 TR-81-007

Efficient Computing of Joins by Means of

Specialized Hardware

by

PPN

Yang—-Chang Hong

This fesearch is suppérted by the National Science Council under

‘Grant NSC-70E~0404—EQ01-02

RN f

£ E_ Fiw £

NCT 74 55 TARTH 70330 THIS ROoM
Institute

Academia Sinica
Nankang, Taipel 115
Republic of China

B BT

WA oot

December 1981

ABSTRACT —f—VA hardware architéctﬁre for supporting relational join operatioﬁs

is described. The architecture is intended as extending f;nctional capébilitiés
}ﬁf exisfiﬁg félational éssoéiative datébase machines (RAﬁM); It allows the

rapid exécution of join dpéraﬁions; The main features of this architecture are

an ﬁAﬁ, Wﬁiéh-can not oﬁly fapidly remember or recali'data but filfe; out irre-—

- levant data of the jﬁin, and an array of queue servers which can form new. tuples .
of the join in R§rallel.' Ihis architeéturél ﬁesigp emphgsi;es_qp much parallélism
. in the CToss :efereﬁéing, and thereby g;vés a“significaﬁp'perfOImande improvement
over existing join algorifﬁms,in RADMs, especially Whenza join-dominating appli-
cation is involved. The resulting RADMs alloW.Fhat the data_sea;éh is performed
by thg'segrch_logic, while the join ope?atiqns are-carpied out by this ex£éndgdl

hardware,

L.

VIntrcdﬁction

1.1 Problems with Existing RADMs

The limitations of conventional systems in supporting relaticnal DBMs

. functions, as'well as advances in processor and memory technologies, is
prompting the de51gn and development of directly assoc1at1ve hardware sup— -
}port for database appllcatlons[Z 3,4,5,6,7,8,9, 10 13,14, 16] Relational
'algebra operators have recelved the great attention as a candldate for the
'design. "Currently, the de51gn for 1mp1ement1ng the join has been to con- -

_centrate on' a form so called the "implicit join" in which the values of

the columns belng 301ned, called the 301n columns, from the selected tuples

in one relation are transferred to select tuples in the second or the same

relation'that have the same those wvalues in thelr join columns; it does not'

'create"a derived'relation from themerigiﬁal relaticn(s).

The 1mp11c1t JOln of two relatlons is executed in CASSM and CAFS

(1, 14] by flrst recordlng the join column values from the selected tuples

in one relation in the s1ngle bit array store. Next the tuples of the second
' relatiOn are matched on thelr JOln columns against the values in the store

-and marked if the mateh succeeds. RAP[10] implements the implicit join

operation by storing k join column values of the first relation in k com-
parators of each cell as a disjunctive condition for the second relaticn in
each pass. The implicit join in Chang's machine [3] is implemented by
fetching the join column values, . one by one, as search conditiomns for the
second relation. The number of passes required in RAP and Chang's machine
obviously depends on the number of values selected in the first relatiom.
Existing relational associative database machines (RADM for short) fail

to consider directly associative hardware support for "explicit joinsg"

(as contrasted to 1mp11C1t joinsg) in whlch more datarother than those in
the)joln columns from-the selected tuples in one relatlos sre used tokcon—
catenate to the selected tuples in the second (or the same) relatioo that-
have. the same join column values as those selected tuples of the first
relation.

Most ex1stxng RADMs [2,9,10,11, 12 13] -are based on the parallel
1'dproce551ng of -the segmented sequentlal search and cannot eff1c1ently support
;the explrc1t jodn operstlon,whlch.often 1nv01ves performlng (p0551b1y) a
"Isrge'amoﬁnt of crossdchecking for forming mew tuples, by means of the
parallelism. Thus, they are mot alone sufficient to make a highnperformance
-database machine, especially when an application With join—doﬁinating queries
is 1nvolved ’ A new hardware archltecture for eff1c1ent1y 1mplement1ng this
type of JOln has to bersouéht to cope with the-301n-dom1nat1ng database
appllcatlons.

_ 1 2 Recent Approaches for Joins

i;;;s; Several designs based on the host computerhfor the .explicit join
operatlon have been’ reported (1,8, 9J KThe LEECH and CAFS machines use a '
fllter for selecting tuples needed for the join.- The-selected tuples are
sent to the host to form the concatenated tuples of the join. The only
difference between 'these two machines is the design of the filter. RARES
provide a hardware-support algorithm for dividing the tuples of each rela-
tion being joined into buckets according to the value—-intervals of their
join columns. The tuples within eacc bucket are sorted in the main memory
by conventional algorithms. The sorted buckets are used to praduce the
concatenated tuples of the join by the host. The approaches described

above will not be very effective when the number of tuples being joined

is large. There has been proposed a totally hardware—support join baséd : R alg

on pipeliﬁe-searcﬁing éﬁd softingugngines for a data flqw database computer - ' ‘vo]
'[iSj. "Two heap trees of the two relations being joined are first constructed | : . the
using the heap algorithmf The two heap trees are then converted into twoj o S éxi
_binaty.trees_before-the tuples can be combined to form neh‘tﬁplesrby the 'f§) { 1.4

”ééarching engine. One disadvantage of this approach is that a .considerable

thi

:}amount of loglc and memory is 1nvolved .
1.3 The Pr0posed Approach :i V“.: | ar
ThlS paper descrlbes an on—g01ng National Science Counc1l‘gponsored “th
pro;ect on the study of an efficient hardware—support algorlthm for full ~ S _ £i
j;ins. Our hardware archltécture for joins is intended as a component 7 - iﬁ. - éc]
'ofexiétinc RaDMs: I£ allows the fapld execution of]Oln operations. fhe , R 3 ve:
‘main feature of thlS archltecture is. an RAM éxtending the single bit
‘ array stores, as suggested by CASSM and CAFS for 1mp11c1t joins, whlch - o 1. 42;‘§§
-allows to remember or recall more data than the bit store does.' Through_““
the.use of the RAM, thé join of two relationms, in which the primary key or i .~ as
candidate key in one of the two relétions is the join columm, can be imple— SR - RA
mented as effectively as the implementation of impli;it joins by the single . -of
bit‘éfray stores, thus, without-aétually creating a derived relation. TFor : " wh
these joins'which need to be implemented by creating a temporary relatiom, : SE
we suggest a memory bank for storing tuples in ome of the relations being E (T
joined, as well as an array of queue servers for forming new tuples from ' ag
fhe memory bang and the array of queues.associated. The processing time o _ de¢
is decreased in executing this type of join by increasing the parallelism f {«
of producing the concatenated tuples of the join inm each server. This l Pt
architectural design emphasizes on much parallelism in the cross referencing L (:
and thereby gives a significant performance improvement over existing join i

algorithms in RADMs,espeeielly When.a join—dominating applieation‘is in~‘
Lﬁdlved. :ihg fesulting RADMe allow_that tﬁe data-searcﬁ.is-ferformed by .
Fhe'search logic, while the join operations are carried out by the
" extended hardware.

1.4 Orgafiization of the Paper

The body of fhis paper is divided into three parts. ,in the first part
the pr0posed hardware archltecture is described. _Thé_second andfthird parfs
i ere.concerned w1th the algorlthms for cemputlné the joins w1thout and Wlth
'the need for 5eing.implemented by creating a tempcorary relation, respec;
#iyely. This is followed by a summary and the status Of,#?e Qroject.,xA_e
""eqheﬁe;sgtimizinq‘the qﬁefy expressienreyaluetion based‘oﬁ the extended |

" version of RADMs will be reported in the near future.. -

- 2. Hardware Architecture -
:'-,Fiéure'l showe.ﬁhe proposed 5ardwere architecture which is inteﬁded
~'. as an extention of functienel capabilities of existing RADMs, e.g., CASSM,
RAP, "REARES, DBC, ete. [2, 9,10,13]1, The architecture accepts a sequence
.-of relatlonal tuples or column values (in an encoded form) from the RADM in
whlch data are stored in 1ts memory - segments and the content and context .
searches are perfeimed in parallel by the logic associated with each segment.
(Here data are assumed to be encodedly stored in the RADM; this is so
+ agsumed because of the fact that some RADMs claimed it is advantageeus to
deal with data in encoded form [10,131.) The command and control processor
(CCP) receives the high-level data manipulation requests from the host com-
puter; it translates them into commands for the RADM and the extended hardware
(including the determipnation of the encoded values for each column value

in the requests), distributes commands to the RADM and the extended hard-

1S

i
-ware for execution, receives and_dedodés the data transferred out of-thérkADM‘ | éA If MB co
.or the extended hardware, and outputs the data to the host computer. . ; x =1+

The pr0posed hardware archltectura consists of five major components — | than ot
IP,lﬁB, RAM, S, and CP 4——_as‘illustrated in Figure 1 where . ' S (4)
(1) IP is an input processbr‘which,accaﬁts_a sequence of tuples or column with it.
:raiadsddﬁ}a cdded fqrmrfroﬁ rha_RADM and depqsits them in queue Q. The queue -tﬁe'rwb
Q acts as a buffer bétween the RADMand'théeXténdad hardware. There are two - Qiﬂarad
reglsters T and H .and . one flag FQ in Q VTﬁerT— and:H—registers are used--to. . :;;aa expli
hd}d the.locations df_rhe last and first entries of Q. The flag FQ is used to ~”'tﬁé cor
indicate whether the @ is full or not (whidh.is set 1f full). The‘satting of . as MCQ'
* the flag Fq'will_ndricethe RADM to.stop outputting tuples or column values o data ei
to, IP, _Tha 1P willfstart_its processiug whenever FQ is reset. _ . ‘,:fo% fur

{H, - (2) MB is’ a memory bank c0n51st1ng of a set of memory modules M(i). It : '_Euffer
-15 de51gned to hold the tuples of one of - che two.relat;ons berng 301nad. In ;'::7 ﬂc
Flgure.l °) meﬁory modules are shdwn,wh ré o{is}a deadga‘parameter . . | - :Q and

(3) The RAM consists of two 51ngle bit array stores rA and rB and an array : Addres
r of words. As shown dn Figure 1, RAM is defined as RAM [0:M, O:N]. The ra, - locate
rB, and r"éonéistiﬁé of r' and r" are defined as shown in the figure. The rA _ also s
'and-rB are addressed by encoded cdlumn values, Which,‘like those in CASSﬁ and : two re
CAFS, can hold immediate results of the ‘join operations. Each word in r is also : of reg
‘addressed by encoded column values. It can be used to store an encoded value, | are be
a counter,.or a pointer (to be detailed later). The r is vertically divided ,
into two arrays of words r' and r'" with r' = RAMIO:M, 2:x] and r" = RAM [0:M, . _ 3. d¢
x+ 1:N] if it is treated as an array of pointer words. They are both addressed ‘
by encoded values. The use of the r is explained in the join algorithms of .the ' We sh
next sections. ‘The value x is determined by the number of memory modules:-..i: the 1

iha

used, while the value N is determined by the x and the size of.eachggwﬁulﬁﬂj

a der

-,ff MB consists of p modules'ahd eachrmodule has qVWOrds,'then the'vaiues
X ;71 + rlogéﬁl and N = x + rlogzqﬁ, where FyT is the least,integer greater
_than-or equal to ¥. |
(4) S is a set of queue ‘servers S Ieachvof which has a queue Q,-associated
‘with it. The array.of queueas Q. is served to- ‘held the 1ncom1ng tuples of one of
~the-two-relations to-berjoined. Like the queue Q, associated with each queue
Q are two reolsters T and H and one flag F They serves the same functions
fas explalned in (1) 'Each server S. is de51gned to read data from its Q and
'”.the correspondlng module M(i). Thus, there are-as many servers-S.'s or Q,'
as ﬁCQ' sin the archltecture. A buffer is prov1ded for each S for holdlng the
. data elther belng output to the host computer or belnp stored back to. the RADM -
foor further processlng. The transfer of the data temporarlly stored in the
i buffer 1s.accomp115hed by an output mechanlsm.f |
(5) CP 1s a central processor which fetches tuples or.column values from
'-1Q and uses these data (or the extracted data from the tuples) as indexes to
address the rA or rB for settlng to 1 or O, or testing for belhg 1 or 0, or to
" locate the desired words in r for many purposes-to be detailed later. The CP
also serves to allocate storage space in MB for storing the tuples of ome of the
two relations being joined;' There are one T-register, one D-register, and a set
of registers BR(i), 1= i= p, for being used during storage allocation. They

are best explained when they are used.

3. 'Join Algorithms_Using the RAM .

This section shows how the store RAM perforﬁs the join operatiom.
We shall first consider the implementation of implicit joins and then consider
the implementation of explieit joins which can be implemented without creating

a derived relation from the original relations.

3.1,Queriee Involving the-Implicit Join of Relations
Implementing an implicit join by thebitatbres“rAandjjiiaBest explained
by means of an example.
Example 1.
_ Prlnt all the- green items sold by the DI department.

. To answer ‘this query, a simplified database w1th tables SALES and T¥PE are
-assumed in Figure 2r This query can be-implemented by various Ways. One way
-ia;tpiaﬁﬁ;ythe_eeiéétibnprocess'to.;he'table_SALES to select the items soid-by

the Dlndepartment. The selected items are then transferred to the table TYPE
_aaia‘eisjunctire condition to retrieve all the green items. The_procedure
using the single bitarray'stcre.#g to implementttﬁe'way just &eacribed is
-outiined below ;‘ | |

(l) Clear the 51ng1e bltarray'store TA.

(2) Scan the table SALES by RADM and output the items sold by the D1 devart—)

nent to the input processor ;P of the extended architecture. The-items fed to
ir are.tnen queued in Q,-unicn in turn are fetched and recorded im the sinale
bltarraystore rdA by central processor- CP.

(3) Scan the table TYPE by RADM and output all the green items and store
them in Q. Any item in Q is output to the host computer if the CP checks
that it has been recorded in rA, i.e., it is an item sold by the D1 department.

Here we assume that the reader is familiar with the data search performed
by the RADM. What is not made clear is the function of the single bit array
store rA; how the CP records the items in rA and how it determines which green
items are to be output to the host.

Recall that data are encodedly stored in the RADM. We believe that it is
feasible to encode the values of the columns to be joined in such a way that

they can be used as indexes to address the single bit array store. Each bit

posit:
this
or 0.

o
2, <G
patte

of ity

storet
- Simil:
. Befor

Of co

the @

herg.

the a

" in th
1lie b

_in th

same

logic
from

logic

position in the array can be made corresponding to-an encoded value. Using -
this'teChnioue, the addressed bit can be set to 1 or 0, or tested for.beingll
or 0. We give a real example'to illustrate this technique. |

" Assume that BOLT is encoded as 0, i.e., <BOLT> = 0, and <CAM> = 1 <C0G> =
2 <GEAR> = 3 <NUT> = 4 ‘and <SCREW> = S. At ‘the end of step (2), the blt
'pattern of rA will be (O 1 O 1 0,..., O);‘ This pattern would record the list
of items CAM and GEAR. TIn step (3), items <BOLT> and<GEAR> are selected and

xzistored 1n Q for examlnatlon. Slnce rA((BOLT>) = rA(O) 0, BOLT is dlscarded

;,=Slmllarly, rA(<GEAR>) = rA(3) = l <GEAR> is output to the host computer.

A Before <GEAR> is output, it is decoded by the encodlng and decodlng unit #n .CCPE.
of course, values bl and GREEN in the query have to be encoded by EDU before '

the query is executed. (We neglect the detalled encodlng and decoding’ processes

[

“v%\ h Thendiscussiou sbove assuues'that sll.tbe encoded ITEMtyaiues ere'urthin
Jéﬁé-a&dré;sisﬁaéé of rA; " If not, they are divided into buckets; the values
' inwtbehtirst bucketolie between 0 and Zt-—l; the values iu'the second bucket;
‘lie between 2? and 2t+1-1; and so forth, where tris thernumber ot bits required
,inmthe address.space. -Eech bucket is then evaluated b? repeatedly applying the
' same procedure being described. 7

The idea of using the single bit array store to remember or recall data is
the same as those used in CASSM and CAFS. CASSM uses a single bit array store
per cell (consisting a memory element and a processing logic) and one logicel
single bit array store, consisting of the concatenation of single bit array
stores of cells, addressable by each processing logic. To address a bit in the
logical array store requires passing the bit address (i;e. the encoded.value)

from one leogic to another. Moreover, only ome cell is allowed to address the

logical array store at one time. If two cells want to address the store simu-

taneously, one of the two cells must wait for the subsequent revolotion{ Thia

. means addltlonal memoxy revolutlons are. required in addre551ng the blt array store. |

' Our approach like CAFS uses a cemtral processor CP to set or test a smngle blt
:'array store, thereby ellmlnatlné memory addressing contentlon lBecause of the
B use of an RADM whlch acts as a fllter, less data than CAFS are fed to the CP
for aettlng or testlng ‘the’ blt array storea

}1{. Note that the 51ngle bit artay store rB 15 osed when the values selected
-ftom the seoond rélation are transferred to select'tuples in the third relation
that have.the same those values in their join'columns. The stores rA and rB

- are alternately osed-if a chaihlofrrelations are ihpoive& ih thehimplicit join
operation. | |

3. 2 Exp11c1t J01ns Wlthout Creatlng a Dexived Relatlon

We have mentloned 1n-Sectlon 1.3 that a certaln Lypeof exp11c1t jOlnS ‘can
ibe_as rapidly‘ exeouted as the 1mp11e1t join by means of ﬁAM i.e., w1thout
aotoally creating a temporary relation. We uses two examples to.allustrate=their
implementation in this section. “
" Example 2.
“Find the names of the employees who make more thahitheir{department;-
managera.ﬂ.fhe;quety is ditected‘at the table
EMPLOYEE (NAME , SALARY ,DEPT,MGR)
where the managers are also employees —— i.e., the values in the MGR column also
appear in the NAME column.
One way to answer.this query is to use the managers selected from the MGR
column to select EMPLOYEE tuples where NAME - ‘one of the selected managers.’
Then, join the pames and their salaries from the selected tuples with those

EMPLOYEE tuples that have the same those names in their MGR column. Finally,

scan the joined relation and output the employee names whose salaries are

) great:
expli
. array

. to se

- recor

and ¢

: the ¢

sala
then
then

<sal

and
stot

ves,

S
Jjois

nani

W

~ greater thah their managers. This method performs an implicit join followed an

store. | ' exp11c1t jOln and a selectlon operation. It is insufficient to use Single bit

it 4 . array stores to remember ‘the manager's names and their salarles for belng used

w

" to select those employee names who make more than their managers. Our approach
records the manager's names in the single bit array stoxe and uses their_hames

- as indexes to address the array r of words. The addressed words are then used’

FEfor storihg;their'eelardee;‘respecriveifr By doing so, each qualified emploﬁee's
m ;. 1'name:cao be autpﬁé hy ohelimodicdt jodn followed one explicit join. We outline
therprooedore;helooAi -

1' _ ; (1) Clear the single blt array stores TA.

(2) Scan the EMPLOYEE table by BRADM and output the entries in the MGR column
and store them in Q. The entries stored in Q are then fetched and used'to set
1 - l-ﬁ the 91ng1e b1t array store rA by Ce.
| (3) Scan the EMPLOYEE table agaln and output the employee names end thelr
1eir -l . salerles and stored them in Q ' The pelrs { <name> <salarv>) stored rn Q are
then fetched, one by one, to test if rA(<name>) is 1 or not. If rA(<name>)
then the‘<sa1ary> is stored in the corresponding word in ¥r. i.e., r (<name>) <«
ey <galary>. Otherwise, discard the pair.

(4) Scan the EMPLOYEE table again and output the employee names, salaries,
and oanagers and srore'éthem in Q. Each-triple (<name >, <salary >,<manager >)
1lso stored in Q are then fetched to test if r(<manager>) < <salary> or not. If
ves, output the mane >. Otherwise, discard the triple being held.

We notice that the encoded values in the SALARY column should have the
3 same order as they originally have. &his procedure combines one explicit

join -and one selection operation to a single process in which the managers’

names and their salaries are recorded in RAM and each inc0ming EMPLOYEE tuple

10

_is virtually concatenated to a proper entry in RAM so that-ithe qualified employee

_ mames can be determlned 1mmed1ately -This technique can alsc be used to perform .

' 1low the
the join of two relatlous,whlch needs to form new tuples from the two orlglnal f?,
' ‘ : ' ——o A and B w
relatlons, if the prlmary key {or candldate key) of ome of the two relatioms is -
' Bl being -

the JOln column. we give anexample to illustrate the 1mplementat10n of thlS

‘ first o

itype of join.) , _ _ : .

R - . - . - | one A aund

Exmaple 3.. _ %-* N : : o ‘ % one A

- o k ' . - o F via A =
J01n the tuples of the SALES table with those TYPE tuples hav1ng 1tems :

whlch prlce 1s greater than 4P and output the DEPT -ITEM, - and COLOR columns. é':f?e j?ln;

ThlS is a tvplcal exp11c1t jOln of two relatlons. It can be reallzed by the | ‘has to be

_follow1ng procedure : Assume that ITEM is a prlmary key of TYPE., Thus, ITEM .

- : o -} 4. Explic

‘1n table SALES 15 a forelgn key S

4.1.Ge
(1) Clear rA.

o : ' ' e A de
e (2) Scan: the TYPE table and output the 1tems and thelr color if their . -
. | tion may
: prlce is. greater then 4P and store them in Q Each palr C <1tem>,<color>) .o

o : ' : ’ : ' the stors
stored in Q is feteched and recored in RAM That 1s, rA(<1tem>) « 1 and r(<1tem>) .
‘ i : " into buck

« <color>. Iy .

RO ' a ST o - bucket ¢
(3) Scan the SALES table and output the SALES tuples to Q. Each tuple
. " relatiomn;
(<department> <1tem>) stored in Q is fetched to test if rA(<1tem>) 1 or not.
bucket ol
1f yes, read r(<1tem>) and concatenate it to the tuple belng held and output
"large"
the new tuple (<department>,<item>,<color>) to the host computer. Otherwise,
' ' encoded °
discard the tuple.(Note : if the resulting relation of the joinis to be used
and (2)
for further processing, then each new tuple is stored back to the RADM.)
the memo
T1f the columns of DEPT, ITEM, COLOR, and PRICE are involved in the join of
) parallel
the tables SALES and TYPE, thenm it can be carried out by the following two sub-
(1) parallel
joins : one is the joih of the tables SALES and TYPE (ITEM, COLOR) via
into sub
ITEM, denoting the resulting table as Rl = (DEPT, ITEM, COLOR), and the other
' (2) first bw
the join of the tables Rl and TYpE'“’. (IETM, PRICE) via ITEM. Each join can
l the seco
11

1 b A R s S

u

)

-one A and B(Z)(Bl B3) via Ai = Bl, ..., and the (n-1)st one A and B

follow the 51m113r urocedure belng descrlbed above.' in general, for two tables

' AAand B with A = (Al, A2:..., Am) with key Al and B = (Bl, B2, Bn) with key
7 Bl being ioined via Ai = Bl; it can be carrled cut by (nn-l) sub-qolns : the

fitst'"che is the {oin of the table A and B(l)(Bl,BZ) via Ai = Bl, the second

(o~ 1)(31 Bn)

: ’v1a"A1 = Bl. And- each join can be carried out by the above procedure. I

‘the join"cdlumh;is:net_e primary key‘of a cendidate key, then a derived relaticn

has to be actually Created in our aooroach_

4. Explicit Joins with the Need for Rctually Creating De;ived Relations

4.L.Gederai'Description

"_ A 301n whlch needs to be 1mplemented by actually creatlng a derlved rela-

. tlon may make the 1mplementat10n rather costly in time and storage. To reduce

the storage 'cost,-our design is to dlYlde ‘any "1arge relatlons belng joined

i iﬁtotbuckets, eccording td”their join column valuesin‘such a way that the flrst
. bucket of. the flrst relatlon is to jolnwlththe flrst bucket of the second

‘.relaticn;‘the second bucket of the flrst ‘relation is to join w1th the second

bucket of the second relation; and so forth. Two_relations being joined are
"large" if they satisfy ome of the following conditions : (1) The range of the
encoded values of the join column is over the size of the address space of RAM
and (2) The smaller one of the two relations being joined cannot be fitted in
the memory bank MB. The processing time is descreased by incrcasing the
parallelism of computing the concatenated tuples of the join of buckets. This
parallelism is achieved by further dividing the tuples of buckets being joined
into sub-bucket, -based on their join column values. The first sub-bucket of the
first bucket is then joined with the first sub-bucket of the second bucker;

the second sub-bucket of the first bucket is joined with the second sub-bucket

bf;the second bucket; and so forth. The join of the pairs of sub-buckets is
‘done in baféllel by the extended hardware. In_logicalneffect, it is.Carried
- put in our approach by producing the concatenated tuples of the join fFOm:

two "sorted" sub-buckets.

~ In our design, the division of the large relations Being joined into buckets

~is relegated to the RADM, similar to RARES[Q],,SO that less tuples are output
':£o,thé.exéendéﬁ.hafdﬁére;l,ﬁﬁe bairé ;f buqketé are thenvéent'to the gxtanaed.
,hérdwgre? one ﬁyfone, for cémbuting the jbin.,}k1é9mputing;tﬁg join of two . -
ﬁﬁckéts, the eﬁteﬁdeﬁlhar&waré uées:two single biflafray séores TA and.fB fo?
. filtering out the irrgleﬁanﬁ”tuples'qf the join singe'the join column values -
in one bucket may not appe%f in another. We wilL-sge thaﬁ;it is quthy-of
doing so, éspecially when §._‘large number of'irrelevant tuples are involved.
‘The:érréy r of wbrds;‘ekceﬁt helping wifh one‘éeftéinﬂtypeof explicit joiﬁs

dn{remémbéring-df~récaliiné~aaté”aé.déscribed_pgevibpsly, ganAalso,help with

' another typé'of_explicit.joins 6n dividing tuples of each bucket into sub-buckets. .}

For two bﬁckets being joined?‘the'sub—buckets of one bucket are first ééb:ed in
the meﬁory modules Mﬁ)of‘the mMemory bank,_dne pér‘module.‘uEéch incoming tﬁplé
of the second huckeg.is then stored in the corresponding queue Qi; that is, the
first queue Ql accepts only those incoming tuples whose join columns have the
same value-interval as those stored in M}l); the Q2 accepts only those incoming
tuples whose join columns have the same value-interval as those sto%ed in

M{2); and so forth. This arrange permits each queue sefver Si (1= i= p) to
produce the concatenated tuples of thejoiﬁifrom its queue Qi ?nd the M)logically
associated with it in parallel, without any memory addressing contention. What
is not made clear here is how each.Si can know which Fuples in M(i)
are concatenated to the tuple being fetche& from Qi' This can be seen from

the following algorithm.

13

|

i

and .

X. (1
. 1

kl.Yb'a

over

“dis t

and’

RB)'

ing
the
(in

inte

- to

add:
by
At

of
fol

the

MB £
and

nel

kets

cets, |

in

T

1e

ing

11y

and B with A = (Xl,X

4.2 Algorithm for Explicit Equi-Joins of Two Buckets
Let us denote the two buckets being joined as Ry and Ry of relations A

X) and B = (Y Y ,...,Yv),_respectiﬁely, where

227y 2
Xi(l,é i = u) and Yj(l ;_j = v) are_column names. Assume that columns Xa and
Yb'are_of the;same_underlying domain. Compute the join of buckets RA.and RB

over-(x ==¥b). 'The;resﬁltiﬂg table consists of the set of tuples tl where t

' is the concatenation of a tuple t' belong to RA and a tuple t" belong to RB

and’ Xa:= (x being the X —component of Ry and yb belng the ¥, -~component of
RB). The algorithm for the‘301n_1s outl;ned below : -
- (1) Initielization :-Clear QA rB, and r.
(2) Output X —coﬁponents of RA and Set the rA end increment the correspond—
ing counter words of : Clear Reglsters T and H and the flag FQ of Q; Scan
ﬁﬁe feletich'ﬁnby RADM andfcutpcththe sequence cf‘Xafcompopents xa_s OerA.
(in encoded form) to IP.;iThe IP accepts each component xa and ceposits it

into Q. The X s in Q are then fetched, one at a tlme, by CP and used as indicés

to address the - bits in rA'and the corresponding counter words in r. The

‘addressed bits of TA .are set and the corresponding counter words are incremented

. . -+
by one. For example, if x , 1s fetched, then rA(xai) 1, and r(xai) + r(xai)-+l.
At the end of step(2), the word r(xai) contains a value indicating the number -

of RA_tuples with the component Xai in their join columns. The discussions which

follow use <r(x)> to denote the contents or value of the word in r addressed by

the component X.

(3) Output Y, -components in R, set the rB, and allocate memory space in
b |

MB for RA : Clear registers T and H and the flag FQ of Q and BR({i),1£ i< p,’
and D « 1. “Scan the relation B by RADM and output the sequence of Yb—compo—
}

nents yﬁs of RB to IP.. The IP accepts each Yy and deposits it into Q. The

yb's in Q are then fetched by CP and used to test if the corresponding bits in

14

TA aed rE are set or mot.

allo
Cases.: (1) if rA(yb) =.O’ i.e;; the jb. does notrappeer in the join eolemn . the
. of RA’ then lgnore the ‘component yb | | | | Thei
.(iD if'rA(ybj) = 1 and rB(ybj):= 0, i.e., the ij is first.encouetered, i ”éf'e
o then rB(yB,) < 1 and allocate memory space in MB for storing RA'A "' pond
tuples with X L f;;: | o B o - set
- The settlng of rB(yb) w111 prevent the subsequent 1ncom1ng yb :bj ﬁrom “,CCQSE
.Q;.e—a;locatlng memory space An MB ferrthose RA tuples hav1ng X %'yﬁj!e - The S
w.memory allocetlon is done_as follows : (Inltlally, reglsters BR(k), ; = ﬁ; are .
'*cleered”end Dtrlr, i.e., each BR({k) p01nts to the starting address‘of 7 ~{hmodule
' and ‘D p01nts to the first memory module.) | q€- .
(a) T %« r(yb), i. e., the value of word r(yb) is sared in T—reclster, { ';: -
Whleh is a temporary reglster g'- .
‘A“(bjﬂr (Yb) D and r"(Yb Y « BR(<D>), where <D>, the contents of D- é-' E
'%sf;ijr 33:;ireglster; is used to -index omne of_BR(k), = k;é-p;" o E .
(Remember that r may be regarded es-con51st1ng of r' rand .).‘ .%”
: k R
'(c)‘ BR(<D>) < BR(<D>) + (T + 1) and D < (D + 1) module p; and if iD=0;D«p. “ .. Fro
The former :
JStatement denotes that the current module will be allocated follow- : .. wWor
ing the logical locatiom BR(<D>) + T + 1 if it is to be allocated “ Xa
again. We addrone extra logical word for each allocation (to be av
deécribed in next step.) The later ome indicates that the mnext is
allocation will be assigned to the module next to the current one.
The above three statements allocate a block of (T+1) logical words (each can pre
hold a tuple) in the module specified bj D-register (before updating) for H 1
storing RA tuplesrhaving the join column value equal to ij' For the case in 1=
which rA(ybj) = 1 and rB(ybj) = 1, this means that block allecation for RA ar
tuples with Xé = ybj has been done. | ' 4
(4) OQutput RA tuples ana store the relevant tuples of the join in the Ca
15

» are

1le

= .

T

allocated memory : Clearregisters T-and H and thé_flag_EQ‘bf Q. 'Sgaﬁ_
_'_the relation A by RADM and'dutpﬁt the sequence of'RA tuples and stored in Qf
The -tuples stored inm Q are then fetched by CP. 'The join column values xa's

.0of each fetched tuple are_extracted and used as indices to address the corres-

7" ponding bits in rB. 'The contents of each addressed bit are tested for being

set or not.
;5¢C§séé‘:it£)-if-r3(%éi)VF 0, i.e., #he RA'tuple being processea by CP is irrele-~
S : 37:_; yant:td'the'joip since tﬂe'jéin column vaiﬁg Xéi‘of the tuple does
----- lﬁg4”“f4{:fp¢t appea;_in tﬁe join'cdlﬁmhrbf R£, £heﬁ3igﬁ6re the fﬁple; L
S (i) if'rthai)'= 1, then - 7 | |
--C),if rA(xai)-é 1, -then rA(xai) <0 andAMB(<r(xai)§) = MB(<?'(Xai)>‘
- zr"(xéi)>) <1, where the part <r'(xéi}>'specifies-a particular
.memo:y module gnd_<rﬁ(xai)? specifieé a pa;ticplar logical word
i 5ﬁ*¢'riﬁ thé module_speCified. | o |
i-C)-T +-r(iai)'+ MB(<r(xai)>) a@d MB(<T>);+-t£e tuple being ﬁeld by_
L CP,ané_MB(<r€xai)>j +:M3(<I(Xai)>) + 1;. : |
:.From (iﬂ;‘wé.know thét.each logical ﬁord in MB pointed by .the contents of the
word r(xéi) is a word contaiﬁing-a value, indicating the number of RA tuples with
Xa =X . that have been stored. At the end of this step, the word will contéin
a value omne larger than the number of RA.tuples with Xa =X ;- This information
is important to each server Si where new tuples are formed.
(5) Output RB tuples, deposit the relevant RB tuples of the join into the
proper queues Qi’ and produce the concatenated tuples of the join : Clear T and

H registers and the flag F_ of Q, and Ti and Hi registers and the Fi flag for

Q

1 i = p. Scan the RB tuples by RADM and output them to Q. The tuples in Q

HA

are fetched and their join column values yb's are extracted by CP. The extracted
yb's are used to test if the corresponding bits in rB are set o not.
Cases : (i) if rE(Ybi) = 0, i.e., the tuple being held is irrelevant to the join,

ignore the tuple.

16

i 4if rB(ybj) = 1, then fetch the r(ybj) consisting of two fields r'(ybj)

and r"(ybj), and deposit the concatenated RB'tuple,'consisting of

r"(ybj) and the,RB tuple being held, into the queue specified by the

word rﬁ(yﬁj). The r"(ybj) holds an address pointing to the starting

A

- addreés'ofLa block of R, tuples to which the RB tupleﬁili belcéncatehgté
. Each server Si will start its joiwof tuples from the Qi and the corresponding

mbdulg'M(i).Oncé Qi is not empty (i.e., the contents of registers Hi"and Ti in‘Qi

are not equal), After the join of two buckets is cdmpleted,'the join of next

:;“bﬁcketfpéir'folloﬁsfandrso fprth,_unti}'ail the'bucket;pairs have been processed.

Lo

. Légi;allj,iwe;é§n say tﬁat each Si produces tberc0ncatenated tuples df'thé join
from two "sortéd" such-buckets. The concatenated tuples df_the jéin in each
Euffef will be éithér outgﬁt‘to fhe;hoét or étéréd back to the RAﬁM for further
'proceééiné.i: o |

- Sotfar; oﬁlf'é single. join coiumn is involvéd inrthe_join operation. -For
joins of felafiéné:Sn”mdlpiplercoiumns,lthe addressing bits or words of RAM
usiﬁé siﬁglé encdded-vaiues has to_ﬁe modifiéd. One wayiis to associaté.the |
multiplé-join column.;ﬁlués-ﬁitﬁ'a ﬁre—cﬁmpiled index, as sﬁggeéted by.ﬁ. Babb

{11, whenever such a join is conceﬁned;rrAnother way is to dynamically encode

the multiple join column-values with a unique value, -

443 An T1lustration Example

This section shows how the above algorithm works by means of an example.
Consider the same database as given in Figure2. As an example, we consider the
equi-join of table SALES on column ITEM with table TYPE on column ITEM, although
this join can be computed without creating a derived relation. We will follow
the steps of the above algorithm to illustrate how this joinris computed.

Step 1. Clear RAM, i.e., A, rB, and .

Step 2. Clear registers T and H and the flag FQ of Q. Assume that the

17

sequenc:
| <CAM>,<
" These ¢

ponding

- will be
r will
with I1
" two SAI

-5~;$te

. As é.j-;me
<CAM>,

. the TA

' Since.

©set ;ﬁ
<chi>.

. allocs

The

valu

i

the.
ting
Ecateh_aeeﬁ
mding

.. Q

sed.’

in

sequence of ITEM—components of table SALES that are 1nput to Q are <CAM> <GEAR>

'_<CAM> <NUT> <CAM>, and <NUT>, ‘as they appear in the SALES table of Flgure 2,

These components will be used as 1ndexes to set the TA and update the cOrres—

ponding counter words of T. At the end of thls ‘step, the bit pattern of rA

- will bé'(o 1,0,1,1, ... O) and their correspondlng values of the array of words

r Wlll be (O 3,0,1,2, 0 T.,O)(Flgure 3(a))-—— i, e., there are three SALES tuples

Wlth ITEM—component = <CAM> ohe SALES tuple_w1th ITEM—component = <GEAR>, and

'two SALES tuples Wlth ITEM-c omponent f.”<NUT> .-l-

Step 3 Clear T H, and F “in Q, and BR(1), 1= i= p, and set D to 1.

Q

"Aesume that the sequence of ITEM—components of table TYPE 1nput to Q ds- <BOLT>
| <CAM> <COG> <GEAR> <NUT>, and <SCREW>. These valees are used as indexes to test
~ the TA bits for, belng 1 or. 0. .Since rA(<BQLT>) =7rA§0) =;0?-igaore'the <BdLT>.
| /iS;nce<rA(§CAM>) =vrA(1) 1 and rB(<CAM>) = fBél)'=‘0 (initiallygprB is_e;éa;ea),

- set rB{l) =1 and alloeate memOry“SéaeeihuMBior-those_SALESftupleé'With ITEM =

‘<CAM2— Slnce r(<CAM>) ;‘r(1)7§'3;'thus;'4 logical ‘words must be allocated. The

'-.[aallocatlon w1ll do "the follow1ng

(a) Save the contents of word r(<CAM>), now belng 3, 15 T.

(b) Store'the contents Qf D-register, now being 1, in r'(<CAM>) and the
gontents of BR(D) =-BR{1), now -being 0, in r"(<CAM>). The word

" r(<CAM>) = r(l) now is a pointer word pointing to the starting
=address of Ehe first module. (In fact, the setting of rB bits can
be used to distinguish pointer words from counter words.)

(¢) (i} Increment BR(D) = BR{1) by 4 (= T+ 1) so that if there is any
memory allocation assigned to the first module, it will be allocated
starting from the fifth: logical woxd (i.e. logical address 4).

(i) Increment the D-register by 1, ineicating that next allocation,
if any, will be assigned‘to-the module next to the current one.
The third incoming value is <COG>. Since TA(<COG>) = rA(2) = 0, ignore the

value. The same procedure is repeatedly applied to other values. At the end

i8

[e i s o bt it

;; éPBit array store rB and will be (0,1,0,1,1,0,...,0) and (O, _pqintgﬁ
wLRE- DLE .) S
.,0) (Figure 3(]3)), where r(l) = 1:0 = f'(l) . r"(l)(i‘-el-, “,tu};)lé‘ ie
. boooatenation) and the contents of all registers in CP are shown in Figorel3(b); : ‘tuo;es ¢
;";;;p 4. C;ear ;A.and registers Teand H‘ano the flag FQ'of Q. Assume that ' % M(;);ng
the seéuence of SALES tuples input to Q is the same as that of SALES‘tup;es) ' .i 5. éummz
appeariné in Fiﬂure 2' . Any tuples with'tﬁ(x)f 1 (% being the ITEMrcompouent of : } © We
- SALES) w1ll be stored in’ the 1001cal locatlon in MB pointed by r(x). The first = é(:;:liéédihé
1ncom1ng tuple with rB(<CAM>) = 1 is stored 1n the 1og1cal location 1 of the. ;[_:resﬁltgl
tirst mooule ﬁ(lj (After thls,:the loglcal locatlon 0 of M(1l) has the value 2 ?f.?ééﬁéiiec
which is 1n1t1ally set o 1 and 1ncremented by 1 when a tuple is stored) The- - implict
second 1ncom1ng tuple with rB(<GEAR>) = l_ls stored in the logical location 1 vis:e-pr:
of Mﬁ2);:tﬁe‘third’incoming tuple-‘with'rB(<CAM>) 1 is stored in the loglcal : \aréféon;
locatlon 2 of M(i), and so forth, untll the sixth incoming tuple which is stored '_ modules
- .in the~loglcal locatlon'Z'of M(3). At the end of this.step, the logical location - 24 :éetaile
0 of M(i); H(Z), and M(3) haﬁe the values 4, 2,land 3, respectively. Figure 3(c) 7 ﬁé@or§}
shows the contents of RAM and the first three modules M(l) M(2), -M(3). | capebil
Step 5. Assume that the sequence of TYPE tuples 1nput ‘to Q is the same as proﬁeme
that of TYPE tuples appearlng in Figure 2. -Any'tuples with rB(y) = 0 (y being the ~-dominat
ITEM-component of TYPE) are ignorant. Those tuples with rB(y) = 1 will be " to curr
dispatched into the queues Qi(lsé i'= p) determined by r'(y). They are conca- cable w
tenated to the contents of r'(y) before dispatching into the proper queues. The) We
first incoming tuple is ignored since rB(<BOLT>) = rB(0) = 0; the second one accurac
concatenated to the contents of r'"(CAM) = r"(1) = 0 is dispatched into the number
first queue Ql since r' (<CAM>) =1r*'(1) = 1l; the third tuple is ignored; the tics, a
fourth one concatenated to the contents of r'(<GEAR>) = r"(3) = 0 is dispatched) bottlen
into Q2 since r'(<GEAR>} = r'(3) = 2; the fifth one concatenated to the contents tecture
of r"(<NUT>) = £"(4) = 0 is dispatched into Q3 since T'(<NUT>) = r(4) = 3:; the limited
sixth tuple will be ignored. Since each tuple dispatched is associated with a RADM is
13

e

»E

the

ae

ts

'p01nter p01nt1ng to. the beglnnlng of a block of tuples to whlch the dlspatched
tuple is concatenated each server S thus can produce the " concatenated e

.tuples of the join from each TYPE tuple in Q and the block of SALES ruples

:1lzed hardware archltecture. The archltecture has an RAM store for 1ntermed1ate
'Vresults, whlch can be addressed elther by encoded jOln column values or by pre—'

Ahoomplled (or —a351gned) 1ndexes._ The algorlthms of .using the RAM to perform

is-a prlmary key or.a candldate key in one relatlon (1 e, a forelgn key in another},
‘ ,are con51dered.' The algorlthm of u51ng the ‘RAM, plus a memory bank con51st1ng of

'modules and an. array of queue servers, to perform tbe other explicit]Olns is then

RREh S

B

M(l), w1thout memory addresslng contentlon problem..

5. Summary and Status of the Project

We haVe shown how_relational'join oPerations could be performed byua”

1mpllc1t]Oln operatlons, as well as those” expllc1t]01ns in whlch the’ jOln column

detailed._ It is de31gned to allow each queue servex to oneratecn1oneandonly one
memoryvmodule,'without,memory confllcts.- The'archltecture extends fnnctlonal T -

capahllltles of ex1st1ng RADMs and thereby, glves a 51gn1f1cant performance im-

provement over: ex1st1ng join algorlthms used in RADMs, especially when a]Oln-

“dominating database appllcatlon.ls concerned. We belleve this extentlon is adapted

" to current VLSI technology and has the important characteristics of being appli-

cable with little or without modification to currently proposed RADMs' hardware.
We haoe developed a hardware simulator which is now being used to verify the
aCCuracy of algorithms, study the design parameters, such as the length of @, the
number of queues Qi’ etc., as the functions of contents, features or characteris-
tics, and the size of relations, and explore the architecture perofrmance and its
bottleneck. We have also designed the projection algorithms using the same archi-
tecture with a little bit modification, which are not reported because of the
limited space. A scheme optimizing query expressions executing on the resulting

RADM is being investigated and will be reported in the future.

20

6. References

(1]
e

{31

e

(5

18]
el

- [101

(11l

[12]

[13]

[14]

[151]

[16]

Bobb, E., "Implementing a Relatlonal Database by Means of Spec1allzed Hard-
Ware," ACM TODS, Vol.4, 1, March 1979, pp.l1-29.

Banerjee, J., and Hsiao, D. K., "DBC -— A Database Computer for Very Large
Databases," IEEE Trans. on Computers, Vol. ¢-28, 3, 1979.

Chang, H., "On Bubble Memories and Relatlonal Data Base," Proc. 4th Int'l

) _ Conf. on VLDB, West Berlin, 1978, pp.207-229.
(4]

s

Chen, T. C., Lum, V. W., and Tung, C., "The Rebound Sorter : An Efficient
Sort Engine for Large‘Flles, Proc. 4th Int'l Conf. on VLDB West Berlln,

1978, pp. 312-315.

Edelberg, M., and Schlssler L. Ra., “Intelllgent Memory," Proc. 1976 NCC,
Vol.45, AFIPS'Press, Montuale, N. J., pp.691-701.

Hong, Y.:C., and Su, -S.. Y. W. "Assoc1at1ve Hardware and Software Technlques
for Integrlty Control," ACM. TODQ, V61.6, 3, Sest.. 1981, pp.416-440.

Hong, Y. C., and Su, S. Y, W., "A Mechanlsm for Database Protection in
Cellular-Logic Devices," Paper under review for the IEEE Trans. on Software
Engineering.

MeGregor, D. R., Thomson, R. G.,-and Dawson, W. N., “ngh Performance for

. Database Systems," Systems for Large Databases, North-Helland Publlshlng Co.,

1976, op. 103—116

Lin, C. S., Smlth D. C P., and Smlth J M., "The Design of a Rotatlng
"Associative Memory for Relational Database Appllcatlons," ACM TODS, Vol.l,
1, March 1976, pp.53-65.

Ozkarahan, E. A., Schuster, 8. A., and Smith, K. C., "RAP — an Associative 7
Processor for Database Management,” Proc. 1975 NCC,7V01.44, AFIPS Press,
Montvale, N. J., pp.379-387. o

Smith, D. C. P.,.and Smith, J. M.,‘"Relatlonal Database Machlnes," IEEE .
Computers,Vol.1l2, 3, March 1979, pp.28-37.

Su, S. Y. W., "On Logic~Per-Track Devices : Concepts and Applications," IEEE
Computers, Vol.l2, 3, March 1979, pp.ll- 25

S5u, S. Y. W.,. and Llpovskl, G. J., "CASSM: A Cellular System for Very Large
Databases,”" Proc. Int'l Conf. on VLDB, Sept. 1975, pp.456-472.

Su, S. Y. W., Nguyen, L. H., Eman, A., and Lipovski, G. J., "The Architectural
Features and Implementation Techniques of the Multicell CASSM," IEEE Trans. on

b b i fam (b T o A P e e

Sa 4 e

Computers, Vol. C-26, 6, June 1979, pp.430-445.

Tanaka, Y., Nozaka, Y., and Masuyama, A., "Pipeline Searching and Sorting
Modules as Components of a Data Flow Database Computer,' Proceedings of IFIP
Congress 80, pp.427-432.

Todd, Stephen, ''Hardware Design for High Level Databases,'” IBM United Kingdom
Scientific Center, Peterlee, TN 49.

21

e
—

2IN7093TYSIY oxempaed T =2anbtd

& ovuﬂmﬂw@"no ueyl I93e9ib Hm@mucﬂ
ases oya sT [Al--exsum ‘b sT sTnpow yoed
uTl SpAoM JO Jequnu SUY3 pur d sT ssTnpou

-] -
WS TURYDDN [N:Z'W:QIH¥T » X

[T'TWIQINYE 5 €3

— ' speq poto3s.

and3ang a0 3SOH O e Jo asqunu 3yl IT —ww00ﬁ +%X = N pue
. . . ’ M1 ¥X
mmmoh + T = X 2I9Uyn [NET+X'W:0IWYE =+ . % [0:07W:OIWRL
_ bu® [XIRIOIWVE o X PUR LT - T = X [N:OW: O » W
ag Y% |4
mm Q@ N i Foandwo) 3SOH
_ @ I0SS900ad HoIL 3 OF
tooe i d)¥d I - = I
\ . : L o1 T ToX3UeD
. . . " Y oa S H- Wa¥d 3 pUBUIIOD AHV
i : a snand O M — doo ‘
] e Z P (z)¥d| zoss20014 - o
3IIN ,
Whmm afl 5 Ca QN 1wl [2ERU0. 10883201d // -
R ' , T L dD n_._pnw.ﬂH dl *239 n.mm._uﬂﬂu.
Ty 11 pr—nd _ J ‘SOnNTBA PYPOOUS
[—Ja=a1In — ,
Fndg — g T [N . jo sousnbas y
. N : ‘
Y —— N L
(T)W sTnpow
{Z)W sTOpow) 1T
T T Ao uTod 9
' ...“. L roatnoo Vv
. \4DHM> m
: — 3
(d) W eTnpou 1
: = 0
Nueq Arxowsw dW - wI X EX Y
.,“_,, I . '
, . _ WY
e iiﬁhﬁiﬂgﬁu\lﬁ(ﬂc, A.f.—?..;.z”...aﬁ.a{..fi....:........"f... povy .A...,.....y‘.‘[[Exn))
o : © & g
I . | U .
o w 3 & 3 2 2 = e m - H 3

TYPE

SALES
: DEPT ITEM ITEM COLOR PRICE
<p1> <CAM> <BOLT> <GREEN> <5p>
<DL> <GEAR> . o ,
DL> AR> .. <CAM> <RED> <2p>
<D5> <CAM> <COG> . <RED> <4p>
<D5> <NUT> <GEAR> <GREEN> <4p>
=0 .| <p8> " <CAM> <NUT> <BLACK>. | <8p>
- : _ . -
<D10> <NUTS SCREW> | <YELLOW> | <7p>
= " Figure 2. A simplified database with two tables SALES
and TYPE linked by ITEM. :
hin
RAL RAM .. e
4rA rB ¥ rA rB r' r"
o[0 o plo] o 0 cP - BR{L)|4
1 3 1 /ti] 1 0 . D :
2 o 0 2 0 {OF O 0 o BR(2)] 2
3 1 1 N (N I 2 0 L
1B : 2 FTs 5 Y
510 0 5 D lol O 0 T . BR(4)|0
M-10T 0 -1 h ol o 5 - BR(p)| O
 Figure 3(a) Figure. 3 (b)
of logical words in_the block .
MB Vi
T
A rB o o M(1) / MA _ nim N
ofofo[o 0 0 a¥ % N2 g “3
1lo 11 1 0 v 9 o
2010 0 0 g /1 |(<pl>,<cam>) A (<D1>,<GEAR>) \|(<D5>,<NUT>)
3plL 2 0 @ Y2 l<ps>,<cam>) <D1G>,<NUT>
aplil 3 0 L ’ B : s - <NU
510 {0l 0 0 3 |(<p8>, <cam>) .
“M-1 [0 [0 O 0
Figure 3(c)
23

