TR-86-007

Visual Programming

| Approach to Computer Aided Instructions

K.Y.Cheng, C.C.Hsu, 1.P.Lin, M.S.Hwu, and M.C. Lu

Institute of Information Science
Academia Sinica
and
Department of Computer Science and Information Engineering
National Taiwan University
Taipei, Taiwan, ROC

T

0059

Visual Programming Approach to Computer Aided Instructions

K.Y.Cheng, C.C.Hsu, LP.Lin, M.S.Hwu, and M.C. Lu

Institute of Information Science
Academia Sinica
and
Department of Computer Science and Information Engineering
National Taiwan University
Taipei, Taiwan, ROC

ABSTRACT

An ideal CAI system is to allow users(teachers) to be able to create their
OWn coursewares even though they possess no knowledge of programming. In
this paper, we propose a visual programming approach to achieve this goal.
We present a VIsual Programmihg Synthesizer(VIPS) which allow users to
sketch their well-written coursewares in visual. Through the interface
language of VIPS, a user defined courseware can be self-synthesized into a
complete internal strcuture. This internal strcuture holds properties of
knowledgable objects and the execution flow of the courseware. We also
present a mapping algorithm to transform the internal structure into a set of
Horn clauses so that coursewares developed under VIPS can run on Prolog
systems.

1. INTRODUCTION

Computer aided instruction (CAI) is one of the important issues in computer applications. An
ideal CAI system™1%33 is to allow the end users (teachers) to be able to create their own application
programs even though they possess no knowledge of programming. Such kind of demands in
computer applications also can be widely seen in the area of office information system
(OIS)*11:12:16.20, However, in CAI, a smart courseware that can diagnosis and remedy student's
errors and evaluate the progress of learning is essential. Consequently, friendly user-interface
facilities as well as intelligent performance must be emphasized in CAI applications. It is hard to
implement such a CAI system under conventional programming environment because such an
environment is designed for programmers to use. On the other hand, under artificial intelligence
programming environment alone, it seems still very difficult to handle the facts and the rules of
colorful courseware expressions very well. Thus, a new environment is needed in CAI
applications.

The major issues of visual programming are to provide a friendly environment for
NP-professionals (Non-Programmers) to develop their own application programs
visually%417:181% 1n this paper, we present a VIsual Programmimg Synthesizer (VIPS) as a
vehicle for teachers to develop their own coursewares. A simple courseware example of theorem
proving on triangle coincidence is illustrated to demonstrate the features of VIPS. Under this
environment, the forms dealt with contain text (in particular Chinese characters), static graphics
(line drawing and bit-map), dynamic graphics (animatjon), rules, and voices. In order to
distinguish them from office forms, we call them the V-Forms.

Just like other form models!” 81928 our V-Form model consists of a V-Form type and a
V-Form instance. A V-Form type describes the structure of a V-Form system, while a V-Form
instance is obtained after filling values into the contents of the described V-Form type. The V-Form
instance is a program that fits the concept of embedded procedures for computational and
controlling requirements. Hence, facilities for conditional and unconditional control switches are
also included in the V-Form model. Based on the V-Form model, VIPS offers a two-dimensional
non-procedural language as a user-friendly interface to define and manipulate V-Forms on the
screen. This interface language includes two parts: a V-Form Definition Language (VDL) and a
V-Form Marnipulation Language (V1\1£L)

After processing VDL and VML, a complete internal form for each application can be
self-synthesized. Then a mapping algorithm that transforms the self-synthesized internal structure
into a program of Prolog clauses converts CAI courseware into an executable program. V-Form
instances that are text-only can be executed by a Prolog interpreter>’!3, rules are also translated
into Hormn clauses, V-Form instances other than text are treated as a series of procedure calls which
invoke graphics and voice subsystems for execution. ' '

In the following, we discuss the language environment of VIPS in section 2, the V-Form
model in section 3, the CAI courseware design through the interface language in section 4, and the
interpreting environment in section 5.

2. VISUAL LANGUAGE ENVIRONMENT

We shall define the visual language formally as follows. Let D be the domain of
what-you-sketch and y; be a sketched object, y; € D. Suppose y; can be generated by an inferred
grammer G15, then a visual language is

Ly={y;ly;e D, andy;e L¥G)1,

- where

L(G)) =L*(G;) UL(G;) ={ positive sample } U { negative_sample }.

The positive sample is an information sequence of L(G;) containing only codes from L*(G;)

which is a set of objects described by the user. On the other hand, the negative sample is the

parasitical product of Gj and is not included in the visual language. In other words, a visual

language is a formal language that contains only objects sketched by the users.

As we know, there are three types of languages, i.e., regular, context-free, and
context-sensitive that can be generated by an inferred grammar in the limitS. Among them,
context-free languages are not powerful enough to describe the programming applications, but

context-sensitive languages are very complex for analysis. Therefore, the visual language L.,

which is used to get the desired appiications in what-you-sketch-is-what-you-get manner of

operations, can be implemented on a context-free programmed grammar® that can simulate the

behavior of the inferred grammar G; of L. In other words, the visual programming itself is an

interactive process which allows the user to describe the inference algorithm by himself. Here, the
inference algorithm is a process of describing the positive Samples as designed by the user. In
formal language aspect, VIPS' inferred grammar is a context-free programmed grammar and the
class synthesized by VIPS can be a context-sensitive language.

There are some design methods for visual programming languages®'417:181% However, a
systematic approach to a theoretical sound methodology is still under developing. Here, we
consider a visual programming synthesizer which is interactive and application-oriented with the
following features : (1) easy to use -- various user friendly facilities such as icous, pointing
devices, and menus are included; (2) visual directed objects -- V-Forms are used as the fundamental
objects of VIPS because they are more akin to the user's view point; (3) non-conventional
programmling nature -- users only need to describe the external representation of objects instead of
writing a series of instruction codes; (4) for non-programmers -- since application programs are
generated automatically by VIPS, users can concentrate in expressing their knowledge to obtain a
better presentation; (5) portable -- V-Form system generated by VIPS is always consistent in its
internal structure, to transport VIPS from one system to another is simply by a mapping which
transforms the internal structure to an executable program, such as Prolog.

3. V-FORM MODEL

3.1 External Structure

YIPS allows users to open several windows on a screen. Each window is treated as a
V-Form. The informant presentation data in a V-Form may include text, static graphics, dynamic
graphics, rules, and voices. They are represented in V-Forms.

Let IT be a set of codes to be displayed, A be a set of alphanumerics, C be a set of Chinese
characters, B} be a set of graphic codes €2 be a set of drawing attributes, and 3, =J] vAUC U

B uQ. Then the domain of a V- Form belongs to Z where * denotes the Kleene closure8. All

V-Forms of an application are subset of D and are considered as the positive samples of L(G;).

A V-Form is a pair of a V-Form type F and a V-Form instance I defined below. A V-Form
type consists of a scheme S and a template T for S. -

[Definition 1] A scheme S is the logical structure of a V-Form. It can be recursively
defined as:

<S> t=<M>| <A>

<A> =<8>| <S>, <A>

<M> == <Type>:<Identifier>

<Type> :=TEXT |GRAPH|BIT-MAP | RULE
ANIMATION | VOICE | VFORM

For example, consider the first V-Form of a CAI Course shown in Fig. 4.3(a). The scheme
for this V-Form is defined in the following expressions:

CAI Course = [TEXT:Topic, ANIMATION:Picl, ANIMATION:Pic2, TEXT:Ask,
VFORM:Yes, VFORM:No]
VFORM:No = [...]
= [...]

VEFORM:Yes

The hierarchical structure of the scheme for the CAI Course is given in Fig. 3.1, where a
circle means a V-Form which contains another V-Forms, a box represents a minimum V-Form
which contains no other V-Forms (also called an atom).

{Definition 2] A template T is a visual structure of a V-Form that represents a

two-dimensional display format and visual properties of a scheme S.

The template for the scheme of Fig. 4.3(a) is given in Fig. 3.2, where the V-Forms
TEXT:Topic, ANIMATION:Pic1, ANIMATION:Pic2, and TEXT:Ask are atoms, but VFORM:Yes
and VFORM:No are not. As shown in Fig. 3.1, each V-Form may contain other V-Forms (A

V-Form Fj is said to be a sub-VForm of F; if and only if F; contains F;) and hence a hierarchical

structure is formed. A template also d;scribes the control flow of the V-Form node. For instances,

CAI Course

Fig. 3.1 Hierarchical structure for CAI Course

when VFORM:Yes (sub-VForm of CAI Course) of Fig. 3.2 is selected then the display will be
switched to that of its descendent V-Form node F2 (Fig. 4.3 b).

1] I T I I ¥ I I I] I T I I T !
Hlllll.Iilllllllllllllll“Hilfﬂl(llllllllil”lllllllIIIIIIIIII“IIIlllllil_lTl—!

[ARIMATION:Pic1

I TEXTTopic .

! ANIMATION Pic2

i TEXT:Ask

| vRORM:Tes VFORM No

VDLy
BEGIN DEFINE EPDIT ERASE EXIT EXTEND LOAD OPEN QUIT RETURN SAVE

Fig. 3.2 A template for the CAI Course

[Definition 3] A V-Form instance for a V-Form type F is defined as a mapping which
assigns a value to each atom of F. The value of a V-Form may have the following types: TEXT,

GRAPH, BIT-MAP, ANIMATION, VOICE, and RULE. One of the V-Form instance of Fig. 3.2
is shown in Fig. 4.3(a). '

As stated above, a V-Form type can be filled with different contents to obtain different kinds of
V-Form instances. Therefore, a V-Form type is just like a language, from which a user can write
many programs, which in this model are V-Form instances.

3.2 Internal Structure

The intemeil structure links four kinds of nodes, namcl{z,'system node, form control node,
mode node, and action node. The system node(SN) keeps all information of the V-Form system.
The fofxn control node(FCN) describes the characteristics of its corresponding V-Form (atom or
non-atom). The mode node(MN) contains the content and the display attribute of an atom. The
action node(AN) contains the embedded components, such as conditions, actions, or procedures.

Accordingly, an atom is represented by a FCN which has a pointer pointing to 2 MN. A
non-atom V-Form is also represented by a FCN but has a pointer (in FCN) pointing to a list of
FCN which describes its sub-VForms. The list of FCN, also called a form control table (FCT),
describes the V-Form structure within a window. Fig. 3.3 shows part of the internal structure of
the V-Form system CAJI_Course (only F1 of Fig. 4.3 is shown).

)
1EIANE
m Y - () F) £ FN (FCN)
rren | g o[[e by [R T [T, T3> D[] H—*
M) A (M)

fA_NmmON || |—I:|__ Emnm ll l-]__L - : K.T(l?}

4

| tg"ﬂ?wg;mmzl—h__ [r_aar{r?..[rheruu‘o:ﬁug...'_i:l_ Em_'l—
[ﬁ«ﬂ‘li"r"l BT |_.I.__L

Fig. 3.3 The internal structure of the V-Form F1 of Fig. 4.1

4. CAI COURSEWARE DESIGN THROUGH INTERFACE LANGUAGE

VIPS contains an interface language which allows teachers to describe their own well-written
courseware visually . In the following, we shall describe the Interface Language briefly and give an
example to show how a CAI courseware can be designed through this language.

4.1 Interface Language

The interface language in VIPS is a two-dimensional non-procedural language which offers
users to define and manipulate V-Forms on the screen. It has two parts : VDL and VML described
as follows.

4.1.1 V-Form Definition Language

As mentioned in section 3, a V-Form consists of a V-Form type and 2 V-Form instance.
Hence, V-Form Definition Language is divided into a skeleton phase and an editing phase to
define V-Form type and V-Form instance respectivelyZ.

The skeleton phase is to define the V-Form type by manipulating the screen directly and
visually. It provides many primitive operations which allow users to sketch what V-Form types
shell be in their conceptual model. Table 1 shows a summary of thé primitive operations of the
skeleton phase in VDL.

Table 1. Primitive operations of Skeleton Phase in VDL]

Category Primitive Operations
Initialization BEGIN
File Handling LOAD, SAVE
Flow Manipulation EXTEND, RETURN, SET
‘Window Management OPEN, ERASE
Type Redefining DEFINE
Instance Generation EDIT
* Convenience ‘ COPY, HOME

The edxtmg phase is to fill in each V-Form type with a V-Form instance. Table 2 shows a
summary of the primitive operations of the editing phase.

Table 2. Primitive operations of Editing Phase in VDL

Category Primitive Operations
Content Management FILL., SET
Flow Manipulation GOTO
Procedure Processing CONDITION, ACTION
Convenience ' ALIAS

4.1.2. V-Form Manipulation Language

VML is a language to manipulate V-Form instances gotten from VDL. As described earlier, a
V-Form instance can be regarded as a user-defined program. Thus, VML, similar to a program
editor, can manipulate V-Form instances at will. It provides users the following opeartions:
(1)displaying, (2)inserting, (3)removing, (4)modificating, (5)grouping, and (6)degrouping. A
V-Form instance can be maniplflatcd by the operations(1), (2), (3), and (4), while grouping and
degrouping operations allow users to restructure the existing V-Form instances. The primitive
operations of VML are shown in Table 3.

Table 3. Primitive operations of VML

Category Primitive Operations
Dispalying DISPLAY
File Handling LOAD, SAVE
Atom Manipulation INSERT, REMOVE
Content Modification UPDATE
Instance Management GROUP, DEGROUP

The operations of displaying, atom manipulation, content modification, and file handling are
similar to many other form manipulations!®:17:18.20.21.22 A slight difference for VML from others
is to include the operations of grouping and degrouping. Fig. 4.1 shows an example of grouping.
The grouping operation adds a complementary course, V-Form instance in HELP.INS file, to the

VFURHF3II{IIII‘IIII'HII{IIIl|l|li|ll“’|lllllllll1[|II!IIII'HII[IIH‘III”
TEXT:From
As demonstrated in the fllustrated
example, we know that

TEXTXnow
o Prove the equivelence of two tisngles,
we 3imply put these two tiangles together
and see if they can be completely matched.

T

¥
IIII’IIIIII[llllII

TEXTFollow.
Now, in the following we shell demonstrate
& theorem proving on trisngle coincidence.

VFORMEXIT I VF&?{%-HELP I[Alded after YFORM:READY
1

|_EXIT | 1 | 1 gouig) | READY |

VML LOAD HELP. INS 4

VIMLy GROUP HELPINS HELP INFI AT 35 17WITH10 2
LDAD DISPLAY INSERT REMOVE UPDATE GROUP DEGROUP SAVE EXIT QUIT

(a)V-Form F3

FORN:HELPlllI“IllllllllllillillI“lll||ll[|][lI]IIlilllll|illllllll|li’ﬂl

TEXT:Stel
Two given triangles are said to be equivelent if their verticey,
sides, and inwrsecting angles can be exsctly matched. Two
vertces { sides, angles) which can be matehed are called the
corresponding verttces (sides, angles) of these two trisngles.

We use the symbol AABC 13 represent a tiangle with vertices
A,B,and C. If two given trangles AABC and AA'B'C are
equivelent with vertices A, B, end C corresponding w A’, B',

and C' apectively, then we use OABCE AA'B'C'D demte
their equivalence.

Y

YFORM:Next—

[NEXT

VML> DISPLAY F3

VML DISPLAY HELP
LOAD DISPLAY INSERT REMOVE UPDATE GROUP DEGROUP SAVE EKIT QUIT

(b)V-Form HELP in HELP.INS file

Fig. 4.1 Example of Grouping

node F3 of the V-Form instance CAI_Course. Notice that, the operations of inserting, removing,
and modifying can not change the branches of control flow, but the operations of grouping and
degrouping can change them. The new structural relationship between two grouped V-Form
instances is shown in Fig. 4.1(a). Fig. 4.2 shows the logical structure after grouping. Degrouping
is just the reverse of grouping. Both operations can only operate on independent V-Form instances,
ie, the grouped/degrouped V-Form instances must be structurally unrelated.

CAI Course

Comp_ Course
(in file HELP.INS)

Fig. 4.2 Logical structure of CAI_Course after Grouping

4.2 CAI Courseware Design

Fig. 4.3 shows a coursewarefor the purpose of demonstrating the concept of geometrical
coincidence. Fig. 4.3 (a) is the first frame of the courseware with two triangles circling around in
different speeds, one is twice faster than the other so that both circling triangles will stop and

coincide at the stop one. A touch/selection to the VFORM: Yes starts the practice to learn the concept
of geometrical coincidence. '

To design this CAI courseware,iteachers with or without programming language background
can concentrate in describing their specialized knowledge as the process of how to get the desired

10

._‘,"

courseware. The interface language which provides some user-friendly facilities will allow them _
easily to implement the courseware.

Once a teacher has prepared his/her own well-written sheets in V-Forms according to the
courseware, he/she can interactively define the V-Form type with a sequence of skeleton phase
commands in VDL. For example, we can define the V-Form type given in Fig. 3.2 by the
following interactive sequence?:

VDL> BEGIN CAT Cour.
VDL> OPEN TEXT AT 6 21 WITH 38 1 AS Topic

VDL> OPEN ANTMATION AT 2 35 WITH_10 4 AS Picl
VDL> OPEN ANTMATION AT 9 35 WITH 10 4 AS Pic2
VDL> OPEN TEXT AT 14_20 WITH 40 3 AS Ask |
VDL> OPEN VFORM AT 17 4 WITH 8 1 AS Yes
VDL> OPEN VFORM AT 17 66 WITH 8 1 AS No
VDL>

When an entire V-Form type of the courseware is obtained, the operations of editing phase are
used to fill in the contents of the V-Form type. For example, V-Form instance in Fig. 4.3(2) can be
created from Fig. 3.2 through the following interactive sequence of commands;

VDL> EDIT Topi
VDLSED>FILL /* cursor is now at the beginning of V-Form TEXT:Topic,
user can now key in text "Theorem proving on triangle coincidence' */

VDLSED> SET ATTRIBUTE BOLD
VDL$ED> EXIT
VDL> EDIT Picl
VDL$ED> FILL

VDLS$ED> EXIT
VDL EDIT Pic2
VDL$ED> FILL

VDLS$ED:> EXIT

If an atom has procedures embedded, then it is edited by the procedure processing and flow
manipulatibn operations. Notice that, from F4 to F9 of Fig. 4.3, the whole screen is partitioned
into two regions. The right-lower région is a window which allows a user to touch/select the
appropriate answer within it. V-Forms marked with asterisk are displayed only when correct facts

11

are chosen. Fig. 4.4 shows the self-synthesized control flow of the V-Form instance illustrated in
Fig. 4.3. | :

((A) twice fasti]i:ifﬂn)-)_ €=

A&

['Iheorem proving on triangle coincidence

The folowing exemyle is a practice to learn
the concept of geometrical coincidence.
Do you went to give & try ?

(a) F1

5 DB
L

Can you identify which of the four upper-right triangles
that is equivalent to triangle A ?

. TRY AGAIN !
.

(b) F2

Fig. 4.3 V-Form instance of template CAI_Course

12

As demonstrated in the illustrated
example, we know that

.
-

to prove the equivalence of two friangies,
we simply put these two triangles together
and see if they can be completely. .

[]
h

Now, in the following we shell demonstrate
a theorem proving on triangie coincidence.

*

H
e b -
H

Note: __., denotes delay of a period of time between two
consecutive V-Form.

(c)F3

Theorem : Given any two triangies if thcy exhibit two aqual sides with same
intersecting wngles, than they are equivalent,

l F.xamp!e: [A, >

il
‘E}wen A ABC and & DEF,] _ _ _@
1 = — - ——-— ' window (from F4toF9;_

_I:roof: [a) Move & ASC 1o DEF.
- Now, point A and point P ars matched.

b) Since TE.R} , thon side AR cancaver side L
- completely and point B and point B am match;

g
<€) Since£A% 28 then zide AC cam cover sids DF]
completely. '

: -

I0CEAC=DF , then point © and pomt I aro
- matchod.

)
-

(=) Now, az you can see, when move O ABC to
ADEF they can be matched completely, o

« e DABC I ADEY -

Note: » d tha display of tha when a fact ix properiy selected,
** deootes the window of performing the answer-question from P4 to F9,

(d) F4

Fig. 4.3 V-Form instance of template CAI_Course (Continued)

13

[Which of the following ich of the following
facts are true 7 facts is the answer to
{ Multiple answers) this problem ?
(Choose cne)

*l Right!l aklEmﬂg! '

.|_Rightt] . Wrong! |

(e) the right-lower corner of F4 (HHF5

Now, you may try to Now, points A and D
prove the theorem by are matched, the next
the process of matching | step is to move side AB
First, move & ABC g to coincide one of the
ADEE | sides of ADEF,

And, what next ? And, which one in the

following ?

. LRight!]

. | Try again ! l
. I_Try again !7

(g) F6 (h) F7

Fig. 4.3 V-Form instance of template CAI_Course (Continued)

14

There remains ons side to be
o Whioh pair 7 Now, are you sure that:
L_oaABco opeF ?
AT o I Right! I

[iED:aciandEE] [Wrong! | . [Very good! |
1 i in!
1”* [Why 7 Give your reason, i . [Think againt]
I r— -
: : 5 e !!Enk again! I
]
- ' ** [Tho theorem s been
- +L_proved. What next ?
l"_]
1
L] TRYACA,
'y T
rop
1. SEXT
' :L Isitbecause AC<DF 7]
T.s .

] Right! I .

1 — * [ERYANOTHER EXAMFLE]
ot l Wrong! I

Fig. 4.3 V-Form instance of template CAI_Course (Continued)

15

Mmﬂonanﬁl Hove AT

Diglsy [TRVAGAIR)

Diglsy

N F 3
wellly s

R A
Move biangle ABC [hove rimngle ABC | [Move miangle ABC
o triangle DEF 2ud tingls DEFad [|10 triangle DEF and
mach Ao D,)] match Clo D, |
Diglay (N in 4

1

-

Q

{7 B][] £

o]

¥

]

¥

)

oty (1]

ABCE ADEF

|Dhjqr ! ng'!

! F‘ m@
¥ !
bigty [Righ] [[gty [y saee] [iy Ty
Display (B n M
t l
r
B
e @ e
el | iy [l Dy LA,
el
(@]
saell] § {0 |
l _4 sa{(i}]
[Diginy [Tk ez | D'ﬂéi‘r Diglay {Rih],
1 ... Dlﬂilf {d) ilf‘
@
| I
r
ot B
Diplay | Yere oog] Diglay [Think agui
Displey (c)in B

safprog]| s = szlmm

; ()

Fig. 4.4 Control Flow of CAI Course

16

5. INTERPRETING ENVIRONMENT

After the completion of sketching the whole courseware, an internal structure as shown in Fig.

3.3 is automatically obtained. Then, the internal structure can be interpreted by a VIPS interpreter.
There are two ways to interpret the internal structure, one is through a self-designed interpreter, the
other is using an existing one (such as CProlog)?. In consideration of the portability and sometimes
in need of unification and bactracking in the execution of a V-Form instance, a current existing
Prolog interpreter is adopted. With this approach, a mapping algorithm is needed to translate the
internal structure to Prolog facts and rules. Accordingly, VIPS can be easily ported to another
system for execution if it has an available Prolog interpreter.

The mapping algorithm given below translates the internal structure synthesized by VIPS to
Prolog facts and rules.

Step 1: Assert the goal
?- consult(‘syslib.pro’).
Step 2: Repeat
get a node from the resulting file generated by the interface language;
if the node encountered is a SN then
begin { Assert 4 facts and 1 rule }
vform(’System—name',O,_,0,0,0,0,first _page list).
coordinate(0,0). { initial setup }
procedure(0).
workset([0]). :
go:-valid(0), fen(_,0,first page list).
end; ‘ '
if the node encountered is a FCN then .
begin { Assert 1 factand 1 optional rule }
vform(name,id,alias,row,col,width,height,sublist).
if this FCN is non-atom then
begin { Assert 1 rule }
go:-valid(id), fcn(name,id,sublist).
‘end;
. end;
if the node encountered is a MN then
begin { Assert 1 facts } _
contcnt(narne:id__of_FCN,typc,characteristic,contents).
end;
if *he node encountered is 2 AN then
begin { Assert 1 rule }
procedure(id_of FCN):-condition and action.
end; i
, until no_more node;
Setp 3: Assert the goal
7-go. { start execution }

17

]

In the algorithm, the information kept in FCN, MN, and AN are directly mapped to the
predicates: viorm, content, and procedure respectively. Predicates Coordinate and workset
offer the scope of selection during execution. The other predicates not mentioneq above are all
System.predicates in the file syslib.pro, which are consulted in step 1. Table
summary of these system predicates.

3.1 shows 2

Table 5.1 Summary of system predicates in the file 'syslib.pro’

Category - System Predicates
Control Strategy fen, fired, valid, position
Database Manipulation make workset |
Window Management show
External Communication get response, system

At the beginning, the facts: coordinate(0,0), procedure(0), and workset([0]) give a
unconditional display of the V-Form in Fig. 4.3(a) and then an unification is initiated by the
predicate: fen. This perdicate accepts user's input (from a mouse or a pointing device) to select one

- the next appropriate V-Forms. V-Forms with either TEXT or VFORM type: are directly
anipulated by window management predicate, while GRAPH, VOfCE, ANIMATION, or
BIT-MAP are delivered to a graphics or voice subsystem for execution by predicate: system.

Applying the mapping algorithm to the internal structure generated as shown in Fig, 3.3, we
have:

?- consult('syslib.pro’).

. viorm('CAI'_Course',O,_,0,0,0,0,[topic: 1,pic1 :2,pi02:3,ask:4,yes:5 ,0:6]).
coordinate(0,0). '
procedure(0).
workset([0]).
go:-valid(0),fen(0, [topic:l,picl:2,pi02:3,ask:4,yes:5,no:6]).

vform(topic,1,0,6,21,38,1,[]).
procedure(1).
content(topic:1,text,bold, "Theorem proving on triangle coincidence").

vform(pic1,2,0,2,35,10,4,[]).

procedure(2):-system("r circle1").
contcnt(picl:2,an1'rnation,normal,'...').

18

vform(pic2,3,0,9,35,10,4,[]).
procedure(3):-system("'r circle2"),
content(pic2:3,animation,normal,"...").

vform(ask,4,0,14,20,40,3,[1).
procedure(4),
content(ask:4,text,normal,'The following...".

vform(yes,5,0,17,4,8,1,[fi gA:7,figB:8,figC:9,figD:10,figE:11,
query:12,ansB:13,ansC:14,ansD:15 ,ansE:16,again:17,good:18]).

procedure(5).

go:-valid(5), fen(yes,s, [figA:?,figB:8,figC:9,figD:10,ﬁgE:11,
query:12,ansB:13,ansC:14,ansD: 15 ,ansE: 16,again:17,good:18]).

vform(no,6,0,17,66,8,1,(]).
procedure(6):-halt.)
go:-valid(6),fcn(no,6,[]).

6. CONCLUSION

VIPS provides a visual programming environment for teachers to develop their own
coursewares without going into detailed programming that must.be adhered strictly to syntax rules.
'hat they need is through what-they-sketch-is-what-they-get operations to imitate their teachin gin
asstoom. Under this environment, teachers with or without any programming language
background can describe their specialized knowledge through processing VIPS to get the desired
applications. This will release teachers from doing arduous and tedious works.

VIPS has a V-Form Definition Language and a V-Form Manipulation Language to support the
teacher interfacing with the system in visual. VIPS then structuralizes V-Forms into an unique
internal structure. A mapping algorithm is deviced to translate the internal structure into Prolog
predicates. These predicates can be executed by a CProlog interpreter under the environment of
VAX/VMS on VAX 11/785. '

VIPS is only an experiment system in the study of visual programming and its applications.
More knowledgable objects and their relations are expected to be included in V'PS in the near
future. As a matter of fact, CAI courseware that can process the production rules will be proposed
soon. But still, a theoretical understanding of visual perception is needed so that a designer can
devise knowledge representations fof wider objects in a more general way.

REFERENCES

[1] Anderson, J. R., Boyle, C. F. and Yost, G., "The Geometry Tutor," IJCAI, LosAngles,
U.S.A.,pp. 1-7 (1985).

[2] Cheng, K. Y., Hsu, C. C,, Lin, I. P., Lu, M. C., and Hwu, M. S., "VIPS: A Visual
Programming Synthesizer," Second IEEE Computer Society Workshop on Visual Language,
Dallas, Texas (June 1986).

[3]1 Clocksin, W. F. and Mellish, C. S., Programming in Prolog, 2nd ed., Springer-Verlag,
Berlin, 1984. '

{4] Ellis, C. A. and Nutt, G. J., "Office Information Systems and Computer Science,"
Computing Surveys, Vol. 12, No. 1, pp. 27-60 (March 1980).

[51 Fu, K. S. and Booth, T. L., "Grammatical Inference: Introduction and Survey -- Part 1"
IEEE Trans. on System, Man, and Cybermetics, Vol. SMC-3, No. 1, pp. 95-111 (1975).

(6] Fu, K. S., "An Introduction to Formal Language,” Chap. 2. in Synratic Pattern
Recognition and Application, Prentice-Hall, Englewood Cliffs, N. T., 1982.

[7]1 Gray, M. D., Logic, Algebra and Database, Halsted Press, 1984.

(8] Hopceroft, J. E. and Ullman, J. D., Introduction to Automata Theory, Language, and
Computation, Addison-Wesley, 1979.

[9] Jacob, RobertJ. K., "A State Transition Diagram Language for Visunal Programming," IEEE
Computer, pp. 51-59 (1985).

[10] Kearsley, G., et al., "Authoring Systems in Computer Based Education," Comm. of the
ACM, Vol. 25, No. 7, pp. 429-437 (1982).

(11] King, K. J. and Maryanski, F. J., "Information Management trends in Office Automation,”
Proceedings of the IEEE, Vol. 71, No. 4, pp. 519-528 (1983).

"12] Kitagawa, H., et al., "Form Document Management System SPECDOQ - Its Architecture
and Implementation,” Second ACM-SIGOA Conference on Office Information System, Vol.
5, No. 1-2, pp. 132-142 (June 1984).

+13] Kowalski, R. A., "Predicate Logic as Programming Language,” Proc. of IFIP 74, Stockholm
(1974). . '

[14] Moriconi, M. and Hare, D. F., "Visualizing Program Designs Through PegSys," IEEE
Computer, Vol. 18, No. 8, pp. 72-85 (1985).

[15] Reiser, B. J., Anderson, J. R. and Farrel, R. G., "Dynamic Student Modelling in an
Intelligent Tutor for LISP Programming," IJCAI, LosAngles, U. S. A., pp. 8-14 (1985).

[16] Shu, N. C., et al., "Specification of Forms Processing and Business Procedures for Office
Automation,” IEEE Transactions on Software Engineering, Vol. SE-8, No. 5, pp. 499-512
(Sep. 1982). ‘

[17] Shu, N. C., "A Forms-oriented and Visual-directed application development system for
non-programmers,” First JEEE Computer Society Workshop on Visual Language,
pp-162-170 (Dec. 1984),

[18] Shu, N. C., "FORMAL: A Form-Oriented, Visual-Directed Application Development
System," IEEE Computer, Vol. 18, No. 8, pp. 38-49 (1985). :

[19] Sugihara, K., et al., "An Approach To The Design of a Form Language," First IEEE
Computer Society Workshop on Visual Language, pp.171-176 (Dec. 1984). [20] Tsichritzis,
D. C., "Form Management,” Comm. of the ACM, Vol. 25, No. 7, pp. 453-478 (1982).

[20] Tsichritzis, D. C., "Form Management", Comm. Of the ACM, Vol. 25, No. 7, pp. 453-478
(1982). ‘ '

[21] Zloof, M. M., "Query-by-Example: A Data Base Language," IBM System Journal, Vol. 16,
No. 4, pp. 324-343 (1977).

(22] Zloof, M. M., "QBE/OBE: A Language for Office and Business Automation,” IEEE
Computer, Vol. 14, No. 5, pp. 13-22 (1981).

20

