TR-88-031

- e

.. THE SEPARABILITY PRCBLEM IN DYNAMIC \
* ‘COMPUTATIONAL GEOMETRY

WWWWWWMWWWWWWWWW(_iifi%éiﬁ%ﬁ%fi
LE F B

0104

The Separability Problem in Dynamic Computational Geometry

H. J. Hwang!, R. C. Chang® and H. Y. Tu2

Abstract

We consider the separability problem in dynamic computational geometry. The word
dynamic here is referred to the framework where every geometric object comsidered is
moving in a prescribed manner. Given 7 red points and m blue points having s—motion
in 2-D plane, we propose an O(mN-logm¥ + nM-lognM + mN-+nM) algorithm for
describing the time intervals at which the red and blué points are separable, where N is
o A(ndk)), M is O(Mm,4k)), and A(:j) is the length of the maximal (i)
Davenport—Schinzel sequence. If the points are moving in 1-D, the comple}dty can be
reduced to O(N-logN + M-logM + N+M) where N is O(A(n,k)) and M is O(A(m,k)).
For a more special case, in which points are restricted to I-motion in 1-D, we have a

linear time algorithm for deciding whether they are separable.

Key words. Separability problem, Separable, Dynamic Computational Geometry.

1. Department of Computer and Information Science, National Chizo Tung University, Hsinchu,
Taiwan, Republic of China

" 9. Institute of Information Science, Academia Sinica, Taipei, Republic of China

1. Introduction

Computational geometry refers to the design and analysis of algorithms for all
kinds of geometric problems. Many fundamental problems and results in this field have
been well studied [5). Not until was Atallah’s paper [1] presented, the geometric objects
in the relative researches are mostly static. Thus, they present physical entities that do
have a fixed position in space. In [1], some geometric problems were reconsidered under
the assumption that the coordinate of each input point is a functi;)n of a time variable %
Atallah named them dynamic computational geometry. The word dynamic was referred
to the situation when the input geometric objects are moving.

' In this paper, we focus our attention on the separability problem. For the static
case, it has been shown that linear separability is a linear programming problem, and
can be solved in time O{n) where nis the cardinality of the set of input points [3,4,5]. In
dynamic case, the problem becomes much harder. Since the given points are moving, the
separability crucially dei)ends on the function of each moving point. In other words, the
time domain can be subdivided into several time intervals in which the given two point
sets are linearly separable. Given n red points and m blue points haﬁng 1-motion in
plane, the obvious brute force approach gives an O{mn(m+n)log(m+n)) time solution
(1] In this paper, we propose an algorithm to find the time intervails in which the red
and blue points are separable. For the points having sk-motion in the plane (2-D), the
algorithm can be accomplished in timeé O(mN-logmN + nM-lognM + mN+nM), where
N is O(M(n4k)), M is O(A(m4k), and A(4j) is the length of the maximal (4,7)
Davenport—Schinzel sequence. If the points are moving on a line (1-D) with k—motion,
the complexity can be reduced to O(NlogN+ Mlog M+ N+M) v.vhere Nis O(A(n,k)) and M

is O(A(m,k). For a more special case, in which points are restricted to 1I-motion on 1-D,

we have a linear time algorithm for deciding whether they are separable. Our algorithm

!

consists of two major parts. First, we use the method proposed by Atallah [1] (which
solved the dynamic cdnvex hull problem) to obtain a set of time intervals in which the
red points are not in the interior or boundary of the convex hull of blue points, and in
the same way we can enumerate the time interval set of blue points. Then, in the second
part of our algorithm, these two sets of time intervals will be merged to be one final set
of separable time intervals.

The paper is organized as follows. After introducing our notation and definitions in
section 2, we present an algérithm for separability problems with A—motion in 2-D in
section 3. Section 4 discusses the special case, separability problem in 1-D. Concluding

remarks are given in section 5.
2. Notation and Definitions

In this paper, the input points we consider are moving in Euclidean space. A set of
points are said to be with k—motion, if every coordinate of every moving point is a
polynomial function with no more than k degree in the time variable ¢ Thus, for general

d—dimension, each input point p; can be described as follows:
pi(t) = (Xu(8),Xi2(1),-.,X1d(2))
where each
Xii(t) = Cijtht G-tk -+ Cijot® 1<,
and Cijn are constant coefficients of polynomial Xi;(£) for 0¢h<k. At time instance o, the
configuration of input point set P is denoted as P(¢y).

For separability, we define the follows.

Definition. Two set of points R and B in Ed are said to be linearly separable at time

instance £ if there exists a (d—1)—dimension hyperplane L such that R(f) and B{%y) lie

on opposite sides of L.

The separability problem in dynamic computational geometry 'now can be stated ‘

as: given two set of points having k-motion in d-dimension, try to find the time

intervals during which R and B are linearly separable. A separable time intervalis a time

interval [t;,;] during which R and B can be linearly separated .

In the following we would like to introduce some notations related to convex hull

which will play an important role in this paper. Fig. 1 illustrates the convex hull of point

set B. Let CH(B) denote this convex hull. For the vertices on the convex hull, such as #,

ug,73, ¥4, and v in Fig. 1, we name them conves points, and classify them into four types:

top, bottom, left and right according to the following specifications.

(1)

A convex point is a fop convez point if no other poiﬁts lie above it, i.e. the top
convex point has the 1a-Igest y—value among all points. We choose the rightmost
one to be the top convex point if there are mor'é than bne point with this y—value.
In Fig. 1, v, is a top convex point.

A bottom convez point is a convex point of the smallest y—value. Tf there are more
than one convex point with this y—value, we choose the leftxﬁost one to be the
bottom convex point. In Fig 1, v3 is a bottom convex point.

A left cénvex.poz’nt is a convex point on the counterclockwise path from top convex
point to bottom convex point. vy is a left convex point in Fig. 1.

A right conves point is a convex point on the clockwise path from top convex point

to bottom convex point.. 14 and vs are right convex points in Fig. 1.

Let | U| be the length of an (n,s) Davenport—Schinzel sequence {2,6]. Then, the

function

[

A(m,s) = MAX { | U| : Uis an (n,s) Davenport—Schinzel sequence 1.

Suppose that F={f;, f2,..../n} is a set of n rea.l—yalued continuous functions defined on a
common interval I, where for every two distinct functions fi and f;, they intersect in at
most s points. We define {£) = MIN {£(%) : i=1..n and teI} to be the lower envelope of
F. Note that {£) is typically made up of "pieces" each of which is & section of £(t). The
length of a lower envelope, |{1)|, is the number of pieces in I(£). Attalah (1] showed that
A(n,s) is the upper bound of |{¢)|. Attalah [1], Shazir [6] and Hart [2] have proved the
following bounds.

A(n,1) = n, and A(n,2) = 201

M(n3) = &n- o{n)), and A(ms) = O(n- o(m) LAV,

These resuits will be used in the rest of this paper.
3. Separability of k—motion in 2—dimension

In this section, we first state éoine properties of separability, and then iteratively
use Attalah’s method (which solved the dynamic convex hull problem) to obtain the set
of separable time intervals for two given point set.
| Let R and B be two given sets of points with k-motion in 2-D plane. Assume that
|R|=n and |B|=m. A crucial criterion for linear separability is provided by tﬁe

following theorem.

Theorem 1. ([7) Store and Witzgal (1970), Theorem 3.3.9) Two sets of points R and B
are linearly separable if and only if their convex hulls do not intersect and the interior of

these two convex hulls are mutually disjoined.

We immediately have Corollary 2.

Corollary 2. If R and B are linearly separable at time instance %o, then eacl; point b; of
B is a convex vertex of the convex hull of set RUb; at o, and each point 7; of R is also a
convex vertex of the convex hull of set BUri at &g, 1.e. 4
bi(to)) € CH{ R(to) U bilte)) TforV bi € B,
and ri(ts) € CH{B(to) Urj(t)) TorVrje R.

Since Corollary 2 is only a necessary comdition, it is not strong enough to detect the
intersection between the interfors of two convex hulls. Fig. 2 illustrates a
counterexample in which R and B meet the requirement of Corollary 2 but are not

linearly separable. Hence, we propose the following theorem.

Theorem 3. R and B are linearly separable at time instance o iff one of the following

conditions is true .

i) each point bi(to) of B(io) is a top, bottom, orlr‘m'ght convex point of CH{ R(%) U
bi(to)), and each point rj{fs) of R(%) is a top, bottom, or left convex point of CH(
B(to) U ri(ta));

ii) each point bi(to) of B(t) is a top, bottom, or left convex point of CH(R(to) U bi(to)
), and each point rj(te) of R(%o) is a top, bott:-Jm, or right convex point of CH{ B(ts)
U ri(£o)).

Proof: Here we prove condition ti) only.

If sets of points, R and B, are linearly separable at time instance to, by definition,
there is a line L, say y=az+b, such that R(%) and B(t;) lie on its opposite sides.
Without loss of generality, assume that the points of B(ty) lie on the half-plane y<az+b
while the points of R(¢o) lie on the half—plane y>az+b. Let y; and gy be tespectively the
largest and the smailest y-w;va.lues of points in R(to). It is easy to see that set B(fo) can be

classified into three subsets, B¢, Br, and By, where

B; € {(x,y)| y<az+band y>ue },

Br € {(x.7)| y<az+b, y<4t, and y>p } and
By ¢ {(x,y)] y<az+band y<ip }- '

Condition (i) is a immediate consequence of above statements and Corollary 2 (see Fig.
3).

Conversely, if condition (i) holds, we will claim that the convex hull of set R(%o)
and the convex hull of B(fe) do not intersect, and the interiors of these two convex hulls
are mutually disjoined. Let y; and yp be respectively the largest and the smallest
y—values of points in R(#y). Since condition (i) holds, once again we can subdivide set B
into three subsets, say By, By, and By, where

Bic{(=y)| v>w },

B: ¢ {(x,7)| y<ys and y>p } and

By ¢ {(x.y)| y<wm }- |
Suppose that Bi{Ze)bj(fe) is an edge of CH(B(%)), which intersects CH(R({s)). By the fact
that bi(to) and bj(to) are the Atop, bottom, or right convex points, 0i(to)b;(fo) should
intersects CH(R(to)j on two and exactly two edges (see Fig. 4). This implies that there
ex:isfs a point 7x(te) of R(%g) where

(a) its y—value is between the y~values of bi(to) and bi(t), and

(b) it is located on the right side of 5i{t0) b5(0)-

(a) and (b) obviously contradict to condition (i), "point n(to) is a top, bottom, or left
convex point of CH{ B(to) U n(fo))." Thus, CH(B(f)) should not intersect CH(R(t0))-
For the interiors, if these two convex hulls do not intersect with each other, but parts of
their interior are in common, there is only one case meeting this requirement : one
convex hull Withlits interior is properly contained in the other one. This also contradicts

to the assumption of convex points. Thus, R and B are linearly separable at time

instance y. m

Our next goal is to compute the time intervals during which a given point belongs
to the convex hull.

Let 0;(t) be the angle determined by <W> and z—axis’at time ¢ Whére
—r< f55(£)<+. Define oy, fi, 711, and 63 as follows {1]:

e §=MIN{ 85(1) | 0i(£20)

Bi(f)=MAX{ 85() | £:5(620 }

HO=MIN{ (8 | 05(9<0)

5i(f)=MAX{ 6:(?) | 03i(£)<0 }
If all #;(t) are negative, ai(t) and fi(t) are both undefined. Similarly, if all f;(¢) are
. positive, 7i(t) and 83(¢) are both undefined.

Lemma 4. For CH{ R(i) U bi(¢)), point bitt) is
a right convex point ff ai(t)—6i(t)2w,
a left convex point iff Bi(H)—r1i(t)<,
a top convex point iff ei(f) and fi(t) are undefined, and
a bottom convex point iff vi(£) and &({t) are undefined.
Proof: Directly derived from Lemma 4.7 in [1].

Note that each of the functions ai, B, 73, and 8 contains O(n) transitions and
jump discontinuities, hence, each of them has no more than A(n,4k) pieces. If we count
the time needed to find the roots of polynomial with O(k) degree as O(1), a
divide—and—conquer algorithm, in time O(A(n,4k)logA(n,4k)), can compute the set of
time intervals during which bi(¢) is a top, bottom, left, or right convex point of CH({ R(%)
u b(t)) (il Denote the set of these time intervals as Ip:. After executing the

computations for all b;(¢), we have n sets of time intervals, say Joy, Jo2,.-,Jon (see Fig. 5).

Now intersect these 7 sets to be a new set of time intervals [y, in the following way.

(1) A time interval [¢,,Z5] belongs to Iy if [£1,t2]C[a,0], where [a,b]€ Jyi for =1,2,..,n.
(2) A time interval [¢,t)] in I is assigned to "R—type" if every bi(?) is either a top,
bottom, or right convex point of CH{ R(#) U b5(t)) where te[ty,).

(3) A time interval [t,t5] in Iy is assigned to "L—type" if every bi(f) is either a top,

bottom, or left convex point of CH{ R(¢) U b5(£)) where t€[t1,15].

Fig. 6 illustrates the set Iy obtained by intersecting all Ipy's according to above
steps. In the same way, we can compute I for each rj(¢), and get their intersection I.

By Theorem 3, it is easy to understand that the final result J, the set of separable
time intervals for sets R and B, can be obtained by intersecting Iy and Ir in the following
way (see Fig. 7):

a time interval [t1,t5]€ 1 if [#1,¢2]C[a, 8] and [21,22]C[c, d] where [,B]e] and [c,d]e ;.

In the following, we shall summarize the a.lgorithm, and give an analysis of its time

;:i complexity.

Algorithm 1. Given two sets of points R={ryr2,..,m} and B={by,b3,..,bn} having
k-motion in 2-D. We compute the set of separable time intervals. |
Step (1) For each b;, compute L, the set of time intervals during which b; is a

convex point of CH(R(Z) U (%));

Step (2) Intersect all Iyy’s to get Iy, the set of time intervals with either R—type or
L-type;

§ Step (3) For each rj, compute Ij, the set of time intervals during which rj is a

| convex point of CH({ B(?) U rj(?));

Step (4) Intersect all Lj’s to get I the set of time intervals with either A—type or
L—-type;

Step (5) Intersect L, and Ir to get the final result J, the set of separable time

intervals.

The running time of this algorithm is clearly polynomial in 7 and m. Let M be
O(A(m,4k)) and N be O(A(n,4k)). Specifically, Step (l) can be zccomplished, for ea;ch bs
in time O Mog), in overall time O{m- MogN) {1]. In Step (2), we n’eed 'to merge m sets
of time-intervals produced in Step (1), and identify the-type (R—type or L—type) for
each time interval. Since each [y; is a sorted list with O(N) time intervals, this step can
be carried out by a linear merging algorithm for m sorted Lists in time (m- N-logm). In
the same way, we know that Step (3) and Step (4) need O(n-MlogM) and O(n- M-logn)
time respectively. Since list I, has O(m-N) sorted elements while there are O(n.M)
sorted elements in list I, Step (5) can be performed by a linear merging procedure in
time O(mN+nM). Hence, totally Algorithm 1 can be accomplished in time O(mN-logmN
+ nM-lognM + mN+nM). |

In [6], Sharir gave the almost linear upper bounds for ¥ and M :

= O(meofm) AN anq ¥ = o(ne ofn) XAy, yhere ofi) is the
functional inverse of Ackenﬁarm’s function. The function of7) is very slowly growing,

but tends to infinity with i Note that ofé)<4 for all <A which is a tower with 65536 2%,

ie. A= 20" . with 65536 s in the exponential tower.
Thus of4)<4 is suitable for all practical purposes. Assume that the sizes of sets R and B
are almost equal. The formula of time complexity for Algorithm 1 can be simplified to
" O(C-n2-logn) where C1is a function of afn).

4. Separability of k~motion in 1—dimension
We now consider a more special case, where input points are specified to be
k—motion in 1-D. Suppose that one point can run over another point without collisions.

Each point p; can be described as follows.
pi(t) = Cirtk + Cix-1tk L 4«4+ Ciptl

—10 —

where each Cin is a constant coefficient. At time ¢, define

buax(1) = MAX{B(0)),

bain) = MIN{bx(0)}, ' /

rmax(t) = M%X{rj(t)} and

oinl) = M:};N{T‘j(t)}.
Since CH(R(Y) = {Tnax(t),mmin($)}, bs(1) is a convex point of CH(R(f)ubs(2)) if and only
if bi(£)<Tain(?) or bi(£)>rmax(f), where the first condition specifies bi(t) to be a left
convex point while the second condition classifies b3(¢) into the set of right convex

points. Hence, we can immediately deduce a more simple property from Lemma 4.

Lemma 5. Assume that the points in R and B are p-motion in 1-D. At time to, R(%0)

and B(%,) are linearly separable iff one of the foﬂowing conditions is true

(1) bmax(t0)<rmiﬂ(t0) ot (11) bmin(t0)>fmax(t0).
By Lemma 5, Algorithm 1 can be simplified to the following version.

Algorithm 2. Given two sets of points R={r,T2,--,Tn} aﬁd B={by,bs,..,bn} having

k—motion in 1-D. We compute the set of separable time intervals. |

Step (1) Compute 7nin(t) and rmax(t) for t€{0,0), the lower envelope and upper
envelope of R{¢) respectively;

Step (2) Compute bnin(f) and bnax(t) for t€[0,), the lower envelope and upper
envelope of B({) respectively;

Step '(3) Comput Iy, the set of time intervals during which Tnax(£)<bmin(?);

Step (4) . Comput 'Ibr, the set of time intervals during which brax(f)<Tmin(1);

Step (5) Merge Lo and Jor t0 be the final result J, the set of separable time intervals.

—11 —

I)

Since the eﬁveloPe functions of R(f) and B(¢f) respectively have N and A pieces of
polynomial functions, where N is O(A(n,k)) and M is O{Mm,k)), Step (1) and Step (2)
can be performed by a simple divide—and—conquer technique if time O(NlogN +
MlogM) [1]. To accomplish Step (3) and Step (4), we need only O(M+N) time by
executing a standard merging procedure. For Step (5), the time to combine Ip and Jur
can be dominated by previous time order. Hence, the time complexity of Algorithm 2 is
O NogN + MlogM + M+N). Assume that R and B have the equal size, n. We have a
more simple formula, O(C-nlogn), where Cis a function of an).

For another kind of special case of separability problem, we consider the problem of
which points are moving in 1-D with 1—motion. The position of each p; now is a linear
function of time ¢,

pi(t) = Cut! + Ciof? " where Cj;and Cio are all constant coefficients.

Hence, the upper envelope of R(t), say Tmax(f), i a concave piecewise linear function.
while its lower envelope, Tmin(f), ié 4 convex one. Since there is at most two separable
time intervals in this simple case, separability here can be transformed to a linear
pro,gramming problem as follows. Specifically, given two sets of points having 1—motion
in 1-D, R={ry,rs,..,7n} and B={by,b2,..,bn}, we therefore seek the two optimal solutions,

one for "Maximize &' and the other for "Minimize #", satisfying the conditions

(1) Y < ri(1) where i=1,2,...,n
Yy > bi(%) where j=1,2,...,m
¢ 2 0

and we also find another pair of minimum and maximum of ¢t meeting the requirements

(2) Y > ri{£) where i=1,2,...,n
y < b;(£) where j=1,2,...,m

¢t > 0

Without loss of generality we assume that the optimal solutions of (1) and {2) are

!T

respectively fmaxy, Imint, fmax2 and fgina. It is easy to understand that (fmins tmaxi) and
[tnin2,fmax2] aTe separable time intervals. For the time complexity, since Megiddo [3] has
proposed a linear time algorithm to solve linear programming problems with two

variables, the linearly separable problem with 1—motion in 1-D can be solved in time

O{m+n).
5. Concluding Remarks

In this paper we proposed an algorithm to solve the separability problem in
dynamic computational geomeiry. For input points having k—motion in 2-D, our
algorithm can be accomplished in time O(mN-logmN + nM -lognM + mN+nM), where
N and M is almost linearly proportional to the size of input set. In the special case, the
points are k—moti-on in 1-D, the complexity can be reduced to O(N-logN + M-logM +
N+M). If the points are restricted to 1—motion in 1-D, our algorithm needs only linear
time O(m+n). |

In d—dimension, the dynamic sépé.rability problems are much harder than static
ones. For static versiom, linear separability can always. be transformed to a linear
programming problem [6]. Specifically, given two sets of points in d—dimension, say
R={ry,r2,...,Tn} and B={by,b2,.--,0n}, We seek a (d—1)—dimension hyperplane

Ei CiXs =0
satisfying the conditions

% CiXiry ¢ 0 for j¢R and)fli CiXinj 2 0 for b€ B.

This is clearly a linear programming, which can be solved in linear time by Megiddo’s
algorithm [4]. On t]ie contrary, the dynamic linear separability is not a simple "Yes" or
"No" problem. We need describe the whole set of separable time intervals. For the

problems moving in 1-D and 2-D, by Lemma 4 and lemma 5, an efficient algorithm can

e

N R TR

be designed successfully. Although Theorem 1 holds for any fixed d—dimension, it is still

very difficult to use this iff condition to construct an algorithm, even for 3—D case. It

could be an interesting future research topic 10 find good characteristics of linear

separability in dynamic computational geometry for high dimension.

References

M. J. Atallah, Dynamic computational geometry, Proceedings of 24th IEEE
Annual Symposium Foundations of Computer Science, (1983), pp. 92-98.

S. Hart and M. Sharir, Nonlinearity of Davenport—Schinzel sequences and of
generalized path cbmpfession schemes, Combinatorica, 6(2), (1986), pp. 15117

N. Megiddo, Linear—time algorithms for linear programming in R3 and related
problems, STAM J. Comp;th., 12(4), (1983), pp. 759—T76.

N. Megiddo, Linear—programming in linear time when the dimension is fixed, J.
ACM, 31(1), (1984), pp. 114127 |

F. P. Preparata and M. I. Shamos, Computational Geometry, Springer—Verlag,
New York, 1985.

M. Sharir, Almost linear upper bounds on the length of general
Davenport—Schinzel sequences, Combinatorica, T(1), (1987), pp. 131-143.

J. Stoer and C. Witzgall, Converity and optimization in finite dimensions I,

Springer—Verlag, New York, 1970.

—14 —

Fig.

2

Fex)

A countérexample of Corollary 2.

Yb
y=ax+b
Fig. 3. A classification of set B.
L ' B,
v, ® .
Vb

Fig. 4. Segment bibj intersects CH(R) on two

and exactly two point.

e,

TN

,,.
ez

s

i
r%
b
B

Fig. 7. Merge I p with 17 to I .

| | | i]
Lpif 1] T >

Fig. 5. The list of I ;.

s

R A

NHIRTRIE

e b b AR,

AR

=
ot

W

e

Fig. 7. Merge I j with I to I .

