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Abstract  

In this manuscript, we study the problem of selecting a subset of NGS reads for 

de novo genome assembly. In an iterative process, we develop models to score 

importance of each read based on XGBoost. Each read is characterized by its k-

mer landscape, i.e., k-mer count at each k-mer window, and base quality score 

at each mer. We then define a fixed-length feature vector of each read as input 

of XGBoost. The subset selection model is developed with its performance of de 

novo assembly being tested on datasets using SPAdes assembler and QUAST 

evaluation. We use two Illumina datasets, S. cerevisiae S288c and S. aureus 

MW2, denoted as D1 and D2 respectively, to test efficacy of the subset selection 

model. The experiments show that after each round of subset selection, 

corrected N50 of de novo genome assembly increases for both D1 and D2. In 

appendix A, we present the assembly results of GAGE-B Miseq datasets using 

the aforementioned pipeline. In appendix B, we analyze the process of read type 

tagging with Burrows-Wheeler Aligner and discuss the clip issue. 

 

Background  
 

A typical process of de novo genome assembly includes pre-assembly processing (e.g., 

trimming of adaptors and low-quality bases, and error correction), contig assembly, and 

post-assembly processing (e.g., scaffolding, gap closing, and benchmarking). Previous 

researches targeted at improving efficiency and effectiveness of the aforementioned 

steps [1]. Existing research shows that an analysis after assembly has potentially 

improved the de novo assembly [2]. It also shows that selecting subsets directly from 

the tagging result of reads does not lead to a stable performance increasing. 
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The idea of subset selection is to keep as many reads which are mapped uniquely to the 

reference genome while avoid picking up reads which, with high probability, could not 

map to the reference genome. It is a heuristic to reduce the complexity of assembly. 

The assembly result, however, does not provide decisive evidence from the size of 

selected subsets, as learnt empirically from the experiments of de novo assembly.  

 

With more advanced and successful Illumina sequencing techniques, machine learning 

emerges with various applications to exploit the growing numbers of available reads in 

the field of bioinformatics. Extreme Gradient Boosting (XGBoost) [3] is one of the 

state-of-the-art algorithms for feature selection and prediction problems. XGBoost has 

been vastly used in many machine learning challenges such as the Netflix prize [4] and 

appears as the most popular approach among the winning solutions in KDDCup 2015.  

 

Existing biological statistics, i.e., base quality score and k-mer copy number (i.e., 

number of occurrence of the same k-mer subsequence in the set of reads), have been 

widely applied in sequence mapping [5], variant calling [6], and sequence classification 

[7][8]. We therefore extract these information as input features for training. 

 

In this article, we address the problem in improving effectiveness of assembly by 

adding a post-assembly benchmarking procedure to assess quality of assembly and 

embedding intelligence into the post-assembly benchmarking procedure. We present 

the Spiral Assembler (TSA) as an iterative approach, consisting of intelligent relabeling, 

subset selection, and a de novo genome assembler, as shown In Figure 1. We adopt 

XGBoost to score the sequencing reads and propose a multi-phase filtering approach 

consisting of several binary read class probabilistic classifiers for selecting the subsets.  
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The selected reads are then assembled and evaluated to obtain the best evaluation result 

for the next iteration. We use two datasets, S. cerevisiae S288c denoted as D1 and S. 

aureus MW2 denoted as D2, to evaluate the assembly result of iterations. Experimental 

result shows that the assembly quality increases significantly for both D1 and D2 in 

each iteration. 

Materials and Methods 
 

Dataset 

We evaluate our proposed strategy with two Illumina datasets, Saccharomyces 

cerevisiae strain S288c as D1 dataset and Staphylococcus aureus strain MW2 as D2 

dataset. All the datasets are downloaded from the sequence read archive (SRA) in NCBI. 

Table 2 shows the profile of our experimental datasets, including the SRA accession 

number, read length, number of reads in the dataset, and length of reference genome 

 

Implementation resources 

We incorporate Burrows-Wheeler alignment (BWA) [9] (version 0.7.15) to report the 

multiplicities of reads, i.e., the number of times a read mapped to the reference. We use 

SAMtools [10] (version 0.1.19) to manipulate the results alignments in the Sequence 

Alignment/Map format. To assemble reads, we use the SPAdes assembler [11] (version 

3.11.1) with paired-end library. We then use QUAST [12] (version 4.6.0) with 

MUMmer [13] (version 3.23) to evaluate the assembly result. 

 

Read type tagging 

The designated process of tagging and categorizing reads is shown in Figure 2. To 

ensure the cleanness of data, we first incorporate a Trimming step to remove adapters, 
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vectors, or primers used in sequencing. We then screen out the reads containing Ns (i.e., 

ambiguous result of base-calling) and label them with type N. Then rest of the reads 

that have no Ns will be labeled by read mapping. The Mapping step of our proposed 

process aims at categorizing the reads into subsets to be the ground truth for model 

training. After the finish of this step, reads are tagged with 5 types of labels alongside 

with type N. First, for the reads that cannot be mapped to the contigs (i.e., failed to 

map), a type of F is tagged.  

 

Till this end, the remaining untagged reads are the reads that mapped to the contigs and 

occurred at least once. The reads that occur on multiple locations of the contigs, called 

repeats, are labeled as type M. For the unique reads (i.e., a read occurs once on the 

reference), we then check if a read has alternative hit. Thus, type X is tagged to the 

unique reads having alternative hits, whereas type U is tagged to the reads, otherwise. 

For the sake of posterior lookup, we summarize these read types with descriptions in 

Table 1. 

 

Feature extraction 

We propose a strategy to generate a fixed-length feature vector to overcome the 

inconvenience of variable length of reads. The first part of a feature vector is the 

percentiles of sorted quality scores and sorted k-mer copy numbers in the read, both 

from 0% to 100% per 5%.  In addition, two features are designed for extracting more 

information that are potentially relevant to the read classification and denoted as 

MeanQ, MeanKCN, which represent the mean values of the base quality scores and the 

k-mer copy numbers of the read, respectively.  
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Scoring scheme 

We develop a scoring scheme on reads using XGBoost as our machine learning 

approach. For each read, we obtain the tendency or probability distribution over classes 

of read types, mainly unique (U) and unmapped reads (F), instead of outputting a direct 

binary decision on the read types. Take Table 4 for example, to start with, each of the 

three read goes through a probabilistic classifier and is assigned the probability of 

belonging to a unique read (importance score). Classification results can then be 

determined by self-defined tunable threshold values.  Lastly, we design and base on 

different values of threshold to collect reads and construct subsets for assembly.  

 

Multi-phase filtering approach 

Similar to hierarchical classification, we first use the unique reads (U) classifier to 

choose the desired reads from the dataset. Next, we use the failed-to-map reads (F) 

classifier as the second-phase filter to eliminate unsuitable reads. For each classifier, 

we designed 5 subset selection mechanisms, each of which is based on a different 

threshold as eligibility criteria. Initially, the threshold of mechanism that brings in the 

amount of reads closest to the read type tagging is marked as reference. We then set up 

4 additional points that are higher or lower than the reference threshold by a fixed 

margin to observe the change of the succeeding assembly result. 

 

Subset selection for genome assembly 

The subset selection procedure starts with inputting unique reads (U) using the 

aforementioned methods to acquire 5 assembly results respectively. Secondly, we 

demonstrate the combinatorial approach by introducing an F classifier to remove the 
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unsuitable failed-to-map reads at the cost of dropping only a few useful reads. Thus, 

our subset selection procedure eventually accumulates 25 more assembly results.  

Iterative procedures of The Spiral Assembler 

After each round of assembly procedure, we target at the subset that brings in the best 

N50 scaffold length computed from the estimated genome size of D1 and D2. The 

scaffolds assembled from this subset of reads are adopted as input to rerun the 

procedure again, including BWA for mapping, XGBoost for subset selection, and 

SPAdes for assembly. We therefore generate new labels, selected subsets, and 

assembled scaffolds after each round of assembly with an attempt to achieve more 

advanced assembly results. Note that the procedure of subset selection is an 

unsupervised learning process in which machine learning algorithm is used to relabel 

each read to compensate for the potential defects of tagging results determined by the 

alignment to the assembled contig. 

 

Evaluation of the iterative assembler 

For comparing the assembly result, we use the original data of SRR352384 (D1) and 

SRR022866 (D2) as our baseline. Beginning on the first assembly that uses the full set 

of reads as input, we pick the best N50 scaffold length from each round of the assembly 

results to generate the second, third and fourth assembly results. Then we use QUAST 

with the reference genomes of D1 and D2 to evaluate those assemblies. As mentioned 

in QUAST manual, corrected contig NG50 is the NG50 [14] contig size after breaking 

the contigs at every misjoin and at every indel longer than 5 bases. Meanwhile, the total 

number of misjoin and the larger indels are defined as #mis-assembly. Both contig 

NG50 and #mis-assembly are very crucial to evaluate assembly quality. L99 [15] is the 

smallest number of contigs which cover 99% of the reference genome. 



 - 8 - 

Results 
 

Read type tagging 

Moreover, the profiles of read type tags of the first assemblies (obtained by the first line 

of flow in Figure 1) before performing subset selection of D1 and D2 are shown in 

Table 3. Note that there is no reference genome in a de novo assembly, and thus we 

cannot use the reference genome for read type tagging. Take D1 for example, out of the 

51 million reads, 87.05% is classified as uniquely mapped and has no alternative hits 

(type U) while 0.06% has alternative hits (type X). 11.51% reads are tagged as 

unmapped (type F), 0.02% reads are multi-mapped (type M), and 1.35% reads contain 

Ns (type N). 

 

Feature distribution 

Before using XGBoost for probabilistic classification, we first look at feature 

distribution of our data, specifically uniquely mapped (U), multi-mapped (M), and 

unmapped (F) reads. The distribution of U, M, and F reads with K-mer landscaping is 

observed in Figure 3. To outline the feature distribution, we extract the percentiles of 

sorted k-mer copy numbers (X-axis) from each type of reads in D1 and D2 and stack 

up the values of each percentile respectively. Y-axis then shows the mean value 

computed from each pile, and graph are formed by connecting these points together. 

All three classes are deemed separable according to the result. 

 

Multi-phase filtering approach 

The scoring graphs of the designated subset selection mechanisms, as shown in Figures 

4 and 5, help clarify and integrate the idea of scoring scheme into subset selection, with 
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X-axis and Y-axis indicating the sorted reads and their importance score respectively. 

Each bar of different color represents a different subset of reads. 

 

Assembly results 

The experiment results of The Spiral Assembler for D1 and D2 datasets are listed in 

Table 5 and 6 respectively. Note that the subscript of each subset denotes the 

approximate ratio of size extracted from reads. For instance, U90-F3 implies a 

mechanism that extracts 90% and 3 % of total sequencing reads, using U and F classifier 

respectively, to form a subset that filters out failed-to-map reads from the selected 

unique reads. 

 

As shown in Table 5 of D1 dataset, the read subset sizes of the 2nd, 3rd and 4th assembly 

are below 70% of the full set. We observed that both the N50 and corrected NG50 

contig sizes are improved by more than 12% from the 1st to 2nd assembly; in detail, the 

N50 increases from 11,849 to 35,411 and the c. NG50 increases from 8,674 to 9,740. 

In the next rounds from the 2nd assembly to the 3rd and 4th assemblies in Table 5, the 

N50 and c. NG50 sizes continue to improve and outperform (~22%) those in the 1st 

assembly. When comparing the values of L99 in Table 5, we found that the number of 

contigs needed to assemble 99% of the genome decreases continually from 3,223 of the 

1st assembly to 518 of the 4th assembly. Thus, our method has achieved significantly 

longer and more accurate assemblies for D1 dataset.  

 

About the performance of our method for D1 and D2 datasets, the post-assembly 

analysis takes only minutes while our machine-learning approach for subset selection 

finish collecting reads in less than two hours. The overhead of both stages is small 
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compared with the genome assemblies by SPAdes. Since the i-th assembly shown in 

Figure 1 will need to run genome assembler 1+(i-1)r times, where r = 25 in the multi-

phase filtering for D1 and D2 datasets, we suggest to run our method only a few run. 

 

Discussion and Conclusions 
 

In this paper, we present the concept and procedure of The Spiral Assembler (TSA) 

with machine-learning and post-assembly analysis. Our iterative process improves 

efficacy of assembly as the experimental results of D1 and D2 datasets suggest. TSA 

has achieved significant improvements in terms of longer and more accurate assembly 

for D1 and D2 dataset. Additionally, we also apply our approach to the miseq datasets 

presented in GAGE-B [16] and show the assembly results in Appendix along with a 

detailed analysis of read type tagging. Here we discuss some great potential for further 

advancement listed as follows.  

 

Inter-species prediction 

On top of the present procedure, we also examine the usage of our developed 

classification model to predict probabilities on closely related genome datasets. We 

utilize the preferable subset size inducted from previous results to expect a predicted 

outcome that benefits the assembly results. Although current results fail to outperform 

the baseline using original dataset, this method still retains great potential for improving 

overall assembly quality without any extensive knowledge of the dataset in advance 

and therefore is worth developing.  

 

Multi-mapped reads integration into our selection mechanism 
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Current approach utilizes unique reads (U) and unmapped reads (F) classifiers to make 

subsets of reads for assembly. In [2], Chung et al show that multi-mapped reads are 

also discovered to have an influence on the quality of genome assembly. However, 

these reads actually belong to the minority group among all read types, consisting of 

less than 1% of D1 and D2 dataset (Table 3). Therefore, the use of a multi-mapped 

reads classifier is not applicable given the low effectiveness of model training on an 

imbalanced distribution of labels. We will attempt the integration of multi-mapped 

reads into our subset selection mechanism in the future for genome datasets tagged with 

far more multi-mapped reads. 

 

Grid search to replace heuristics of threshold tuning in the future 

So far, the assignment of threshold values follows our heuristics to set up 5 points for 

subset selection. Although there are indeed ways to implement grid search on the task 

to replace the currently human-involved strategy, more comprehensive research work 

is required given the heavy temporal cost of genome assembly. Means to deal with 

parameter tuning, such as PSO [15] and genetic algorithm, will be considered for the 

experiments to come. 

 

Future prospects 

While TSA benefits from the scalability of distributed XGBoost library, another 

advantage XGBoost holds under the family of tree boosting system is that each element 

of the feature vector is also associated with a feature importance score under a specified 

type, such as frequency of use or average gain of the feature, as shown in Figure 6. One 

potential development is to technically select several top-ranked features and repeat the 

demonstrated methodology to obtain comparable or better assembly results. These 
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selected features can also be incorporated into other machine learning algorithm or 

data-driven approach for alternative applications. 

 

We plan to extend our work to examine alternative methods of selecting the sequencing 

read, e.g., by considering number of copies of multi-mapped reads. The post-assembly 

analysis might also have the potential of identifying unique reads with substitution error. 

Moreover, experiments on larger and more complex NGS de novo genome datasets, i.e. 

mate-pair reads, are also under investigation. We expect that more accurate contigs 

assembled by TSA will be useful for better scaffolding results. 
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Figures 

 

Figure 1 – Workflow of our approach 

 

 

Figure 2 – Categorize the reads by read-mapping 
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(a) D1 

 

(b) D2 

 

Figure 3 - Feature distribution with K-mer landscaping, separated by F, U, 
M classes (D1 & D2 datasets) 

We first sort Kmer counts of read read in ascending order and compute the percentiles 

of 0%, 5%, 10%, … 100%. Then for each class we compute the mean value of Kmer 

counts for each percentile. X-axis is the percentiles. Y-axis is the mean value of Kmer 

counts for each percentile. 
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(a) 

 

(b) 

  

Figure 4 - Precision-Recall curves and reads scoring graph for D1 dataset 

(a) Precision-Recall curve of tag U. (b) Reads scoring graph of tag U. The five points 

of different color on Precision-Recall curve and reads scoring graph represent five 

adopted selection mechanisms for subset selection. Format of the legend follows the 

pattern: subset size/recall/threshold 

• subset size/recall/threshold 
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(a) 

 

(b) 

 

Figure 5 - Precision-Recall curves and reads scoring graph for D2 dataset   

• subset size/recall/threshold 



 - 17 - 

 (a) 

 

(b) 

 

Figure 6 – Feature importance graph of XGBoost model 
1 The graph on the left rank features by their average gain of use in a decision tree 
2 The graph on the right takes the frequency of use into account. 
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Tables 

Table 1 – Summary of read type tagging using BWA 

N Reads containing Ns 

U Unique reads with no alternative hits 

F Reads that fail to map to the contigs 

M Multi-mapped reads 

X Unique reads with no alternative hits 

R Reads that map to the contigs containing Ns 

 

Table 2 - The sequencing datasets used in the experiments. 

Dataset D1 D2 

SRA 

accession number 

SRR352384 SRR022866 

 

# reads 52.06 M 25M 

Genome size 12.07 Mbp 2.82 Mbp 

Read length 76 bp 76 bp 

Reference Genome 

(NCBI accession number) 

S. cerevisiae S288c 

(GCF_000146045.2) 

S.aureus MW2 

(GCF_000146045.2) 

 

 

Table 3 – Profile of tagged labels 

# reads 

(Millions) 
Total N F  U X M 

D1 
51.41 

(100%) 

0.69 

(1.35%) 

1.16 

(2.26%) 

49.16 

(95.63%) 

0.002 

(0.004%) 

0.39 

(0.75%) 

D2 
25.00 

(100%) 

0.22 

(0.88%) 

5.17 

(20.68%) 

19.54 

(78.14%) 

0 

(0%) 

0.08 

(0.3%) 
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Table 4 – Example of unique reads (U) probability vs threshold value 

Reads No. 
 

0.6 0.75 0.9 

R1 0.68 True2 False False 

R2 0.76 True False False 

R3 0.93 True True True 

1 Probability also represents the score or tendency of belonging to the read type. 
2 True/False denotes whether or not the read is classified as a unique read. 
  

Probability1 

Threshold 
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Table 5 - The comparison of assembly results between D1-SRR352384 subset 

selection and the original dataset 

Assembly 

statistics 12 

1st Assembly 

(Full set) 

2nd Assembly 

U82-F4  

3rd Assembly 

U77 

4rth Assembly 

U69 

Dataset size  

(M bp) 

51.40 

(100%) 

36.65 

(71.3%) 

33.26 

(64.7%) 

27.66 

(53.8%) 

Assembly Size 

(M bp) 
11.46 11.38 11.37 11.21 

# c. scaffolds 3,191 2,378 2,129 1,937 

# mis-assembly 653 1,164 1,173 1,284 

Max. scaffold 

size (bp) 
54,541 64,953 58,016 76,103 

c. NG25 scaffold 

size (bp) 3 
16,356 17,436 18,347 19,230 

c. NG50 scaffold 

size (bp) 3 
8,674 9,740 10,280 10,575 

c. NG75 scaffold 

size (bp) 3 
3,907 4,646 4,869 4,872 

L99 3,223 1,256 941 518 

Min. scaffold size 

(bp) 
200 201 200 203 

N50 (bp) 4 11,849 35,411 32,125 36,022 

1 The minus sign implies F classifier filters out unsuitable.  
2 The subscript of each subset denotes the approximate ratio of size extracted from 

reads. 
3 Here c. NGx stands for corrected NGx contig size. 
4 The contigs with the best N50 are adopted as input to rerun the procedure in the next 

iteration. 
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Table 6 - The comparison of assembly results between D2- SRR022866 subset 

selection and the original dataset  

Assembly 

statistics 12 

1st Assembly 

(Full set) 

2nd Assembly 

All-F20 

3rd Assembly 

U83-F19 

4rth Assembly 

U78-F23 

Dataset size  

(M bp) 

25 

(100%) 

19.15 

 (73.4%) 

20.31 

 (74.1%) 

19.24 

 (69.5%) 

Assembly Size 

(M bp) 
2.87 2.87 2.87 2.87 

# c. scaffolds 78 76 74 78 

# mis-assembly 17 19 17 15 

Max. scaffold 

size (bp) 
201,558 201,558 280,578 201,558 

c. NG25 

scaffold size 

(bp) 3 

145,829 146,122 159,040 158,926 

c. NG50 

scaffold size 

(bp) 3 

75,774 92,095 100,671 100,206 

c. NG75 

scaffold size 

(bp) 3 

43,112 48,055 45,827 45,827 

L99 40 37 37 78 

Min. scaffold 

size (bp) 
233 229 233 233 

N50 (bp) 4 129,295 131,359 159,040 131,359 

1 The minus sign implies F classifier filters out unsuitable.  
2 The subscript of each subset denotes the approximate ratio of size extracted from 

reads. 
3 Here c. NGx stands for corrected NGx contig size. 
4 The contigs with the best N50 are adopted as input to rerun the procedure in the next 

iteration. 
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Appendix A: 

Assembly Results for Subset Selection on GAGE-B 

 

In the appendix, we present the assembly results of GAGE-B Miseq datasets. Note that 

the assembly process is identical to the aforementioned approach in section Materials 

and Methods, including pre-assembly processing (trimming), subset selection, paired-

end assembly, and post-assembly processing (QUAST evaluation). The only exception 

is only one iteration of results is shown. Note that the notation of table A.1-A.3 are the 

same as Table 5 & 6. Additionally, we also indicate the number of N’s per 100kbp in 

scaffolds. 

 

Tables 
Table A.1 - The comparison of assembly results between R. sphaeroides 2.4.1 

subset selection and the original dataset  

 1st Assembly 2nd Assembly 

Subset Size 100% 93.10% 

# Scaffolds 105 63 

Scaffold NG50 (Kbp) 1,128,248 551,193 

# c. Scaffolds 57 62 

c. Scaffold Assembly Size (Mbp) 4,588,562 4,583,183 

Max c. Scaffold (Kbp) 1,135,028 1,135,028 

Scaffold c. NG25 (Kbp) 597,450 577,045 

Scaffold c. NG50 (Kbp) 518,052 518,330 

Scaffold c. NG75 (Kbp) 235,197 162,622 

Scaffold LG99 20 23 

# N's per 100 kbp 8.06 8.09 
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Table A.2 - The comparison of assembly results between M. abscessus 6G-0125-

R subset selection and the original dataset  

 1st Assembly 2nd Assembly 

Subset Size 100% 78% 

# Scaffolds 918 95 

Scaffold NG50 (Kbp) 574,745 344,229 

# c. Scaffolds 56 64 

c. Scaffold Assembly Size (Mbp) 5,064,454 5,063,988 

Max c. Scaffold (Kbp) 805,304 780,029 

Scaffold c. NG25 (Kbp) 639,089 372,912 

Scaffold c. NG50 (Kbp) 280,233 280,245 

Scaffold c. NG75 (Kbp) 144,656 110,733 

Scaffold LG99 16 23 

# N's per 100 kbp 0 0 

 

Table A.3 - The comparison of assembly results between V. cholerae CO1032 

subset selection and the original dataset  

 1st Assembly 2nd Assembly 

Subset Size 100% 98.20% 

# Scaffolds 1,863 1,818 

Scaffold NG50 (Kbp) 356,090 356,090 

# c. Scaffolds 100 100 

c. Scaffold Assembly Size (Mbp) 3,957,272 3,957,228 

Max c. Scaffold (Kbp) 737,832 737,800 

Scaffold c. NG25 (Kbp) 548,525 548,525 

Scaffold c. NG50 (Kbp) 227,910 227,910 

Scaffold c. NG75 (Kbp) 152,234 152,234 

Scaffold LG99 78 80 

# N's per 100 kbp 0 0 
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Appendix B: 

Read Type Tagging Analysis 

 

In the appendix, we analyze the process of read type tagging with Burrows-Wheeler 

Aligner [9]. BWA is a software package for mapping sequences against a large 

reference genome. It outputs the alignment results in Sequence Alignment/Map [10] 

format consisting of 11 mandatory fields for essential alignment information such as 

mapping quality score (MAPQ), CIGAR string, and number of mismatch. Our goal is 

to further differentiate uniquely mapped reads into three types based on these fields. 

 

To begin with, we discover that among unique reads, some of the alignments only 

contain alignment match. As shown in Figure B.1, these alignments correspond to the 

M operation and M operation only in the CIGAR string. For the reads without any 

sequence mismatch, we label them with type P as perfectly mapped. For the reads with 

at least one mismatch position, we label them with type S as alignments consisting of 

substitution error. The rest of the reads contains other operation in their CIGAR string, 

including clips (S or H), insertion (I), and deletion (D). They are tagged with type O. 

We summarize the definition in Table B.1 for convenience. 

 

Because the assembly results of GAGE-B dataset presented in Appendix A are not as 

promising as those of D1 & D2, we investigate the read label distribution assigned by 

BWA and discover that there exist clips in the majority of sequencing reads of GAGE-

B dataset. To understand the proportion of the clip in an alignment, we define clip ratio 

as follows: 

 

Clip Ratio = #clip / read length 
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Figure B.2 computes the distribution of clip rate for two of the GAGE-B dataset. We 

can see that clip rate varies between species and can consist of up to 80 percent of the 

read, a considerably large number beyond our expectation. 

 

The comparison between the label distribution of D1 and R. sphaeroides 2.4.1 in Table 

B.2 allows us to infer it is the inferior quality of GAGE-B sequencing dataset which 

exacerbates the assembly results after subset selection. Despite little improvement on 

De Novo assembly, an analytical tool that incorporates such discoveries along with the 

aforementioned clip rate analysis is worth developing to examine dataset quality before 

assembly process in the future. 

 

 

Figures 

 

Fig. B.1 - CIGAR string table with description 
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Fig. B.2 – Clip rate distribution graph of R.sphaeroides 2.4.1 & M.abscessus 

6G-0125-R 

 

Tables 

Table B.1 – Summary of detailed read type tagging using BWA 

N Reads containing Ns 

P Unique reads with only alignment match (M) but no mismatch 

S Unique reads with only alignment match (M) and at least one mismatch 

O The rest of the uniquely mapped reads (contains operations other than M). 

F Reads that fail to map to the contigs 

M Multi-mapped reads 

R Reads that map to the contigs containing Ns 

 


