—v space. u

As mentioned in Section 2, VRD is built to show the visible relation between
points on edges, and to compute the weights of leaves in expanding T. In order to gei; the
weights of leaves from VRD, we should. point out, which path makes the edge sequence to
be the shortest path edge sequence. Let F be a leafin T and ES(F)=¢. A weight—point
(A,B) of ¥ is a point in R§ such that W(F)=|’H'E(A,B)|. If R5 is empty, F has no
weight—points. We define the boundary of R ¢ as the union of its boundary—points and

partition—points.

Lemma 6. If F is a leaf with non—empty R & there exits a weight—point {A,B) of F,
which is located on the boundary of R ¢ '

Proof: We prove this lemma by contradiction. Assume that all the weight—points of ¥
are neither boundary—points nor partition points. Let (A,B) be ome of these

weight—points. By definition 'of weight—point we can find two points on the boundary of




Rg, say (A,B,) and (A,B,), such that Trg(Aqu) and wg(Az,Bg) are both longer then
wé(A,B), run parallel with ‘II'E(A,B), and are on the different sides of wg(A;B). But this is
contrary to the fact that both A, A, A, are collinear on starting edge, and B, B, B, are
collinear on ending edge (see Fig. 6). Thus, there must be 2 weight—point on the

boundary of R g

With the same geometric analyses used in Lemma 4 and Lemma 5, the lengths of

AL and CB can be formulized as hyperbolic functions of parameters u and v, too. Since

there exists a weight—point on the boundary, we can compute the weight by
differentiating these functions. Hence the visibility relation diagrams not only can show
the visibility between edges but also can maintain the weights of nodes during expanding

the edge sequence trees.
4. The Algorithm and its Time Complexity
In this section we first formally state the algorithm of finding all shortest path

edge sequences on a CONVEX polyhedron, and then analyze its time complexity.

We can describe our algorithm formally as follows:

Algorithm: Finding_ All _Shortest-P ath—Edge—Sequences (FAS)
Input: The data structure representing the convex polyhedron P
Output: Visibility Relation Diagrams and Edge Sequence Trees for All Shortest

Path Edge Sequences of P
(1) FOR each edge e; on P, use e; as the starting edge DO :

(2) Let e; be the root of edge sequence tree Tj;

—14 —
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(3) FOR each edge e; sharing a common face with e; DO :

(4) Construct the VRD on domain Z=e;x&;; ’

(5) Let ¢; be the son of e; and compute the weight of e;;

(6) END of FOR;

(7) WEHILE there exists a leaf whose weight # w DO :

(8) Find the leaf F with minimal weight;

(9) FOR. each edge e, sharing a common face with E(F) DO:
(10) ' Construct/Modify the VRD on domain Z=g;xe,;
(11) ' FOR each leaf F' with E(F’)=e, DO :

(12) : Compute/Recompute the weight of ¥ END of FOR;
(13) | Let e, be the son of F;

(14) | END of FOR;

(15) END of WHILE;

(16) END of FOR.
The correctness of Algorithm FAS can be shown in the following theorem.

Theorem 1. By Algorithm FAS, we can construct a one to one correspondence between
the shortest path edge sequences on P and the paths from oot to internal nodes in edge
sequence $Iees.

Proof: We prove this theorem by induction. Let i be the length of the edge sequence.
For i=1 or 2, the statements are obviously true. Assume that the statements are true for
i<n—1. Let ¢=(ee,..e,) be a shortest path edge sequence on P. By Lemma 1, the edge
sequence ¢ =(e,..e, ) is also a shortest path edge sequence. By inductive hypothesis,

there must exist a node N'in edge sequence trees such that ES(N)=¢&,. Since £ is a
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shortest path edge sequence, N has at least ome son, say F, where E(F)=e,, such that

W(F) is NOT infinite (ref. Lemma 2, Lemma 3, and the definition of weight in Section
]

2). This implies that ¢ is a path from root to node N in edge sequence irees. The

argument is clearly reversible; hence the theorem is proved. g

The running time of Algorithm FAS depends on

(a)  the number of nodes in edge sequence trees,

(b)  the number of regions in visibility relation diagrams, and

(¢)  the time to modify visibility relation diagrams during expanding edge sequence
trees. |

To see this, we examine each separately.

For (a), Mount [6] and O’Rourke [8] have proved that there are O(n?) shortest
path edge sequences from & fixed starting edge to the other edges on P. This implies that
the number of internal nodes in each edge sequence tree can be bound to O(n3). To
simplify the analysis, assume that P is triangulated. By the fact that the shortest path
can cross a face only once, each internal node has no more than two children. Hence
there are overall O(n?) nodes (including leaves) in an edge sequence tree. Since we
construct 7 edge sequence trees in Algorithm FAS, there are totally O{n4) nodes in 7
edge sequence ﬁrees.

For (b), to count the number of regions in visibility relation diagrams, we first

examine the correspondence between the regions and the shortest path edge sequences.
Lemma 7. There are O(n?) regions in each visibility relation diagram after performing

Algorithm FAS.
Proof: To prove this lemma, ive show that for any two points A=(A,,A,), B=(B,,B o) O1

—~16 —




domain Z=egxe,, if A and B are in the same equivalent class, say R & then there exists a
path PCRE connecting A and B on domain Z. In other words, R if path comnected.
Without loss of generality, we discuss the following cases separately.

CASE1: 1f A=B,, AB is parallel to e; on domain 7 (see Fig. Ta). We shall claim
that ABCR ¢ . '

Assume that there exists some point C=(C_,A,) on AB but belonging to Rg,,
where £#¢. We first perform planar unfoldings relative to ¢ and £ or a common plan
such that they share the common edge e,. However, point A, will be duplicated to two
points, say A E-a.nd A £ (see.Fig. 7br).hiet the perpendicular bisector to l?x; intersect
eS
at point. E. This bisector partitions the plane into two hyperplanes. Sinpe (Cy, A )ER &
and (AgAJER,, we have |7(Cohe)>] #E,(CS,AE)[ and [7(ApAd)|<ITp(AgAe)]..
This implies that respectively ICS_}TE] >|C'S?fg,[ and ]_A—SFER[W[ ‘in these planar
unfoldings. Hence E must be on AT, ,and By is in the same hyperplane with Cg, which
means |7"§(Bs:Ae)|>|W§=(B5’Ae)l- The shortest path edge sequence from Bg and A,
should not be ¢ ,but be ¢. This contradicts to our assumption, (Bg,A¢)eR ¢ The case of .
A =B, can also be derived from, instead of create two e,, duplicating e; when performing
planar unfoldings. |
CASE 2:  With same notations, if neither A_=B, nor A=B,, we have two kinds of
planar unfoldings relative to ¢ (see Fig. 8). In one case wg(As,Ae) CTOSSes wg(Bs,Be), }
while in the other case these two paths are not crossed by each other.

For the former case, if ""g(As:Ae) Crosses Wg(Bs’Be) at point D (see Fig. 8a), we
shall claim that the following curve P is a path connecting point A and B in domain 7

and PCR ¢
Pis a hyperbolic curve in domain [A ,B|x[A,,B,] such that
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for every point (PP )P , Py, D, and P, are collinear in the planar unfolding

relative o &. ’
Since A and B belong to R £ K:AE and ’ETSBE should be included in polygon G,(¢).
Hence, for all points (P;,P)eP, Py and P, can be seen by each other in the planar
unfolding relative to {. Assume that some point Ce€P belongs to R{” where &#¢ and
C=(C,,C,). This implies that |',r§(Cs,Ce)|>|1r§,(CS,Ce)l. On the other hand, since A
and B belong to Ré_u, we have IWE(AS,AE)I <|7r§,(AS,Ae)| and l“’{(Bs:Be)l<1T§=(BszBe)l‘
tespectively. A simple geometric analysis can derive that ]rg(Cs,Ce)l<_lw§,(Cs,Ce)|,
which contradicts to our assumption that CeR £ Thus every point CeP must belong to
Ry .
For letter one, since both A and B belong to R{’ A:A_E and B_SF§ should be
. included in polygon G,(£). Hence, all points on A?AE and B:Bgr.canw be-seen by each .
other in the planar unfolding relative to & Let A=(AB,) and B'=(BgA,). In.the |
following, we shall claim that either KATUAE or ABUEB (but not both) belongs to R ¢

- Assume that A’ belongs to R;‘” but &#¢. This implies that the shoﬁest path edge

sequence from A to B, is £. Thus, we have lwe(As,Be)|>|7r§,(As,Be)|. On the other
hand, since both A and B belong to Rg, we have ]wg(As,Ae)|<|7r§,(A.s,Ae)l and
|1r§(Bs,Be)|<|7r-§,(Bs,Be)| respectively. A simple geometric -analysis can derive that
either ]wé(AS,Be) | <] Wg:(As:Be)l (see Fig. 8b) or B'eR & but not both. Here, the former
one contradicts to our assumption that AR £ while the latter one meets ABUB'B ¢ R ¢
(by CASE 1). The relative statements are also true for assumption B'¢R £

With the analytical results in CASE 1 and CASE 2, it is not difficult to see R ¢ is
path connected. Since the number of equivalent classes on domain 7 is the same as the

aumber of shortest path edge sequence, the number of regions on domain Z is bound to

((n?). Hence Lemma 7 is true. u
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Our next goal is to show that when processing Algorithm FAS the number of
regions in each yisibility relation diagram is also no more than O(n?). By Lemma 7 we
have known that each internal node has only one corresponding region,'but it is possible
that, in building edge sequence trees, We have a leaf (or leaves) whose edge sequence has
two (or more) corresponding tegions in the visibility relation diagram. For this leaf, it
will eventually be either an internal node constituting an edge of some shortest path
edge sequence, Or 3 leaf with infinite weight. In the former case, the final internal node
will contain only one corresponding region, while the other regions will be overlaid by
the regions of other internal nodes. The latter one implies that the path from root to this
node is not a shortest path edge sequence. Its equivalent class should be empty and all
its corresponding regions will be covered by regions of other edge sequences. Thus,
during the entire process of Algorithm FAS, the aumber of regions in ea)chlvisii)i]ity
relation diagram will be no more than the nuzﬁber of all shortest path edge sequences
from a fixed starting edge to another fixed ending edges. The above discussion can be

summarized as the following.

Corollary 8. The number of Tegions in each visibility relation diagram can be bound to

O(n?) during the whole process of Algorithm FAS."

For (c), we shall claim that for each time we expand a node in edge sequence trees
it takes O(n?logn) time 10 modify its corresponding visibility relation diagram. Using the
potations in Section 2, the planar unfolding relative to some edge sequence (11} and the
construction of polygon G,(¢) [3] can both be performed in O(nlogn) time. The

construction of all intersection regions R §nR 3 can be accomplished by calculating the
1

intersections between the hyperbolic curves, by sorting these points along each of these
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curves, and then by tracing the boundary of each intersection region. Since by Corollary
8 we know there are at most O(n?) regions in each visibility relation d{agram, it needs
overall time O{nZlogn) [10] to draw out all intersection regions. For each of the resulting
O(n?) intersection regions (at most), we must draw a hyperbolic curve to partiiion it.
Since the planar unfoldings relative to § and ¢; have been put on a common plane, this
step takes constant time. To compute the weight for a new node, we must differentiate
the boundaries of its corresponding regions. It takes O(n) time. With this information,
the next time we modify its weight, we needs only constant time. The above discussions
can be summarized as follows. To expand a new node in an edge sequence tree, we spend
O(nlogn) time to construct G,(£) and region R & O(n?logn) time to find the intersection
regions, and O(n?) time to modify the visibility relation diagram and compute the
weights of leaves. Hence, it takes overall O(n?logn) time to expand a new node in the
edge sequence tree.

By the analytical results to (a), (b), and (c), we can conclude that Algoﬁthm
FAS totally takes O(ntlogn) time to comstruct n edge sequence trees and n{n—-1) /2-
visibility rela.tlon diagrams. Since the visibility relation diagrams show us the visibility
between points on edges of P, the problem of finding shortest path edge sequences on P
can be reduced to a locatiox; problem on VRD’s. For a pair of given points (A,B) lying
on edges e, and e, respectively, we need only ((logn) time to identify its located region
. in domain Z=egxe,. Thus, its corresponding shortest path edge sequence can be draw out
from edge sequence irees immediately.

By concluding above discussions, we give the following theorem.

Theorem 2. Given a convex polyhedron P with 7 vertices, one can preprocess P by a

procedure which runs in O(nélogn) time. This procedure produces n edge sequence trees
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and n{n—1)/2 visibility relation diagrams, in each of which has O(n?) regions. With the
aid of these trees and diagrams one can find the shortest path edge sgquence between
any two specified points lying on edges in O(k+logn) time where & is the number of

edges in the shortest path edge sequence.
5. Conclusions and Remarks

As mentioned in Schevon and O'Rourke’s paper [8], the gap between the number
of shortest path edge sequences and the time to compute them can be narrowed. This
paper has shown it. We transfer the visible relationship between edges into Visibility
Relation Diagrams, and organize all shortest path edge sequences into n Edge Sequence
Trees in overall O(nslogn) time. This is a new approach in finding all shortest péth édge
sequences. It is different from Sharir’s [10] or -Mount’s [5] methods, in which they
partitioned the surface of a polyhedron into slices. Hence the running time can be
reduced. It seems quite likely that the algorithm developed in this paper is much closer
to the optimal one, as there are O(n*) shortest path edge séquences on the polyhedron,
and for given two points, without preprocessing, one needs O(n%logn) time to find their
shortest path edge sequence (the best method up to now). We expect that the time
complexity could be reduced to O(nf) by using some better data structures to maintain
visibility relation diagrams. Keeping the ordering of the boundary of each region during
constructing visibility relation diagrams could be another approach to reduce the time
bound. The data structure of the visibility relation diagram may be of interest in its own
right. _

The method we used in this paper is a generalization of the continuous Dijkstra

technique in [4]. In [4], the ‘Continuous Dijkstra technique was limited to discuss the
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relationship between a fix point p and the points on each edge e or face f. In our term,
these relationships can be characterized as the visibility relation diagrams on domain
Z=pxe or Z=px{ respectively. For examplé, It is easy to understand that Single-Source
Diserete Geodesic Problem can be looked at as a special éa.se of Edge—Point General
Geodesic Problem. In Algorithm FAS, we simply initialize original starting edge to be a
single point, and then pfoceed exactly as before to comstruct the visibility relation
diagram for each edge. Obviously, each of these visibility relation diagrams is a partition
on the corresponding edge. This is actually what Mitchell has done in 14].

We believe that the generalized Continuous Dijkstra algorithm can also be
applied to General Geodesic Problem, which is importé,nt in the study of robotics and
terrain navigation. But in the generalization from Z=e;xe; t0 Z=f_xf , the process to
partition Z into equivalent regions will be more complex. It obviously includes a
subproblem which is the dynamic point location problem in 4-D. Hence, whether we can
develop a good algorithm for this generalized case crucially depends on the method to

solve the dynamic point location problem in 4-D.
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Fig. 1la A given convex polyhedron P.




C e pemae T

>m
e
—

i
3% ]

5463446563

W
o
L=
A
o]
P-3
1)
b
o
-3
L]
A~
N

B
[

36443 54 65526442 54 635

Fig. 1b The edge sequence (ree of the convex polyhedron
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Fig. 2 The planar unfolding relative to edge sequence
(es ey & e3¢ & ).
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Fig. da A given rectangular polyhedron.




Fig. 4b The planar unfolding relative to edge sequence (e ;e 287 8 )
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Fig. 4c The visibility relation diagram of Fig. 4b.
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Fig. 5 The planar unfoldings relative to & and &i




Fig. 6 The weight-points located on the boundary of region.
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Fig. 7a In CASE 1, A =B,




Fig. 7b The planar unfoldings of CASE 1.




Fig. 8a (1) In CASE 2, A ois Dot equal to Be




Fig. 8a (2) In CASE 2, two shortest path cross each other.




Fig. 8a (3) In CASE 2, four shortest paths cross each other
in pairs.




Fig. 8b (1) The path connects A and B by crossing A'.




Fig. 8b (2) The unfolding relative to Fig. 8b (1).




January 30, 1989
Drofessor Joseph O’Rourke
Department of Computer Science
Smith College
Northampton, Massachusetts 01063
U. S. A, '

Dear Joseph:

Thank you for your extended abstract and the comments on "finding all shortest path
edge sequences." From the day we received your letter (01/18/89), we have been tried our
best to modify the original abstract 10 a new yersion to meet the general cases. Enclosed
please find a copy of thig new version. It is our pleasure to have your comments. .

1 hope the following example can make it clearer.

EXAMPLE: _
For a given rectangular polyhedron in Fig. 1, here we show how to construct the visibility
relation diagram restricted to S={{; £, - &4}, where & =(e£289), ¢,=(e 881,84}, and

£,=(eeq80)-
Initially, we construct the visibility relation diagram for edge sequence ¢;. the polygon

G,(¢,) is shown in Fig. 2. Hence, the domain Z=¢,xe, can be divided into two equivalent

classes, R ¢ and R . respectively specified as R, and R, in Fig. 3.
) '

To add &,, we unfold ¢, to the common plane of £, (see Fig. 4). Tt is easy to see that the

points on e, and ey are visible to each other in G,(£,) and hence R ¢ is the whole Z. Now,
. 2

R, is obviously substituted by a part of R ¢ (denoted as R, in Fig. 5). For region R ¢ nR ¢,

2 152

(R, in Fig. 3}, since the two source images of ey relative to £, and ¢, are connected at end




, .
point, the perpendicular bisector L is fixed and the partition curve is a vertical line on

domain Z {see Fig. 5). As you can see, we now have two equivalent classes Rf and Rf ,

i 2

where R ¢ =R,and R ¢ =R,UR; in Fig. 5. The latter one obviously has two disjoint regions.
1 2

This does not contradict to our Lemma 6, because there must exist some other edge
sequences, of which the corresponding equivalent classes will cover either R, or R,, or both.

For example, we can add the planar unfolding relative to ¢, to the previous two unfoldings

(see Fig. 6). As the same with &,, Rf is the whole Z, too. However, R, {in Fig. 5) should
3
be included in R £ after drawing the partition curves P, and P,. We get a visibility relation
3
diagram on domain Z, where R§ =R,, Rf =R, and R§ =R, as Fig. 7.
1 2 3 ,

This example evidently shows us the following.

(1) Since the surface of a Convex polyhedron is homeomorphic to S2={xeR3: |x|=1}, and
the image of a connected space under a continuous map is also connected, each equivalent
class defined on this space should be connected. For our example, although it is possible

that R ¢ is disconnected during constructing the visibility relation diagram {contains more

2

than one components), it will be finally reduced to only one region. The reason why R ¢
‘ 2

was divided into two components R, and R, is
"The visibility between e, and e, is limited to the area of G,(¢,) and G,(£,). Hence, R, (in
Fig. 3) was replaced by R, to meet the requirement of VISIBLE."

(2) Since eventually the discomnected components will be replaced by other regions, the
number of regions in domain Z will not more than the number of all shortest path edge
sequences, O(n?).

(3) The points on partition curves, in our terminology, is relative to the Voronoi edges in
your Allerton papers. Since we use the visibility between points on edges to eliminate lots
of event points, there are only O(n?) events to process when expanding a3 node on edge
sequence trees. Since there are O(n2) shortest path edge sequences between a fixed pair of
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edges, we need execute O(n?) expansions on edge sequence trees. Thus, we process at most
O(nt) events to construct a visibility relation diagram for a given pair of starting edge and
ending edge.

For your Allerton paper, there is also a point we do not understand. Why does the main
loop of the algorithm run in O(nlogn) time, with one iteration per event processed 7 It
appear to us to be gap, but perhaps the sketch just does not include details.

It is our pleasure to have information from you. All members in this research group are

encouraged by these discussions. We will also reciprocate everything we write on this topic.
Once again, thanks for your comments.

Best regards,

Hung—Yi Tony Tu

Research Group for Computational Geometry

Institute of Information Science, Academia Sinica
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The planar ufolding relative to edge sequenc

1

3 The visibility relation diagram restricted to
edge sequence {1,2,7,9}.
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Fig. 4 The planar unfoldings relative to {1,2,7,9} and {1,2,11,9}.
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Fig. 5 The visibility relation diagram restricted fo

edge sequences {1,2,7,9% and {1,2,11,9}.
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Fig. 6 The planar unfoldings relative to edge sequences
{1,2,7,9},{1,2,11,9}, and {1,6,9}.

Fig. 7. The visibility relation diagram restricted to
edge sequences {1,2,7,9},{1,2,

11,9}, and {1,6,9}.




