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Abstract

A new characterization of the soft decision decoding is
fofmulated. By this characterization it is found that the
algebraic structure and the combinatorial structure of a
linear block code as well as the received channel measurement
information all may be utilized to reduce the decoding complexity.
Besides, a new upper bound on the minimum distance of linear

binary code is also found.




xity.

I. Introduction

Decoding linear block codes by using chaﬁnel measurement
information (i.e., soft decision decoding)} is known having
better performance than hard decision decoding [i]. But it
aiso poses a question — Is it possible to utilize the A
algebraic structure of linear block codes into the design of
a soft decision decoding scheme ? Obviously, the old
correlation decoding which works in the code domain does not
answer this question at all. Yet some researches did show
that it is possible to utilize the code property of being
linear to transform fhefdeCOding problem into the dual code
domain [2] -[ }. The decoding methods thus obtained have
complexities proportional to the total number of dual code
words. Some researches have shown that theré are other
structures in the code‘5pace which may be utilized to reduce
the . decoding complexity from correlation decbding, meanwhile -
still maintain opfimal pérformance'[4] —[S]. Theré are other
researches which showed that_ﬁor'thdse’lineaf codes having
specific combina%oral'éesign;‘such as orthogonalizable codes,
much simplel'sof%=de¢ision decoding methods with suboptimum
performance are found [61—[8]. All these pointed out the

possibility of employing the algebraic structure of linear

codes effectively in designing a soft decision decoding scheme.

However, with their diverse treatment about . the decoding

‘problem, those mentioned hardly provide'us an integral view

about the many faces encountered in our decoding attempt.

There is another question concerned in soft decision

decoding — Does the channel measurement information itself



play some role in our attempt ro reduce the decoding complexity ?
This question never occurs in hard decision decoding. But

" with channel measurement information which is composed of
variant values, we intuitively suspect that two channél
measurement information digits of different values would have
different reliabilities in deciding their corresponding code
word digits, respectively. But how do we formulize 1t ?

And when can we say that a channel measurement information
digit is reliable enough to solely decide its corresponding

code word digit 7

This paper presents an attempted effort in characterizing
the essence of decoding problem. It shows that the decoding
problem is generally a nonlinear programming problem. However,
it is also seen in this characterization that the algebraic
structure of a code, the combinatorial structure of that code,
together with the received channel measurement information all
play vivid interactive roles. Henceforth this characterization
is eligible to provide insight about how to reduce the decoding
complexity. Furthe;, more algebraic structure of linear
codes are revealedhby taking this approach. Therefore endows
‘us another direction ‘to comprehend error-correcting codes.

In Section II of this paper new algebraic proterties
concerning code word digit positions are discussed. This
discussion further leads to an upper bound on the minimum
Hamming distance of linear binary block codes. In Section II

a new characterization of the decoding problem is derived..

Based on this characterization, Section IV first provides




condition under which a received channel measurement information
digit solely decides its corresponding desired code word

digit. Then, method of how to utilize this condition to

reduce overall decoding complexity is given. Finally, a

maximum likelihood decoding scheme is formulated to end

Section IV. A detailed example on (17,8) code to illustrate

the decoding algorithm is shown in Section V.

Section VI demonstrates that special combinatorial design
may still lead to simpler soft decision decoding method, just
like majority?logic_decoding in hard decision case, Though the
performance is suboptimum. At last, a conclusion is contained

in Section VII.



T . New Algebraic Properties

Consider an (n,k) linear binary code C over {0,1}" and
its dual (n,n-k) code C'. Let Cy2C 0 --+sCy be k linearly
independent code words -in C over GF(2), then a lemma follows, é
Lemma 1 : 'g' = (ci,c;,...,c;)e {0,11™ is a code word in C'

if and only if

O
n

0 mod 2 (1)

for j = 1,2,...,k.

Let z, and z, be two nonzero n-tuples in {0,1}". If
z,*z, =1z, then we say z; is prpjected by z, 0T Z, covers
z.,. Consider a set Iy of t distinct positions, I, = {il’iz’

iy} , with 1cip < n for all £ =1,2,...,t. Let u, =
(Ug,Ugp,.vestde {0,1}" be the incidence vector of I such
that u; = 1 if and only if i_e Ies l=is<n. Now we give a
definition.

Definition 1 : The t positions in I, are linearly independent

in code C' if and ogly if 4, is not projected by any nonzero
code word ce C.

Let d be the miniﬁum Hamming distance of C and d' the
minimum Hamming distance of C', respectively. Then d and
d! are also the minimum weight of C and C', respectively.
Because of any u, being projected By a nonzero ce C will have

Hamming weight greater than or equal to d, we have the

following Theoremn.




Theorem 1. For any t<d distinct positions ij,iz,...,i,
with 1<ip<n for £ =1,2,...,t, these t positions are
always linearly independent in C'.

When t positions are linearly independent in C', it
also reveals on the dual code word patterns. This is stated
in the next theorem.
"Theorem 2. If t distinct positions are linearly independent in
C', then the 22"% code words in C' will present_allipoSSible 2t
binary patterns on these t positions.
(Proof) By the definition of t positions being linearly
independent in C', it is easily‘seen that‘the corresponding
t columns of a generator matrix H of C' are linearly independent
. over GF(2). So the theorem follows.

_ ‘Q.E.D.

Since there are at most 277K different patterns shown
by all 2°7% dual code words in C' on any t=zn-k distinct
positions, 'we have next ;orollary. |

Corollary 1. Any set of n-k+1 or more positions are linearly

P

dependent in Ci;

By.Theorem-Z it is easily seen that for t< n-k, given any
binary pattefn of’t zeros and ones and given a set of t
positions which are linearly independent in C',‘we can always
find at least -one. dual code word c' which has the same pdtterm
_of zeros and ones on those t positions, But when t = n-k,

there is one and only one such word exists. The n-k linearly

positions form an information set of C'[ 9] . The k positions

left form a redundant set of C'. However, the following




theorem relates the respective information sets in C and C'.

Theorem 3. If iq,i,,. these n-k positions form an

NP
information set in C', then the k positions left form an
information set in C.
(Proof) Since i,i,,...,i _, form an information set in C',
by Theorem 2 we can find n-k dual.code words such that the
(n-k) xn matrix H formed by these n-k words shows an identity
matrix on columns i;,i,,...,i,_,. From H we can find a
generator matrix G of dimensions k xn for code C and G shows
an identity matrix on the k positions left. So the theorem
follows.

Q.E.D.

For the dual code word c¢' which is specified by a
binary pattern assigned on a given information set in C',
the values of the k redundant digits in c¢' can be uniquely
decided by substituting the n-k known information digits into
the k equations in (1) and solve them.  The complete c' is
hereby constructed.

Given any set ‘of n:K positions, how can we quickly find
out whether they fbrm an information set in C' ¢ Obviously
it is not pratical td check whether the incidence vector of
this n-k positions is projected by any nonzero code word in
C or not. One easy way is to assign a nonzero binary pattern on
these n-k positions and substitute them into (1). If the k
unknowns are then uniquely solved, we know the n-k given
positions form an information set in C'; otherwise, when a

contradiction occurs or, there are more than one set of




solutions, it is concluded that they do neot form an information
set in C'. An example at this point would be adequate.
Example. Consider the (7,4) Hamming code C and its (7,3)

dual code C'. In C we find four 1ihearly independent code

" words

c, =@ 0 1 1 0 0 0)
c,=( 1.1 01 0 0
c,= @ 1 0 0 0 1 0)
c,=(0 1 1 0 0 0 1)

-~

1 ¥ t

and by Lemma 1 a binary vector c'’

= c! cl.ct.c!
(c15€55C35C 50 5C0,C0)
is a dual code word in C' if and omnly if
et e 1 =
c, ¢} ® ¢, 0.
t 1 1 1 = 0
€1 ®C @53 ©C4
ci ® c; @ cé = 0 (2}
T b i 1 —
Cz’@ c:}’@ c -0

Now to find out whether positions 1,2,4 form an information

set in C', we arbitrarily assign Ci =1, c; =1, c; =0.

Substitute them into (2) we have an unique solution cé =1,
cé =1, cé = 0, and c; = 0. So positions 1,2,4 form an
information set in C'.

As for another set of positions 1,2,6, we assign ci =1,

ci =1, and ¢! = 0 and substitute them into (2) results



Cé(} c! = 1
cé:a c! = 0

0 = 0
C.@® c; = 1

So we have two sets of solution for (cé,c&,c%,c;), this leads
fo the conclusion that positions 1,2,6 are not linearly
independent in C'. 'Further check finds that the incidence
vector of these three positioné is projected by code word

(1L 1 o6 0 0 1 O) in C. Morever, ;f we assignea'ci =1,
¢é = ( and cé = 0 we wduld see the third equation in (2)

" resulted 1 = 0, and thus a contradiction.

When a given set of n-k positions are not linearly
indépéndent in C', by Theorem 1 we can always extract at
least d-1 linearly independent positions from them. Basing
on these d-1 positions, we can gradually expand the set of
linearly independent positioﬂs by adding other positions to
it one at a time, then test whether thié newly added position
will cause linear deéendehéy with fhe existed positions.' The
next theorem puts an upper bound on how many positions we have
to check to find a set of n-k linearly independent positions
in d';

Theorem 4. In ény set of n-(d' - 1) positions we can find a
set of n-k linearly independent positions in C’.
(Proof) we prove this by contradiction argument. Suppose we

could not find an information set, subsequently we could not

find 2®7* different patterns on these n - (d' - 1) positioms




intersection of I; and I

in all 227X dual code words. Took two nonzero dual code
words which had the same pattern on these n - (d' - lj
positions, their binary sum would result either an-all-zero
word or a nonzero dual céde word with weight at most d' - 1.
Thus constitutes an contradiction.
Q.E.D.

The discussion of n-k positions to form an information
set in C' also sheds insight about the minimum distance of C.
Basea on this observation we have next theorem which provides

an upper bound on d.

Theorem 5. For linear binary codes with kx 2, igo(rd/ZiT- 1)
<n -k, where.m = min(k-1, logod] ). |

(Proof) Let I; and I, be two different sets of d positions in
C' with their incidence vectors u; and u, being two different
code words of weight d in C, respectively. Then I, and I,
have at.- most Ld/Zj components in common. Denote Ilé the

o and U12 the union of'I1 and 12.

Then |U12] , the cardinal number of U is at least d + [d/21

122
and [I,.| < [d/2]. The positions in U, are not linearly

independent in C', because the incidence vector of Uy, is

projected by El,’g and u. ® u_. However, if we take two

27’ -1 2

iti i i i i i U - I
positions i and 1, out of U12 with i, € 112 and i,e U,

then all the positions in U12 - {il’iz} are lineariy independent

12’

in C', so we have (d-1) + ([d/21 - 1)< n - k. If k= 3 and we
take three different sets of dor more positions in €' with their
incidence vectors are linearly independent code words in C
respectively, then we will obtain (d-1) + ([d/271 - 1) +

(frd/47 - 1)< n-k by same reasoning. Since there are at most



10

k linearly independent code words in C and rd/zt1 - 1 =0
for i » F10g2d1, the theorem thus follows.
Q.E.D.

To illustrate Theorem 5, numerical examples of its
application are presented in Table 1. For comparison, the
results of Elias bound [10] are also listed. It is seen

that Theorem 5 provides a tighter bound in most cases.




Table 1 . Upper bounds on minimum distance 4 .

n X d, d,
7 3 4 5

15 . 6 - 6 9

17 8 6 9

21 11 7 . 10
23 12 8 o

23 11 8 9

31 16 | 9 10
31 15 10 13
35 19 10 10
35 16 12 14
41 21 12 12
a1 . " 20 12 15
47 24 14 20
47 . 23 14 14
51 26 15 16
51 - 25 16 18
63 32 17 20

d; upper bound by Theorem 5

d by Elias bound



Ti{. Characterizing the Decoding Problem 12

'

Let the transmitted version of a code word ¢ = (cl,cz,..
cn)e C be c* = (ci,c*,..i,cﬁ)e C* , where c? = (-1)%i, Thus
C* is over {+1,-1}" and the group {C,®} is isomorphic to {C*,x},
where @ denotes modulo 2 addition and x denotes component-by-
component multiplication.

Assume without loss of generality that the n-k positions

k+1,k+2,...,n are information positions in C'. In other words,

we can find n-k dual code words c! c',...,gé to form a parity-

=17=2 -k
check matrix H of the following form
f o \ P ct c! c! il \
-1 11 12 Tt Tik :
T 1 1 1 |
£2 o Car S22 ot S 1
H = = l
!
i
. 1
- 1
1 t 1 :
¢ S S S E “(n-k)k ! 1)
1
= \/pgl 1 |
[ n-k l
5 -

By this parity-check matrix the relationship between C*

and C' is stated in the next lemma.

Lemma 2 For any c* = (ci,q?,...,ci,ci+l ,...,Cﬁ)e C*
h eIt L ®
ck o= p (e¥ ", 3 =1,2,...,n-k.
k+] i=1 i

Further, we can write from H a generator matrix G of C which
is composed of k linearly independent code words C;,Cy55.-45C,

in C,
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-

B |
! v '
©1 b1 S vt Sl
|
H ¥
<, o 1 0... 0 E G2 S22 € ln-k)2
G = = |
. I (4)
|
|
1
k Sy J 0 0 0. 1 :.clk Cop =o+ %;—k)k J

Obviously, the first k positions are information positions in C.
Now consider a code word c* being sent through a time-
discrete memoryless channel with all the code words of C* are

equiprobable. The received word r = (rl,rz,...,rn) is the real

sum of c* and an error vector e (el,ez,,..,en) with e, € R.
A maximum likelihood decoder will find a code word ¢ which
maximzes the probability of c* given r, Pr(gf| r). Define the

bit log likelihood ratio o f T, to be

P (r, | 1)
¢i= Zn r 2 , 1 =1,2,...,n.
Pr(ri|—l)
Then ¢ = (¢l,¢2 ,...,¢n) is the channel measurement information

vector of r. According to [ 4 , Theorem 57, g; maximized -Pr(5?| T)
if and only if c* is the nearest code word to ¢. Or, in other

words, c¥ maximized'Pr(g*I ) if and only if E; maximizes

¢+ c* = dyef v dych o+ L+ gk (5)

for all c* e C¥*,
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Equation (5) does not take the structure of linear codes

directly into consideration. However, by substituting (3) into

(5) we have

k n-k k cii
iy b A j=1 Koo 7
= A(ck,c%,...,c¥) (6) ;
. \
which is an function of k information digits c#*,c* .c¥ in C¥*.

177277k
So the decoding problem is now transformed to find a k-tuple

* * ® = 1 Tm 1 3
(cml,cmz,...,cmk) gmwhlch maximizes (6) under the restrictions
that (c*.)2 =1 for 1 = 1,2,...,k. The desired c* is then

mi -—m
decided by substituting the k-tuple X into (3} and solving for

® *

Cm(k+l) secer Con

Maximizing (6) under the restrictions that (c‘i)2 =-1 is
~ clearly a nonlinear programming problem [11], which is known to be
NP-complete [j7]. * In other words, the best general algorithm known,
which is correlation decoding, has complexity 2%, It is done by
substituting all possible binary patterns of {+1,-1}k into (6)
and comparing the results, without considering the algebraic
structures of linear codes. Further, correlation decoding is
not concerned with the values of ¢, - However, we shall see in the
following that the speciai form of (6) (which is due to linear
codes), the combinatorial structures of C(and C'), and the values

of ¢4 all may be utilized under special conditions to reduce the

decoding complexity.

_ - %
Denote x; = (-ck, o PR LT I S (cﬁl,-cgz,...,cmk),
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., and x (c* ..>~C*¥ ). 8o x, is different from x
-k mk —i —m

2"
by the ith bit. Assumed that X maximizes (6), we have A(x ) >
—Im

A(Ei) for 1 = 1,2,...,k. Or we can write

n-k :
- = 1 E
Mrg) - A = 200y v g ey by an(c*z)ﬂ ) )
= 2 Ei . (9_ X E:'Ift) (8)
> 0

where c; were defined in (4) and i = 1,2,...,k. Examing (7)
and (8) it is found that each nonzero term in them involves C;i’

so we define

ok X * Céﬂ
= h- t s -
et E s by 0 Pk
L#i

and the next theoreﬁ is derived.

Theorem 6 A set of k necessary conditions for an (c 2,...7
i td

cﬁ) to maximize (6) is

*

c* A > 0 (9)
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Now we can state a characterization of the decoding problem.

Characterization of Decoding

The decoding problem is to find a set of k information

digits (Cﬁl’ C;z, ey c%k) in C* such that these digits
(1) satisfy c? Ai > 03

(2) maximi;es Afc®, CE, N ci).

Several remarks are needed here to illustrate what we just
derived. The first is, (8) conforms to[4 , Theorem 17 from a

different approach. Actually if we consider all 23~1 binary

patterns which are different from X,» we shall obtain [4 , Theorem 1].

The second remark is that from (8) it is clearly seen that each
Ai has ‘at least‘d nonzero terms., In the third, C;i may be decided
by Ai, since théir'product must be greater than zero. Finally
it is interestfﬁg to point out the similarity in form between
Ai and the FU(E) defined in -[6, Eq.(l)].'

A tempting decoding procedure seen from Theorem b is started
by randomly selectiﬁé'an initial x and then check whethef X
-satisfies the k ineéualities in (9). If there is an ct A <0,
then change ci to —cf and go back to test (S) again. Eventually
it will stop at a E% which satisfies (9) and Eé is taken as the
desired output. Though this decoding procedure would have hardware
complexity k simply, it unfortunately does not always do maximum
likelihood decoding. Due to the fact that two or more binary

k-tuples may satisfy (9) simultaneously,

i
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However, Theorem 6_does suggest a maximum likelihood

dgcoding algorithm which has complexity 28k g 1llustrate

k cl.,
this let us go back to (6). In (6) we found iEl(ci)jl have value
either 1 or -1, for j = 1,2,.., n-k. So totally there are 277K
combinations for these n-k products. For each one of them we

can decide a set of (ci,c*,...,ci) which satisfies (9) as well as
1

) k Gy
the assigned values of (c?)jl » j= 1,2,...,n-k. The desired
i=1
output x ~is obtained by comparing these 227K sets of (ci,c;,..

c¥}.
O

Yet we are not contented with decoding algorithm of com-

plexity Zn—k. Our characterization of the decoding problem
provides. us more insight about when and how we can reduce the

decoding complexity. This is discussed in the next section.
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IV. Decoding

Take Theorem 6 into consideration again, we are aware of
two faéts: 1) Not all binary_k-tuples in {+1,-1}k may satisfy
(9). For example, if (c¥*, cg, Cee, ci) satisfies (9) then
(—cf, c%, ...,ci), (c*, —c%, C e ci), ve., (C*, c%, cen, -ci)
do not satisfy (9); 2) Each of ﬁl. ¢2, cens ¢k appears only
once in one inequality in (9), respectively. And each such éi
1s combired with c? closely. These two facts offer incentive to
build even sophisticated decoding algorithm. Let us consider the

second fact first, which leads to the following theorem.

Theorem 7. If

n-k

o1 > j§1c5i|¢k+jl (10)

for some i, 1< i<k, then c;i_is uniquely determined.
(Proof) By equations (7) and (9) it is clearly seen that if (10)
is true then the only'solqt?on for (9) is c;i'= 1 when ¢i> 0 and
C;i = -1 when ¢, < 0¥;
. Q.E.D.

The&rem 7 providés the condition that a receivedr¢isole1y
determines Cﬁi and thereby demonstrates that‘g_may be employed
to reduce the decoding complexity under certain circumstances.
If there.are several c;idetermined in this way, undoubtedly the
decoding problem of finding x is greatly reduced. By then we
might be ablé'to decide Em'by testing éllkpossible patterns of

the’ undetermined-c;j. So the problem that we are interested now

is : How to make (10) happen for as many i's as possiblel




il
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Obviously, a necessary condition for (1ﬁ) to be true is that
19 | >C54¢k+j] for all j = 1,2,..., n-k. This gives us a hint

that in order to fully take the advantage of (10), do not fix the

n-k information positions in C' which were used in (3) td,define

the n-k equations. Alternatively, the n-k information positiomns
in C!' which would be chosen should have the absolute values of
their cofreéponding ¢j as‘small as possible, due to the fact
that those ¢j would appear in fhe right hand side of (10). When
this is doné,-the remaining k ¢iH5which appear in the left part
of the k inequalities in (10) respectiveiy will have greater
absolute values. Thus (10) will have better chance to be realized.
Therefore at the receiving end we first select n-k positions
according to the n-k components in ¢ which have the smallest
absolute values. If they are verified as information positioné
in C', n- k equations of the form in (3) can be constructed
acéordlng to Theorem 2. Subsequently the k 1nequa11t1es in (9)
are found with each of the k 1argestabsolute value components
in ¢ appears in exactly one inequality. And it gives (10) most
chance to be realized. - ;

*
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If the n-k originally selected positions are not information
positions in C!', then by Theorem 1 we can first take the d-1
positions which have smallest absolute ¢5 components. We then
gradually expand this set of linearly independent positions in
C' by adding other positions to it one at a time, starting with
- the one which has the next smallest absolute ¢j' Then check
whethef this newly added position will cause linear dependency
with the existed positions. By Theorem 4 at most n-(d-1)-(d'-1)
positions have to be searched to form an information set in C'. combined
with the d-1 originally selected positions. By these n-k
positions in the information set, n-k equations of thé form in
(3) can be written with-these n-k linearly independent positions
appear at the left hand side of (3). Subsequently k inequalities
of the form_in (9) can be wfitten. Importantly, by Theorem 4
we know that in these k inequalities there are t inequalities
having the t largest absolute ¢; 's appear in each of fhem,with
d'-1 < t<k. So (10) may be-realized for at least t ¢; 's. We
conclude this result in next theorem.

—

Theorem 8§ . It is élways possible to find an information set

In-x in C', where I,_; contains the d-1 posifions which having

smallest absolute ¢j’§,and In_k does not contain the d'-1

positions which having the largest absolute ¢, s.
Another factor which will affect the outcome of (10) is
the number of nonzero terms at the right hand side of (10) (or

the number of nonzero c%, for each i). We would like to keep
n-k ) + n-k

Z c!. as small as possible, though X ¢!, Z d - 1. However,
j=1 11 j=1 J1

since our n-k selected information positions in C*' are changing,
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there is no general answer to this problem. At this moment we
n-k

could only wish Eﬁcgi is as small as possible, no matter
=1

what information set in C' is selected.

Now assume n - t desired digits, where 0< t<k, are decided
by employing Theorem 7 on (S) and let them be c;(t+n,c;(t+2),

& ! 1 * ® . &
., ck,, without loss of generality. ©So c€F,,Cl,,-..,Cp, are

still to be decided and they must satisfy (9) for i = 1,2,...,t.
Substituting c¥ i ,7ys-..,Ck) into the A,'s in these t inequalities

we have

n

k k

- ' . :Ij,e . .
¢ j=lcji( ¢ (11).

C’Zl'lfﬁ _[_1%_ c

~k %

wag o0 €770 T ep)
£#£1

for i = 1,2,..., t. 'Here we note that

k .
: T (e) 32
£
£=t+1

is already decided by the n -t known digits. So if we have some

g;-such that 5}3 = 0 for all 1< g <t except £ = 1, 1£1<t, we
have *
e i
¢, . . Lcp
k+3 L=t+1

as a constant and it can be added to ¢, such that 'Theorem 7

may be employed again to find even more Cﬁi‘ By the same reason,
such newly found cgi may further help finding more_desired

digits. So the originally found c* .. ,C

mEs1) X may trigger
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a chain reaction to have most of the desired digits found.
However, we may also encounter the situation that Theorem

7 only helped.us finding few c*.'s. By then we are left with

t inequalities of the form in (9) which are to be satisfied and

t is not a small number. To find c;l ,C¥

X ,...,c; we note that

t
though there may be more than one t-tuple in {+1,-1}" which
satisfies those t inequalities, we also aware that not all
t-tuplesin {~+1,-1}t can satisfy them. Therefore one decoding
approach that may have less complexity is, managing to find all
(cf,cg,...,cﬁ) which satisfy the required t inequalities and
then find the desired one from them by comparing their effects
on (6). To realize this, a strategy is : Find alsolution fér
some cA. > 0, say c*A_ > 0, by assigning values to unknown
components in At as well as ci and éubstitute this solution
to rest inequalities. Repeating this at most t times. we may
decide a solution for all t inequalities or, if there is a
contradiction_occurs in the middle of this process, we can
conclude that no solution exists by previous assignments. After
this we go back one iéequé&ity and find another solution for
that CiAi > 0 and prdceed-as described. Doing this iteratively
we will be able to find all solutions of the required t inequali-
ties.

We note that in above proceés Theorem 7 still helps us to
reduce the decoding complexity. To illustrate this we know in

;.
a c¥A, > 0 with A, of the form in (11), A; can have 2 = different

values by assigning either +1 or -1 to those unknown

il
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£=1
£#1
n-Xx
where u, = ch%i, and the value of ci with respect to A, is
j=1 :

determined subsequently. So generally there are 2 i solutions

for a cz Ai > 0 and each one of them has to be checked against

t
c!
T (c$) € 5 =1,2,...,n-kand c', £ 0

23

the rest inequalities. But suppose there is a c;i # 0, 1£v<én-k,

and

n-k ,
AR INURE S A R
j#Ev

then we may assign

t '
T (ef) v

£=1
L#1
a value s,, s, = +1 or -1, such that
(6,) = sen( T ()%
sgn(¢,) = sgn(¢ s c
i kd4v V Z=t+l £

£y

and by Theorem 7 the solution

1

t c! .
(c* = sgn( ), Z‘l(cg) it = s,

L#1

. u,=-1
suffices to represent 2 * solutions of c* A > 0.

1 1

In conclusion, a soft-decision decoding scheme is given in

the following : For a received r ,



(1) Calculate ¢ ;

(2) Choose an information set In in C' according to the

-k
component absolute values in ¢, such that for those

positions in In their corresponding components in

-k
¢ having absolute values as small as possible ;
- (3) Construct a parity check matrix H such that for the

n - k positions in In their corresponding columns in

-k
H form an identity matrix ;

(4) Write out n-k equatidns of the form in (3) by this H ;

(5} Write out k inequalities of the form in  (9) which are
necessary conditions to be satisfiied ;

(6) Find all possible solutions to those k inequalities
twith the help of Theorem 7) ; |

(7) Find the unique desired solufion H

(8) Find the desired code word.

To illustrate this decoding scheme, a detailed example on

(17,8) code is provided in next section.




V. Example

Consider the

code C'. We have
fgl’ | [

' 0

c3' 0

q4' 1

H = c_s' = 1
Cg' 1

<’ 1

g’ 0

LEgT J . 0

r‘

(17,8;6) code C and its dual (17,9;5)

the parity check matrix

and the generator matrix

1
0

0
0




- S0 by Lemma 1l c's= (ci ,c; ,...,;&') is a code word in (17,9)

code if and only if

[ ] ’ ' & =
c:L & c9 @ c12 =] c13 C14 a C15 0
[ ] [] T
@ @ @ ' © ¢ ' =
) 10 ‘13 14 G5 @ S 0
| 1 [ ] ¥ ] ]
C @ @ @ @ =
c; @ ¢y C14 15 6 €17 0
L @ ] @ ] LS @ ¥ @ [} :
Cq cg ® o3 @ oy 16 €17 0 (12 )
] [ ]
@ D ' & '@ ' = 0
Cg @ ¢4 10 2 €13 €17 :
cé & cg‘) @ -c]to > B O < - P -1 51'5 = 0
' g t o ] @ ] [] ) t =
4 S Ch S & Ci3 & Cle 0
' N ~ ' " ' ' & ' =
Cq @ . @ A & Ch o Cia Cyy 0

Assume the receiving ¢ = (0.91,0.12,-1.2,-0.05,-0.08,1.25,
-0.89,-1.5,-0.22,0.14,0.35,-0.56,0.43,0.62,-0,10,1.51,-0.85).
We first take positions.{2,4,5,9,10,11,12,13,15} since they
have the n-k=9 smallest absolute %}s in ¢. Arbitrarily assign
c) ='c£1 =‘c1'0 = cl'l =cl'3 =0 and c; "_'C; =cl'2 =c£5 =1
and substitute them into (12 ) we find contradiction This
means the nine chosen positidns are not linearly indepehdent
in C'. Now since d = 6, we take positions {2,4,5,10,15} they
have the d-1 smallest absolute ¢i's. Starting from theseAS

positions we finally find four positions {9,11,12,14} combined

to form an information set I9 in C'. Assigning c; =1, ¢; =
] ] | L] L] 1 ] 5 - -
= o = = = = = = 0. Substituting them
5 T C9 T Cp TCn TG TG T Gs Su &
. . ' - ' - ' - v = ' c! =
into (12), we obtain cs cl c, €5 S > Cg
cé = cﬁs = 0. Therefore we have a new dual code word €' =

(11100010000010001). Similarly we can find




8 other dual code words which together with the one just found

form an 9 x9 identity matrix on the 9 positions in Ig.' There-

fore we have a new parity check matrix

fa st

i

o e
o o
o =
o o
o o
= =
o o ©
e
o
= o
o o
o o
o O
o o
o o
[
I

o
o o
—
o
o
e
N
o
o
o
o
=
Y
o
o
[
o

By Lemma 2 nine equations are written,

* = 3 % * * *
5 ¢l ©3 ©7 G Gy
* = ¥ - * * *

Ca €17 %13 %96 G

* L= *® X * * *
€5 €I 3 %3 ©3 16
* = * * * * *x
€9 - €7 €3 G5 S5 G3
% = * * & *

Cio Ce S8 %6 C17 C13)
A

% - * * k. -~k *
€12 €3 G €77 C13 Cie
% = cf cof cf cfy

® - * P %

€15 C¢ €7 S3 €

17

And the decoding problem is transformed to find a (cf‘,cg ,



Z8
R & ¥ ® * * 3 3 1y
¢k et ,ch LCy 5 Clg oSy ) which maximizes
= % — — —
A 0.91cy ~—1.2c% + 1.25c% —0.89ch —1.5¢% + 0.43cf,

+ 1. %  _ 0.85c* + 0.12c* * * % *
1 51c:16 85C17 0.1 cl c3 c:7 c13 (:l7

~0.05ck ck cko ck - 0.08ck ok cf cf ocf
~0.22ck ot ck ok cf, + 0.ldck ok cfy cfy
+ 0,35¢% cf c% c — 0.56c% c} ct oy i
+ 0.62¢% ¥ b cfg —0.10cf <f oy cf; -
By Theorem 6 , (ci :C’S ’C’E ,c%; ,cfé ,cif3 ,cif6 ’C§7) must
satisfy the following eight inequalites
c’i (0.91 + 0.12c=’§ ct ok c;‘7 — 0.05(:1‘3 ci‘G cf7
— 0.08c% c’é Yy e —0.22c% ct cf oY
+ 0.62c% cg Cg) > 0
<t (-1.2 + 0.12¢f ct, oy — 0.08cY 9 G
7 - 0.22¢] cf cj ¢y, + 0.35¢% c* <k
. ——(0,.56c"é AR ) > 0
g (1.25 - 0.22¢] ¢ cf <o, * 0 14ct ok, o
o 0.35¢% b cf —O._56c’_§, ct oy o
—0.10¢k & <) >0
¢t (-0.89 + 0.12¢] 5 ¢k o+ 0.35¢% cf o
-0 56c§ cf,) s g * 0 62c] ¢} Te
7 - 0.10cy ¢, ) > 0
¢t (-1.5 ~0.08c] cf «cf ¢k -o0.22¢ f ¢ o
+0.14c; &, o, + 0 35c%  cf <5
+ 0.62c] c;,;, g ) > 0
" ¢, (0.43 +0.12¢] o & & - 0.05¢] g
—noneAE & & & _0,56c% cE & ok,




* —— . — 3

g (1.51 —0.05c% ofy oy —0.08ct ot X oy
+ 0.14c"é c‘g Ci?' - 0.56c§ c’é c? c:f3

+ 0.62¢] & ¢k ) > O

* - - . . — . n
cj; (-0.85 + 0.12¢§ % c’.'; ci‘3 0.05c%- oy o
— % % - ,
0.22¢F o c§ c"'é + 0.14(:";5 ct ok

- 0.10ct " ¥ ci‘:,’] > 0

Examine these nine inequalities and we find by Theorem 7 that

c’é- = -1, c,j_‘G =1, and cj{7 = -1, Substitute them into the
above inequalities we further find that ¢ = 1 and we have

ohly four inequalities left,

¢} (0.91 —0.12¢4 ¢ cfy + 0.05cfy + 0.08¢h oy

- 0.22¢5 -0.62¢5 ) >0 (14

¢ (-1.2 - 0.12c% & &y o+ 0.08 o - o0.228%
- 0.35¢% = 0.56c5 ) > 0 (15
el (-0.89 —0.i2ct & <, -0.35¢% - 0.56¢% o
~0.62¢] + 0.1;) > 0 (16)

&, (0.3 -T0.12¢f & & +0.05¢% o+ 0.08ch o
To—0.56dt &+ 0.1k ) > 0. (17.)

2

Since the leading component in (15) has the largesi:
"absolute value among the four inequalities, we take (15)

into consideration first. Consider the two possible values

of c:’;-" 3 =1 or —1. When c& & =1, by Theorem 7 we
have c’§ = -1, Substitute these values into (.14 ) we have
c* = 1. Subsequently by (16) we ha‘vg c* = -1 and so cf; = -1

(since we assumed c% cf; = 1). Check with (17), this
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solution (¢} =1, c§ = -1, c# = -1, cfg = -1) satisfies it.

When c$ q; = -1, c§ can not be determined now. But
we consider cu; = 1 and c:°; = -1, respectively. When cf; =1,
we have by Theorem 7 that cg = -1. Also by the assumption
that c‘; c;_‘3 = -1 we have cf3 = -1. Substitute these into
( 14), we find c? = 1, However, the resulted (cf =1,
¢ =-1,¢§ =1, cfy = -1) does not satisfy (17). So
when c?\ qg = -1, we can only assume cj = -1.

Now with c¢% ¢fy = -1 and ¢ = -1, we have ¢fy = 1.
Substitute them into {15) we have

¢ (-0.31 - 0.02c% ) > 0
Obviously'cg = -1. 3By (14 ), we also find c§ = 1. However,
the resulted (ci =1, cg = -1, c? = -1, qg = 1) does not
satisfy (17). ]
o Conclusively, there is only one solution (cf =1, c§ =-1,
g =1,c¢; =-1, ¢ =:1, g5 =1, g = 1, cfy =-1). By (13),
we find ¢ =1, cj =1,ct =-1,¢c5 =-1,¢y =1, cf = -1,
&y, = -1, ¢y =1, an’d cjs = -1. So
_9_::1=(1513'1’1"l’1’-1:'1,'1’1’

which is different from the hard decision vector of ¢ by three

components.

|
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VI Combinatorial Design and Decoding

In previous sections it is shown that our characterization
of the decoding problem has led us to new maximum likelihood
decoding algorithm. In addition, we will see in ihis section
that suboptimum decoding performance, such as generalized
minimum distance (GMD) decoding [1], tan also be reached by
this line of thought, provided. that special combinatorial
design exists in the code.
| We first-introduce some notations which are generally

used in GMD decoding [1],[7]. Define ¢ = (al,az,...,an) and

+1. 0,  if T<g¢, ,
oy = ¢; /T R if -T<¢,=T ,
-1 , if $:<-T ,

where T is some positive threshold. - Thus, except for the

hafd—limiting at each end, the bit log-likelihood ratios are

3), . preserved in g. Assume o, is a component in g which has the

- -

largest absoluﬁé'value. If dM # 0, Q can be redefined as
B = o /oyl = (ag/loyl 5 ay/laylseees ap/loyl ).
)
Now the»ith component of g safisfies -1 = [Bi]é 1, 1£i<n, and
at least on; component of g hﬁs its absolute value equal to one.
[Z,Theorem 1] states that for any B, there is at most one

code word c* such that

g - c* > n-d ( 18)
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is satisfied. And any decoding method which successfully

finds this c* is credited with doing GMD decoding.

Define z (Z13Z5s0vesZp) and

+1, if g; > 0,

™~
]

; = sgn(B;)
. * -1, if g; £ 0

The following lemmas reveal important facts for GMD decoding.
Lemma 3 - If there is an ¢k which satisfies (18 ), then

zx c¥ have at most d - 1 components less than or equal to zero.

Lemma 4 , If 8 » ¢ > n-d, then take any d or more componénts
from B x-c¥ their sum will be greater than zero.

~-Thé-proofscﬁVthese two lemmas follow naturally from the

fact that |g;| = 1 for i =1,2,...,n, and the assumption that .

*
Bxc¢cg > n- d.
Let T = {ij,i5,...,iy} be a set of t indices with

0<t<d, 1% ip< n, and 1 = £ £ t such -that Bi£ cﬁ;zé 0

- v . . .
for those i, T. Also let T { Jppdgeeendgied be a set of

d -t indices, j, ¢ T for 12 j, < n and 1< & < d-t, such
that Bjﬂ cﬁjﬂ is among the d - t smallest terms within the n-t
positive Bic§1i's? i€ {1,2,...,n} —T. Therefore by Lemma 4

we have

KsZsjc* +ZBi°xﬁi?0

mj
JeT’ ie T

Now suppose the {n-k) x k matrix P defined in the parity

check matrix H is a baldnced incomplete block'design[iS] with




33

and A = 1. So P is an (k,n-k,r,s, A= 1) - configuration and next
theorem gives the minimum distance of C.
Theorem ¢ - If P is an (k, n-k, r,s, A= 1) — configuration,
then d = s + i.
(Proof) we first see by (4) that the Hamming-weights of C15C s
-,C, are s + 1, respectively, so d £ s + 1, By checking H we
find that since A= 1, any set of s columns are linearly independent,
so dz s + 1. Therefore d = s + 1,
Q.E.D.
Now for the ¢* ¢ C* which satisfies (18 ), gﬁ maximizes

B +c* for all c* € C*¥., So c* also satisfies

‘ n-k : k céﬂ _
_c;i- (B; + ZiC318k+ éz' (cke ) ) >0 (19 )
£#i

for i = 1,2,...,k, by Theorem 6. To find C;i irom B, we let

c'l
= ;i jb
iz = mn By 1Y 27D

L#4
for each j ='1,2,...,n-%k, i =1,2,...,k, when c%i # 0. And
define y,.= 0 for those ¢', = 0. Now for each i = 1,2,...,k, we
i1 Ji

define

n-=k k c§£
o7



and consider

Cmi By nibi

which in form is similar to the left hand side of (19).

are d terms in ( 20), and
t terms in ( 20) are less

Therefore it 1is

mi i

A decoding rule is hereby

Decoding Rule 1. Decode

~
c¥® =
mi

\
for i = 1,2,...,k.

We know that when B.-
provide correct estimates

follows.

J
ZiT5s Ohs Pes gy () (20)
B
There

since A = 1 we know there are at most

than or equal to zero, 0 £ t < d.

obvious that

formulated.

E; > mn-d this decoding rule will

c* then

12 Chys e c*

of c* , and c*
m mk —m

34
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VII. Conclusion

The main purpose of this paper is to introduce an integral
approach to soft-decision decoding. The newly proposed characteri-
zation of the decoding problem seems to meet this goal successfully.
Accordingly, it is found that algebraic structure and combinatorial
structure of linear block codes do affect decoding complexity.
However, it is the channel measurement information that plays a
key role in pointing out when and how to utilize the internal
structure of codes. It is surprising to see that channel measurement
information did not hinder our effort to reduce the decoding
complexity as we first thought it would be. After all if we know
more we may be able to do more. Channel measurement information
serves exactly this way. |

At this moment it is unknown yet whether some traditionally
important algebraic structure of linear block codes, such as the
roots of generator polyﬁomial of a code, will or will not contribute
any in this 1line of decoding approach. It is though suspected
that some such étruétﬁre-may affect the combinatorial design on P

and thus lead to simpler but suboptimum decoding methods.
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