
 TR-IIS-16-003

 Participant Selection Problem -

 Relative Performance of Five

Optimization Solvers

 C. Y. Lin, J. W. S. Liu and W. D. Yeh, E. T. H. Chu

Sep. 29 , 2016 || Technical Report No. TR-IIS-16-003

http://www.iis.sinica.edu.tw/page/library/TechReport/tr2016/tr16.html

Institute of Information Science, Academia Sinica

Technical Report TR-IIS-16-003

Participant Selection Problem - Relative
Performance of Five Optimization Solvers

C. Y. Lin
Department of Computer Science, Tsing Hua University

Hsinchu, Taiwan
Email: gaogaolin0418@gmail.com

J. W. S. Liu and W. D. Yeh

Institute of Information Science, Academia Sinica
Taipei, Taiwan

Email: {janeliu, wdy}@iis.sinica.edu.tw

E. T. H. Chu
Dept. of Comp. Sci. and Info. Eng., Yunlin University of Science and Technology

Yunlin Taiwan
Email: edwardchu@yuntech.edu.tw

Copyright @ September 2016

 2

Participant Selection Problem - Relative
Performance of Five Optimization Solvers

C. Y. Lin

Department of Computer Science, Tsing Hua University, Hsinchu, Taiwan
Email: gaogaolin0418@gmail.com

J. W. S. Liu and W. D. Yeh

Institute of Information Science, Academia Sinica, Taipei, Taiwan
Email: {janeliu, wdy}@iis.sinica.edu.tw

E. T. H. Chu

Dept. of Comp. Sci. and Info. Eng., Yunlin University of Science and Technology, Yunlin, Taiwan
Email: edwardchu@yuntech.edu.tw

Abstract—This paper presents integer linear programming
formulations of four variants of the participant selection
problem (PSP) that we may encounter in likely disaster
scenarios. An evaluation study was carried out to quantify
the relative performance of popular optimization solvers
and a greedy heuristic algorithm when used to solve the PSP.
The paper describes the study and presents the data.

Index Terms—participant selection, generalized assignment,
integer linear programming, optimization solvers, greedy
algorithm, performance data

I. INTRODUCTION

We are concerned here with the combinatorial
optimization problem called the participant selection
problem (PSP). A variant of PSP is a special case of the
generalized assignment problem (GAP) [1,2]. We
encountered the PSP when we want to select participants
from available volunteers and assign the selected
participants to disaster threatened regions in order to
gather and report observational data from the regions.

A. Background

Typical disaster monitoring and surveillance systems
(e.g., [3, 4]) use physical sensors at selected locations in
disaster threatened area to capture observational data.
Base on data from available sensors, the system makes
appropriate response decisions. Many factors, including
deployment cost and physical damages, may prevent a
system from having a sufficient number of physical
sensors to provide it with full coverage of the threatened
area. When this happens, crowdsourcing is an effective
way to get additional observational data [5, 6]. By
crowdsourcing, we mean the use of volunteers with
wireless devices and social services as mobile human
sensors. The system sends human sensors to locations
where physical sensors are missing or are inadequate.
Their eyewitness reports can complement data from
physical sensors to eliminate blind spots and improve
resolution in sensor coverage.

Take the crowdsourcing support system CROSS [7] as
an example. When the system finds the coverage of
physical sensors inadequate, it starts a human sensor data
collection process by broadcasting a call for participation
to registered volunteers. The system then solves a PSP
after receiving their responses: The input to the problem
includes the number ρ (≥ 1) of regions R1, R2, … Rρ in the
disaster affected area. The regions have values v1, v2, …
vρ, respectively. Also given are the number π (>1) of
volunteers available for selection and assignment and a
benefit matrix and a cost matrix characterizing the
volunteers: The element bik (0 < bik < ∞) of the benefit
matrix and the element cik (0 < cik < ∞) of the cost matrix
represent the benefit achievable by the selected
participant Pi and the cost incurred by the participant,
respectively, when he/she is assigned to the region Rk.
The budget B constrains the total cost of all participants.
A solution specifies whether each volunteer is selected
and if selected to which region he/she is assigned. Among
all solutions, the system tries to find one that maximizes
the total benefit achievable by all selected participants
subject to specified constraints, including that the total
costs of all participants is no greater than the budget.

We formulated four variants of PSP, each of which
takes into account of requirements and constraints in
participant selection for some disaster scenarios. The
variants are PSP-Frugal, PSP-Reliable, PSP-Practical
and PSP-Backup. PSP-Frugal requires that the solution
never assigns more participants to any region than needed
to fully explore the region: A region is said to be fully
explored when the total benefit achievable by all
participants assigned to the region is at least equal to the
value of the region; otherwise, it is said to be partially
explored. Solutions of PSP-Frugal may leave some
regions partially explored. When such solutions are not
acceptable, PSP-Reliable and PSP-Practical offer good
alternatives. The former admits only solutions according
to which every region is fully explored. The latter admits
solutions which are such that every region is either fully
explored or not explored at all (i.e., is assigned no

 3

participants). PSP-Backup reserves some volunteers as
backups to handle future unexpected emergencies.

B. Objective and Contributions

Today, many optimization solvers (e.g., [8-14]) can be
used to solve these variants of PSP. Given sufficient
computation time, the solvers can find optimal solutions,
but may be outperformed by simple heuristics when
available time is limited. We present in this paper an
evaluation study aiming to determine the relative
performance of five popular optimization servers (i.e.,
Gurobi [8], MOSEK [9], XpressMP [10], CPLEX [11],
and Cbc [12]) and the greedy heuristic PSP-G algorithm
[15] when used to solve the PSP-Frugal and PSP-
Practical variants. The reason for focusing on these
variants is that they model many real-life situations more
closely: By allowing solutions which assign no
participants to some regions, PSP-Practical enables the
system to work with limited budget. PSP-Backup is
essentially the same as PSP-Frugal when participants are
selected from specified available volunteers instead of
selecting participants from all available volunteers.

 A contribution of the paper is the formulations of the
variants of PSP. Another contribution is the performance
data from our extensive experiments. We use several
figures of merits to compare the performance of the
solvers and the heuristic algorithm along multiple
dimensions. The data provide insight into characteristics
of problem instances for which different methods (i.e.,
evaluated solvers and heuristic algorithm) can produce
good solutions in available time. Based on such decision
support data, a participant selection tool can better choose
a method to use when presented with a PSP instance.

 Following this introduction, Section II presents
related work. In particular, the section describes the
above mentioned optimization servers and presents
reasons for choosing them over other solvers. Section III
presents the four formulations of PSP. Section IV
presents how parameters that define individual problem
instances are generated and the rationales behind their
generation. The section also defines figures of merits
used to compare the performance of solvers. Section V
and VI present the results produced by the solvers and
PSP-G algorithm and discuss the choice(s) of solvers for
different instance of the variants of PSP. Chapter VII
presents our conclusions.

II. RELATED WORK

We note that in the case of infinite budget (i.e., B = ∞),
PSP-Frugal is a special case of the well-known maximum
general assignment problem (GAP) [1, 2]. In turn, GAP is
a generalization of the assignment problem [16].

A. Related Problems and Classical Solutions

GAP arises in numerous real-life applications,
including task scheduling, resource allocation, vehicle
routing, computer network, and product planning. GAP is
known to be NP-hard and APX-hard to approximate it.
Over the years, numerous algorithms for solving or
reducing GAP have been proposed and studied. They
include relaxation algorithms, branch and bound

algorithms, branch and cut algorithms, and heuristic
algorithms. Some algorithms for solving the problem use
solutions of the knapsack problem [17] as the basis. The
heuristic algorithm PSP-G [15] and the enhanced version
of PSP-G to be described in Section IV are examples. In
addition to survey papers such as [2, 16-20], overviews of
applications and solutions of GAP can be found in many
graduate theses (e.g., [21, 22]) as well.
 For finite B, the PSP-Frugal variant resembles the
general distributed caching problem (DCP) treated in [18].
The problem can be stated in context of a server with a
set of π known requests of t (≤ π) request types and ρ
cache locations. Each location has a storage limit and a
bandwidth limit, each request type has a known size, and
each request has a bandwidth requirement and an
associated profit. The server can respond to a request
from a cache location if the request type is stored at the
location and the location has sufficient bandwidth to meet
the bandwidth requirement of the request. The server
wants to find an assignment of request types to cache
locations subject to the storage and bandwidth limits of
the locations and selections of requests of the types stored
at each location to respond with the objective of
maximizing the total profit of all responded requests.
 The DCP problem is one of the so called separable
assignment problems (SAP), the optimization problem of
assigning objects to bins with separate constraints for
each bin. It is easy to see that PSP-Frugal is not a SAP
but becomes one when the budget B constraining the total
cost of exploring all regions is replaced by per region
budgets Bk, for k = 1, 2 … ρ where Bk is the budget for
exploring region Rk and ∑1≤k≤ ρ Bk = B. We can solve the
PSP-Frugal problem approximately by first allocating the
given budget to regions. There are many ways to solve
the separable assignment problem, including the LP-
rounding based approximation algorithm and polynomial-
time local search approximation algorithm [18].

B. Optimization Solvers

As it will be evident in the next section, the variants of
PSP studied here are binary integer linear programs (ILP),
i.e., ILP in which every variable is constrained to be 0 or
1. Recent advances in modeling languages and software
tools have produced over 60 optimization solvers.
Typical PSP instances presented by crowdsourcing
support systems (e.g., [7]) are small to intermediate in
size (e.g., numbers of regions and volunteers are in order
of tens); available time for computing a solution is in
order of minutes to tens of minutes, and near-optimal
solutions are often acceptable. Many of the existing
optimization solvers are well suited for them. For this
reason, we choose to direct our attention to selecting and
identifying optimization solvers that can produce good
solutions for frequently encountered types of PSP
instances, rather than modifying and evaluating existing
approximate and heuristic algorithms developed to solve
related problems in order to make them work sufficiently
well for PSP.

Specifically, among the state-of-the-art solvers, we
chose to evaluate in depth the performance of the
following five solvers when used to find optimal

 4

solutions of PSP-Frugal and PSP-Practical. Hereafter,
they are referred to as evaluated solvers.

 Gurobi Optimizer [8]: Gurobi is one of the fastest,
most powerful commercial solvers for linear
programming (LP), quadratic programming and
mixed integer programming (MIP) problems.
Gurobi supports a variety of commonly used
programming and model building languages.

 MOSEK optimization software [9]: MOSEK is a
high-performance optimization solver. Besides
linear and mixed integer programming problems,
MOSEK can solve quadratic and convex nonlinear
programming problems and has interfaces to C,
Java, MATLAB, .NET, and Python.

 FICO ® Xpress Optimization Suite [10]: Xpress
offers a powerful and versatile solver for solving
highly complex, real world LP, MIP and NLP
problems. It also provides a collection of
optimization algorithms for solving large-scale
linear problems and mixed integer problems.

 CPLEX [11]: CPLEX Optimization Studio is a
commercial solver designed to solve large scale
linear programming problems. It was named for
the simplex method implemented in the C.
CPLEX is accessible through modeling systems
such as AMPL (a mathematical programming
language) [23] and GAMS (General Algebraic
Modeling System) [24].

 Cbc (Coin-or branch and cut) [12]: Cbc is an open
source mixed integer programming solver. As its
name indicates, Cbc uses branch and cut algorithm
to solve optimization problem. It can be used as a
callable library or a stand-alone executable.

C. Performance Comparisons

In practice, optimization solvers may not find and
return optimal solutions when the problem size becomes
large and time available to find the solutions are limited.
This fact motivated several previous studies on relative
performance of optimization solvers, as well as the
evaluation study to be reported later in the paper.

As an example of efforts in this direction, A.
Neumaieret, et al. [25] evaluated several existing
optimization software, including BARON [14], for global
optimization problems and constraint satisfaction. Their
goal, like ours, is to provide data on the relative
performance of optimization solvers that can help us to
determine the choice(s) of solvers for specific problem
instances. The results of the study showed that BARON
was the fastest and most robust solver: BARON was able
to complete the search in over two third of the
optimization problems with less than 100 variables. For
larger problems, other optimization solvers may have
higher success rate in finding an optimal solution than
BARON, but may have longer execution time.

 The benchmarks published in [26] compared the
performance of Gurobi with many commercial and open
source optimization solvers. The test sets include internal
type and public type. The internal-type test set has over
10,000 problems. They were used to assess performance

improvements achieved by Gurobi from version to
version. The public type uses 2010 MIPLIB (Mixed
Integer Problem Library) [27] as test sets to compare the
performance against other solvers. The performance data
showed Gurobi is the fastest solver for linear
programming, mixed integer programming or quadratic
programming models. XPRESS is a slightly slower than
Gurobi on linear programming problems, and so is Cbc.

 Our choices of the above listed optimization solvers
for in depth evaluation are based on the benchmark
performance of state-of-the-art solvers published in [28].
The test cases used are from NETLIB [29] and MIPLIB
library containing a collection of real-life problems. The
evaluation set 25,000 seconds as time limit. The results
on benchmark performance of commercial optimization
solvers (including Gurobi, MOSEK, and XPRESS and
CPLEX) show that they perform better than other solvers.

III. FORMULATIONS OF PSP

Specifically, the participant selection problem (PSP)
can be formulated as an integer linear programming
problem. The parameters of the formulations are denoted
by the following notations. They are positive integers:

 V is the objective value and is also referred to as
the total value of the selection.

 The threatened area contains ρ regions R1, R2, …
Rρ, and their values are v1, v2, … vρ, respectively.

 A selection is from π volunteers; They are referred
to as P1, P2, … Pπ .

 For i = 1, 2, … π and k = 1, 2, … ρ,
- bik is the benefit achieved by Pi if he/she is

assigned to region Rk..
- cik is the cost of Pi when the participant is

assigned to region Rk.
 {xik} for i = 1, 2, … π and k = 1, 2, … ρ, is a

boolean set. xik = 1 indicates that Pi is selected and
is assigned to Rk; xik = 0 otherwise.

 B is the total budget available to be spent on all
selected participants.

 A selection has η groups G1, G2, … Gη of
participants: Each participant belongs to one group
according to his/her skills and the organization
he/she belongs.

A. PSP-Frugal

 PSP-Frugal is a variant that resembles GAP in general.
Formally, the formulation of PSP-Frugal is stated below.

PSP-Frugal:

 Maximize V =∑1≤k≤ ρ ∑ 1≤i≤ π bik xik (1)

 Subject to xik ϵ {0,1} i = 1, 2, … π (2)
 k = 1, 2, … ρ

 ∑1≤k≤ ρ xik ≤ 1 i = 1, 2, … π (3)

 ∑1≤i≤ π bik xik ≤ vk k = 1, 2, … ρ (4)

 ∑1≤k≤ ρ ∑1≤i≤ π cik xik ≤ B (5)

 The total value V of the selection, as given by Eq. (1),
is the sum of benefits achieved by all of the selected and
assigned participants. Like all variants of PSP, the

 5

objective of PSP-Frugal is to maximize the total value.
The set {xik} for all i = 1, 2, … π and k = 1, 2, … ρ gives
the selection of a subset of volunteers to be participants
and an assignment of the participants to regions. The
inequality (3) ensures that each participant is assigned to
at most one region. The constraint (4) ensures that the
solution {xik} never assigns more participants to any
region than needed to achieve the full value of the region.
This is why this variant is called PSP-Frugal. The
inequality (5) says the total cost incurred by all selected
participants must not be greater than the budget B.

Because of constraint (4), PSP-Frugal allows
solutions in which the total benefit of all participants
assigned to a region may be less than the value of the
region. In other words, the numbers of participants
assigned to some regions are insufficient to achieve the
full values of the regions. We call such a region a
partially explored region and the difference between the
value of a region and the total benefit of all participants
assigned to the region the shortfall of the region.

B. Other Variants

In scenarios where it is not acceptable to have some
regions partially explored, PSP-Reliable is an alternative:
The PSP-Reliable variant is the same as PSP-Frugal,
except constraint (4) is replaced by

 PSP-Reliable: ∑1≤i≤ π bik xik ≥ vk k = 1, 2, … ρ (4a)

PSP-Reliable guarantees that all regions in the threatened
area are fully explored to achieve the full values of the
regions. Because of this constraint, PSP-Reliable is
unlike GAP and variants of GAP.

 PSP-Reliable may not have a solution since solutions
that satisfy constraints (2), (3) and (4a) may be too costly
and hence exceeds the budget limit. A more practical
alternative is called PSP-Practical: For this variant the
constraint (4) is replaced by

PSP-Practical: ∑1≤i≤ π bik xik ≥ vk , or = 0
 k = 1, 2, … ρ (4b)

The variant is said to be practical because it always has
feasible solutions. A solution of PSP-Practical aims to
maximize the total benefit of all the selected participants
under the condition that each region is either to be fully
explored or not explored at all. PSP-Practical resembles
0/1 assignment in general.

 While PSP-Frugal may have the shortfall problem,
PSP-Practical may have the waste problem: Constraint
(4b) allows assignments according to which the total
benefits of some regions exceed the values of the regions.
In other word, there may be some region Rk, for which βk
= ∑1≤i≤ π bik xik > vk. We call the difference βk − vk the
waste of region Rk.

The variants defined above assume that all of
volunteers are eligible for selection. Their solutions may
leave no participants available to handle unexpected
emergencies. This fact motivated the condition stating the
need to reserve some volunteers as backups. In this case,
we divide volunteers into η groups G1, G2, … Gη

according to some criteria (e.g., skills such as first aid,

fire control, etc.) PSP-Backup is defined by the following
constraint in addition to (1) - (5).

 PSP-Backup: ∑PiϵGj (1 −∑1≤k≤ ρ xik) ≥ ψj ,
 j = 1, 2,… η (6)

ψj in the right hand side of the inequality denotes the
required number of reserved volunteers in group Gj. The
sum on the left hand side is the number of volunteers in
group Gj who are not selected.

IV. PERFORMANCE EVALUATION METHODS

We conducted simulation experiments to determine the
relative performance of popular optimization solvers
Gurobi, MOSEK, Xpress, CPLEX, and Cbc [8-12] when
used to solve the PSP-Frugal and PSP-Practical variants
of the participant selection problem. In particular, we aim
to get data on their relative performance for different
distributions of the parameters that define individual
problem instances. We also aim to determine how the
simple greedy heuristic algorithm PSP-G [15] and an
enhanced version of PSP-G algorithm perform relative to
the evaluated solvers.

A. Parameter Generation and Rationales

In each experiment, we invoked the solvers and PSP-G
algorithm to find solutions of a synthetic instance of PSP.
We divide the parameters that specify each instance into
two subsets: a task assignment specification (TAS) and a
participant selection specification (PSS). The values of
the parameters in each TAS and PSS were generated
randomly and independently.

 Specifically, the TAS of a problem instance includes
the number of regions and the values of the regions. PSS
includes the number of volunteers, the benefits and costs
of each volunteer, and the total budget. For each
simulation experiment, we generated 3,000 sets of TAS
and PSS samples, one for each simulation run.
Performance data collected during the experiments
indicated that the sample size is large enough to make the
statistical error in each of the estimated performance
measure less than 2% with 95 percent confidence.

Number of Regions: We chose the range of ρ (the
number of regions) based on Taiwan geography: A
threatened area is a county (e.g., Yunlin County) or city
(e.g., Taipei City and Hsinchu City). Each region is a
district in the county/city. We started from the minimum
number of region being 5, since areas with fewer than 5
regions are too small for our purpose. The maximum
number of districts is 38; that is the number of districts in
Kaohsiung City. So, for each simulation experiment, we
started from ρ = 5 and multiplied ρ by 2 or incremented ρ
by 10 per step until ρ = 40.

 Region Values: The total benefit achieved by the
participants assigned to a region should be limited by the
value of the region. Hence, region values affect the
amounts of resources required to explore the threatened
area. In our previous efforts to evaluate the PSP-G
algorithm, we experimented with setting region values
according to the population, productivity (e.g. tourism
consumption, farming and fishery productions),
transportation development, etc. of the districts [7] or

 6

based on the number of injuries and values of property
damages incurred in past disasters [15]. Region values
thus chosen do not provide complete coverage of the
range and variations of the parameter. So, we chose to
generate region values randomly from distributions listed
in Table 1: In some experiments, we selected region
values randomly from uniform distributions with small
coefficients of variation (CV). The regions with values
thus selected are said to be similar. In other experiments,
region values were selected from the exponential and
multi-modal distributions with larger CV. In these cases,
regions are said to be dissimilar.

TABLE I. RANGES AND DISTRIBUTIONS OF PARAMETERS

Parameters CV Ranges Distributions

Region values < 0.1 [7000, 8000] Uniform

Region values ~0.3 [4000, 11000] Uniform

Region values 1.0 [100, 15000]
Truncated

exponential

Region values > 1.0
[100,1500] [6750,8250]

[13000, 15000]
Multi-modal

uniform

Benefits ~ 0.5 [1,α] Uniform

Costs ~0.5 [1, γ] Uniform

Benefit and cost values: We exploited the relationships

among the parameters in TSS and PSS in the generation
of benefits and costs of volunteers. In particular, for any
meaningful problem instance, the benefit values of
volunteers should be chosen relative to the values of
regions. The total budget B should be set based on the
costs of the volunteers. This is the rationales behind the
generation of benefit and cost values of the volunteers.

 Specifically, for each simulation experiment, we first
generated the number ρ of regions and values vk of the
regions randomly as described above. We then computed
α = ∑ 1≤ k≤ ρ vk / π and γ = B / π. α can be thought of as
the average benefit achievable by the volunteers if they
all are selected. For a budget B,γ can be thought of as
the average of available budget per volunteer. These
values are used to set the ranges of the uniform
distributions from which benefit and cost values in PSS
were generated randomly. This fact is summarized by the
last two lines in Table 1.
 Budget: The budget B constrains the numbers and
types of participants selected and assigned to regions. We
divide the available budget into five levels, hereafter
referred to as B = 20%, 50%, 80%, 100% and 200%. In
the severely budget-poor case, the available budget can
cover only 20% of the average total cost of all volunteers.
In the budget-constrained and budget-rich cases, the
available budget can cover 80% or 100% of the total cost
of available volunteers, respectively. Setting B = 200% in
essence removes the budget constraint.

B. Figures of Merits

We measure the merit of a solution {xik}, and hence the
solver or algorithm that produces the solution, by the
figures of merits defined below:

 Objective value of the solution {xik} is given by
(1). This is the criterion most commonly used to
compare solutions.

 The total number of selected participants is given
by ∑1≤i≤ π ∑1≤k≤ ρ xik , i.e., sum over all elements of
{xik}. A good solution may use more participants
with less total cost. However, in most situations,
we consider solutions that select fewer participants
to be better solutions.

 Total cost of selected participants is given by the
sum ∑1≤i≤ π ∑1≤k≤ ρ cik xik . A solution incurring less
total cost is clearly better than the ones incurring
higher total costs.

 The execution time of a solver (or algorithm)
refers to the amount of time required by the solver
(or algorithm) to return a solution. In all the
experiments, we set an upper limit of time that
each optimization solver is allowed to take to
return a solution. A solver may return a bad
solution or no solution when it requires more than
the allowed time to find an optimal solution.

 The amount of shortfall of a region Rk incurred by
a solution of an instance of PSP-Frugal measures
the degree the region is partially covered. It is
given by vk - ∑1≤i≤ π bik xik . A good solution is one
that keeps the total amount of shortfall small.

 The waste of a region Rk incurred by a solution of
an instance of PSP-practical tells us the degree to
which extra participants were assigned to the
region beyond what is needed to fully explore the
region. It is given by ∑1≤i≤ π bik xik - vk.. We use the
total waste of all regions as a figure of merit.

 For ease of comparison, we normalize the value of
each figure of merit by the corresponding maximum
possible value: They are, respectively, the total value of
all regions, total number of volunteers, total cost of all
volunteers, the maximum time limit set for the solvers
and total value of all regions. Except for where it is stated
otherwise, the maximum time limit for the solvers is 1000
seconds. The values of normalized figures of merit
depicted by all figures presented hereafter are averages of
results obtained from 3000 simulation runs. The 95%
confidential intervals are within two percent of the
corresponding average values.

C. PSP-G Algorithm

We also compare the performance of the above
mentioned optimization solvers against the performance
of two versions of greedy heuristic PSP-G algorithm. The
original version of PSP-G algorithm is described in [15].
Designed to solve the PSP-Frugal variant, it is essentially
a first-fit non-increasing bin-packing algorithm: The
decision on participant selections and assignments are
made in non-increasing order of the benefit-to-cost (B2C)
ratios Qi,k = bik / cik of participant Pi and region Rk. The
description of the original version is omitted due to space
limitation and its similarity with the enhanced PSP-G
algorithm, which is described in Figure 1. The
enhancement is necessary to make the algorithm
applicable to the PSP-Practical variant.

 7

Pseudo code of enhanced PSP-G algorithm
Inputs: TAS and PSS parameters of the problem instance

Outputs: βk, k = 1, 2, … ,ρ; objective value ∑k βk

{xik}: The selections and assignments of volunteers

Local variables:
βk : Current total benefit of participants assigned to Rk ;
Ck : Current total cost of participants assigned to Rk ;
ψ: The remaining budget;
Qk: List of B2C ratios Qi,k of volunteer Pi to region Rk ;
L: List of region ratios Lk = ∑1 ≤ i ≤π Qi,k of all regions ;

Initialization

1. Initialize xik = 0 for i = 1, 2, … , π and k = 1, 2, …, ρ;

2. Set ψ = B; setβk and Ck = 0, k = 1, 2, …, ρ;
3. For each region Rk, k = 1, 2, …ρ, calculate B2C ratios Qi,k

= bik / cik , for i = 1, 2, … , π, of all volunteers and put the
ratios in the list Qk in non-increasing order;

4. Compute region ratios Lk = ∑1 ≤ i ≤π Qi,k , k = 1, 2, … , ρ;
5. Sort list L of Lk in non-increasing order;

Selection and Assignment

6. while (L is not empty) do
7. Get k ; // The region ratio Lk is at the head of list L.
8. while (list Qk is not empty) do
9. Get Pi ; // Qik is at the head of Qk

10. if (Pi is not selected and βk < vk and Ck + cik <=ψ)
11. βk += bik; Ck += cik ; xik = 1 ;
12. end if
13. remove Qik ;
14. end while
15. ψ −= Ck;
16. if (βk < vk)
17. for i = 1, 2, … , π, xik = 0;
18. βk = 0; ψ +=Ck;
19. end if
20. Remove Lk from the head of list L;
21. end while
22. return outputs;

Figure 1. Pseudo-code description of the enhanced PSP-G algorithm

Similar to the original version, the enhanced version
also works with benefit to cost (B2C) ratios of volunteers
to regions, computed in line 3. Both versions use the
ratios to decide the order in which volunteers are
considered for selection and assignment (lines 8-14). A
major difference between the versions is that the
enhanced version focuses on one region at a time in non-
increasing order of region ratios: The region ratio Lk of
each region Rk is the sum of the B2C ratios over all
volunteers if they are assigned to Rk (line 4). When
selecting participants for the region Rk with the largest
region ratio in the list L (line 7), the enhanced version
uses the B2C list Qk for the region Rk (lines 8-14) , rather
than the global B2C list for all regions used by the
original version. Consequently, the enhanced version has
a lower complex (i.e., O(log)) than the complexity of
the original version (i.e., O(log)).

Another difference between the versions is the
selection rules (lines 10-12). The enhanced version
decides to select a participant for a region if he/she is still
available for selection and total benefit of all participants
already assigned to the region is still less than the value
of the region. In contrast, the original version is for PSP-

Frugal; it selects and assigns a participant to a region only
if the sum of his/her benefit and the current total benefit
of the region does not exceed the value of the region, thus
making sure that the total benefit of every region is at
most equal to region value.

Lines 16-20 in Figure 1 ensures that the 0/1 constraint
required by PSP-Practical is satisfied: If the total benefit
βk of the region Rk is not at least equal to its value, the
participants assigned to the region are freed and their
costs is returned to the remaining budget, thus leaving the
region Rk without any participants.

D. GAMS and NEOS Server

To evaluate the performance of optimization solvers,
the first step is to rewrite the formulations of PSP-Frugal
and PSP-Practical in terms of a general algebraic
modeling language so that they can be processed by the
solvers. For this purpose, we use the modeling language
provided by the General Algebraic Modeling System
(GAMS) [24]. As stated earlier, GAMS is a high-level
modeling system for mathematical programming and
optimization. It provides not only a compiler that
translates the formulations of linear, mixed integer linear,
nonlinear and quadratic programs into inputs required by
the solvers, but also accesses to the solvers.

Due to limitation on the number of constraints and
variables and number of nonzero elements allowed by the
free license, demo version of GAMS, we used it together
with the NEOS Server [14] and implemented a tool for
submitting GAMS model files to NEOS server. NEOS
Server is a free internet-based service for solving
numerical optimization problems. It provides access to
more than 60 state-of-the-art solvers in more than a dozen
optimization categories and offers a variety of interfaces
for accessing the solvers. Sample code of software tools
for creating and submitting jobs to the server and
retrieving and parsing solutions returned by the solver
can be found in [21]. For each submission, we can
specify the optimization solver to be used and upper limit
of time the solver can take to return a solution, while
providing the solver with an external file containing data
that specify the model and instance of PSP to be solved.

V. RELATIVE PERFORMANCE FOR PSP-FRUGAL

We now present the data on the relative performance
of the evaluated methods (i.e., the optimization solvers
[8-12] and the original version of PSP-G algorithm [15])
when they are used to solve instances of PSP-Frugal. The
data were obtained via simulation experiments. Four data
sets containing parameters that specify representative
instances of PSP-Frugal were used for this purpose. The
data sets differ in the underlying distributions from which
values of parameters were selected randomly: Table 1
lists the distributions.

As stated earlier, the purpose of this evaluation is to
obtain insight and data to support the choices of solvers
and heuristics used to solve the problems instances that
may arise in real-life scenarios. For this purpose, we
measure the merit of a solution produced by a solver or
algorithm, hence the merit of the solver or algorithm used
to produce the solution, by the figures of merit defined in

 8

Section IV. Each of the plots presented in this and the
next section shows the dependency of a specified
normalized figure of merit on the number ρ of regions,
typically for values of ρ equal to 10, 30 and 40,
corresponding to small to large threatened areas. The
plots are parameterized by available budget, typically for
B equals to 50%, 80% and 100%, corresponding to
budget-poor, budget-constrained and budget-rich
scenarios, respectively. Due to space limitation, only
representative plots are presented here. Plots that are
similar to the ones included here and plots for cases
where all solvers and the PSP-G algorithm have similar
performance are omitted. They can be found in [21].

A. Case of Similar Regions

Again, we say that regions with values selected from
uniform distributions listed in the first two rows of Table
1 are similar. The results reported by Figures 2, 3 and 4
are for the case where the coefficient of variation (CV) of
the underlying uniform distribution is 0.3; the results for
the case of CV = 0.1 are similar and hence omitted.

Objective Values: According to objective values, all
evaluated solvers have similar performance for different
number of regions and available budget. The normalized
objective values achieved by all solvers increases from
0.58 – 0.65 for B = 50% to 0.89 – 0.9 for B = 80%. With
budget thus constrained, PSP-G algorithm achieved a
smaller objective value, but the difference is within 5%.
When B = 100%, all methods achieve the best possible
normalized objective value of 1.0.

Number of selected participants: Figure 2 shows the
normalized number of selected participants for budget
equal to 80% and 100% . (We omit the plots for B equal
to 50%. When the budget is so severely constrained, the
solvers and PSP-G algorithms use essentially the same
number of participants.) One can see that with B = 80%,
the budget constraint the selection and assignment of
participants. All evaluated solvers and PSP-G algorithm
perform similarly along this dimension. The numbers of
participants used by these methods differ noticeably
when available budget is 100%: Part (b) of Figure 2
shows that the solution from MOSEK use approximately
10-20% fewer participants while achieving the same
objective value as other solvers and PSP-G algorithm.

The total cost of select participants: Figure 3 shows
the normalized total cost of selected participants incurred
by solutions produced by the evaluated solvers and PSP-
G algorithm for B = 80% and 100%. We note that in both
cases, the total cost incurred by solutions produced by
PSP-G algorithm decreases with number of regions. The
algorithm also produces selections that incur less total
costs than solutions produced by evaluated solvers, in
some cases by over 30%. The reason is that PSP-G
algorithm makes selection decisions in non-increasing
order of benefit to cost (B2C) ratios of participants. In
contrast, B2C ratios are not considered by the solvers.

Execution time: Figure 4 shows that the execution
time of evaluated methods for B equals to 50% and 80%.
(The plot for the case of B = 100% is similar to the plot
for B = 80% and hence is omitted.) As expected, PSP-G
algorithm has the smallest execution time. MOSEK and

Cbc have longer execution time than other solvers when
available budget is under 100%. MOSEK has the longest
execution time when available budget is under 50%, and
Cbc has longest execution time when available budget is
over 80%. In general, Cbc has the longest execution time,
and PSP-G algorithm has the smallest execution time in
all simulation experiments.

0

0.2

0.4

0.6

0.8

1

ρ = 10 ρ = 30 ρ = 40

N
or

m
al

iz
ed

 n
um

be
r o

f
se

le
ct

ed
 p

ar
tic

ip
an

ts

Number of regions

0

0.2

0.4

0.6

0.8

1

ρ = 10 ρ = 30 ρ = 40

N
or

m
al

iz
ed

 n
um

be
r o

f
se

le
ct

ed
 p

ar
tic

ip
an

ts

Number of regions

(b) Budget = 100%

(a) Budget = 80%

Symbols

Gurobi MOSEK XpressMP CPLEX Cbc PSP-G
Figure 2. Normalize number of selected participants for the case of

PSP-Frugal and similar regions

0

0.2

0.4

0.6

0.8

1

ρ = 10 ρ = 30 ρ = 40

N
or

m
al

iz
ed

 t
ot

al
 c

os
t o

f
se

le
ct

ed
 p

ar
tic

ip
an

ts

Number of regions

0

0.2

0.4

0.6

0.8

1

ρ = 10 ρ = 30 ρ = 40

N
or

m
al

iz
ed

 t
ot

al
 c

os
t o

f
se

le
ct

ed
 p

ar
tic

ip
an

ts

Number of regions

(b) Budget = 100%

(a) Budget = 80%

Symbols

Gurobi MOSEK XpressMP CPLEX Cbc PSP-G

Figure 3. Normalized total cost of selected participants for the case of
PSP-Frugal and similar regions

 Amounts of shortfall: The amount of shortfall
incurred by a solution for region Rk equals to vk −βk

where βk equals to the total benefit of all participants
assigned to the region. Hence, the normalized total
shortfall is equal to one minus the normalized objective
value. The solutions produced by all evaluated solvers

 9

have comparable amounts of total shortfalls, while the
solution produced by PSP-G algorithm has a slightly
larger amount of shortfall.

(a) Budget = 50%

Symbols

Gurobi MOSEK XpressMP CPLEX Cbc PSP-G

(b) Budget = 80%

Lo
g

 n
or

m
al

iz
ed

 e
xe

cu
tio

n
 ti

m
e

Lo
g

 n
or

m
al

iz
ed

 e
xe

cu
tio

n
 ti

m
e

Figure 4. Normalized execution times for the case of PSP-Frugal and

similar regions

B. Case of Dissimilar Regions

We also experimented with PSP-Frugal problem
instances with dissimilar region values. The values were
generated randomly from the exponential distribution
(with CV = 1.0) and multi-modal distribution (with CV >
1) listed in rows 3 and 4 in Table 1. From the results of
all experiments on instances of PSP-Frugal, we can
conclude that for all practical purposes, the relative
performance of evaluated solvers and PSP-G algorithm is
insensitive the distribution of region values. So, the
discussions presented above for the case of similar
regions by and large apply to the case of dissimilar
regions as well. For example, the normalized objective
values and total shortfalls of solutions produced by all
evaluated solvers are essentially the same. Again, the
solution found by the PSP-G algorithm has a slightly
smaller total value (and larger shortfall) and the value
increases with number of regions.

Performance data on number of selected participants
obtained from experiments on problem instances with
dissimilar region values exhibit the same behavior as the
data for the case of similar regions. Figure 5(a) depicts
the normalized selected number of participants for the
case of dissimilar regions and B equals 100%.
Comparing this plot with the one shown in Figure 3(a),
we see again that the solutions returned by MOSEK use
the fewest number of participants when available budget
is 100%, while the solutions from CPLEX and Cbc use
larger number of participants. Figure 5(b) depict the plots
for normalized total costs incurred by solutions produced

by the evaluated solvers and PSP-G algorithm for B =
100%. As expected, the PSP-G algorithm has the best
performance from the perspective of total cost; solutions
from CPLEX and Cbc incur the highest total costs to
select participants.

0

0.2

0.4

0.6

0.8

1

ρ = 10 ρ = 30 ρ = 40

N
or

m
al

iz
ed

 t
ot

al
 c

os
t o

f
se

le
ct

ed
 p

ar
tic

ip
an

ts

Number of regions
(b) Budget = 100%

0

0.2

0.4

0.6

0.8

1

ρ = 10 ρ = 30 ρ = 40

N
or

m
al

iz
ed

 n
um

be
r o

f
se

le
ct

ed
 p

ar
tic

ip
an

ts

Number of regions
(a) Budget = 100%

Symbols

Gurobi MOSEK XpressMP CPLEX Cbc PSP-G

Figure 5. (a) Normalized number and (b) normalized total cost of
selected participants for PSP-Frugal and dissimilar regions

VI. RELATIVE PERFORMANCE FOR PSP-PRACTICAL

We also assessed the relative performance of the
evaluated solvers and the enhanced PSP-G algorithm
when they were applied to solve instances of PSP-
Practical: We used the four sets of problem instances
described in Section IV in this series of simulation
experiments as well. In addition to objective values, total
number and cost of selected participants and execution
time taken by the solvers and the algorithm, we also
compared these evaluated methods according to the total
waste incurred by the solutions produced by them.

Objective values: The data obtained from our
experiments on PSP-Practical also indicate that the
relative performance of evaluated methods is not
sensitive to the coefficient of variation of the distribution
from which region values were selected. This statement is
particularly true from the perspective of objective values.
The normalized objective values achieved by solutions
produced by all evaluated solvers and the enhanced PSP-
G algorithm range from approximately 0.95 to 1.0 when
the available budget is equal to 80% and 100%. The only
exception is that the normalized objective value achieved
by MOSEK for ρ = 40 similar regions and B = 100%
budget is only 0.38. The reason is that MOSEK could not
return a good solution within the available time of 1000
seconds. When we extended the time limit to 2,000
seconds, the normalized objective value achieved by
MOSEK grew to 0.95.

Total number and cost of selected participants: Figure
6 and 7 show the normalized total number and
normalized total cost of selected participants for B =

 10

100%, respectively. (Data for B = 80% exhibit similar
behavior.) In general, the solutions from almost all
evaluated methods use slightly fewer participants in case
of dissimilar regions. Relatively, the solutions produced
by MOSEK and the enhanced PSP-G algorithm use more
participants while solutions from Gurobi and XpressMP
use fewer participants.

0

0.2

0.4

0.6

0.8

1

ρ = 10 ρ = 30 ρ = 40

N
or

m
al

iz
ed

 n
um

be
r

of

se
le

ct
ed

 p
ar

tic
ip

an
ts

Number of regions

Symbols

Gurobi MOSEK XpressMP CPLEX Cbc
Enhanced
PSP-G

0

0.2

0.4

0.6

0.8

1

ρ = 10 ρ = 30 ρ = 40

N
or

m
al

iz
ed

 n
um

be
r

of

se
le

ct
ed

 p
ar

tic
ip

an
ts

Number of regions
(a) Similar regions

(b) Dissimilar regions

Figure 6. Normalized total number of selected participants for the case

of PSP-Practical and B = 100%

Figure 7 shows the normalized total cost of selected
participants incurred by solutions obtained by the
evaluated solvers and the enhanced PSP-G algorithm.
One can see that in terms of this figure of merit, all the
methods perform slightly better for dissimilar regions
than for similar regions. The enhanced PSP-G algorithm
achieves the least total cost among all evaluated methods,
as it is for PSP-Frugal problem instances.

For both figures of merit, an exception to the general
observations occurs for MOSEK with B = 100% and ρ =
40 similar regions. Again, this happened when the solver
was given only 1000 seconds to compute and was not
able to return a good solution.

Execution time: Figure 8 shows the log of normalized
execution time used by the evaluated solvers and the
enhanced PSP-G algorithm to return their solutions of
instances of PSP-Practical. Similar to the data on other
figures of merit, the evaluated solvers and the enhanced
PSP-G algorithm all perform slightly better for the case
of dissimilar regions. The execution time taken by
MOSEK is the longest in all simulation experiments,
while the enhanced PSP-G algorithm takes significantly
short time to return as good solutions as the solvers.

Waste of region: Every solution of PSP-Practical must
either satisfies the constraint βk = ∑1≤i≤ π bik xik > vk, or βk

= 0. The total waste of all regions equals to ∑1≤k≤ ρ βk −
vk. Performance data shows that the normalized total
waste of regions incurred by solutions produced by the
evaluated solvers and the enhanced PSP-G algorithm is
at most 6% of total region value when B = 100%.

0

0.2

0.4

0.6

0.8

1

ρ = 10 ρ = 30 ρ = 40

N
or

m
al

iz
ed

 t
ot

al
 c

os
t o

f
se

le
ct

ed
 p

ar
tic

ip
an

ts

Number of regions

0

0.2

0.4

0.6

0.8

1

ρ = 10 ρ = 30 ρ = 40

N
or

m
al

iz
ed

 t
ot

al
 c

os
t o

f
se

le
ct

ed
 p

ar
tic

ip
an

ts

Number of regions
(a) Similar regions

Symbols (b) Dissimilar regions

Gurobi MOSEK XpressMP CPLEX Cbc
Enhanced
PSP-G

Figure 7. Normalized total cost of selected participants for the case of
PSP-Practical and B = 100%

Symbols (b) Dissimilar regions

(a) Similar regions

(a) Similar regions

Lo
g

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

Lo
g

no
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e

Gurobi MOSEK XpressMP CPLEX Cbc
Enhanced
PSP-G

Figure 8. Log normalized execution times for the case of PSP-
Practical and B = 100%

VII. SUMMARY AND CONCLUSION

The previous sections described four variants of the
PSP (Participant Selection Problem): PSP-Frugal, PSP-
Reliable, PSP-Practical and PSP-Backup. We counter the
problem when we try to select participants from π of
volunteers and assign the selected participants to ρ
disaster threatened regions to collect data. Each volunteer
is characteristics by ρ benefit values and ρ cost values
he/she can achieve and incur if assigned to the regions.

 11

The variants take into account different requirements and
constraints in participant selection in difference disaster
scenarios. PSP-Frugal is a variant of the well-known
generalized assignment problem (GAP) [7]. The other
variants are new formulations.

The evaluation study presented in the paper aims to
determine the relative merits of five popular optimization
solvers when used to find solutions of PSP-Frugal and
PSP-Practical. The solvers are Gurobi [8], MOSEK [9],
XpressMP [10], CPLEX [11], and Cbc [12]. We also
evaluated the performance of two versions of the PSP-G
algorithm for PSP-Frugal and PSP-Practical. The
performance data reported here were obtained via
simulation using four sets of problem instances defined
by parameters selected randomly from four different
distributions. They intend to model similar and dissimilar
regions and different disaster scenarios.

As expected, when compared according to the object
values achieved by their solutions, the evaluated solvers
have essentially the same performance. PSP-G algorithm
achieves a slight smaller objective value, but the
difference is within a few percents, insignificant for most
practical purposes. Another commonly used figure of
merit is execution time. According to this criterion, PSP-
G algorithm is significantly more advantageous. MOSEK
and Cbe have the longest execution time. In the case of
40 similar regions, MOSEK even took more than the
allowed 1000 time limit to produce a good solution.

We also compared the solvers and PSP-G algorithm by
the total number and cost of selected participants. The
solutions provided by the PSP-G algorithm consistently
incur the least total cost. The reason is that the algorithm
uses the benefit to cost ratios of volunteers to guide its
selection and assignment decisions. In contrast, the cost
factors are not taken into account by the evaluated solvers.
MOSEK uses fewer participants to achieve the same
objective values.

We plan to use data obtained from the study to support
the choices of solvers or algorithm by the participant
selection tool in CROSS [7] when it is presented with
PSP instances. All things considered, the tool can choose
to use the PSP-G algorithm for most problem instances.

ACKNOWLEDGMENT

This work was supported by the Taiwan Academia
Sinica, Sustainability Science Research Program,
thematic project "Disaster Resilience through Big Open
Data and Smart Things."

REFERENCES

[1] Generalized Assignment Problem, (last retrieved: June 19, 2016)
http://en.wikipedia.org/wiki/Generalized_assignment_problem

[2] T. Oncan, “A survey of generalized assignment problem and its
applications,” Information Systems and Operation Research, Vol.
45, No. 3, pp. 123-141, August 2007.

[3] S. Ibrahim, “A comprehensive review on intelligent surveillance
systems,” Communications in Science and Technology, vol. 1, pp.
7-14, 2016.

[4] Multisensor Surveillance Systems: The Fusion Perspective
surveillance systems, G. L. Foresti, C. S. Regazzoni, P. K.
Varshney, ed. Springer, 2003.

[5] M. N. K, Boulos, et al., “Crowdsourcing, citizen sensing and
sensor web technologies for public and environment health
surveillance and crisis management: trend, OGC standards and
application examples,” International Journal on Health
Geographics, pp 1-67, December 2011.

[6] List of Crowdsourcing Projects,
http://en.wikipedia.org/wiki/List_of_crowdsourcing_projects (Last
retrieved June 2016)

[7] E. T.-H. Chu, Y.-L. Chen, J. W. S. Liu and J. K. Zao, “Strategies
for crowdsourcing for disaster situation information,” WIT Trans.
on the Built Environment, Vol.119, pp. 257-269, 2011.

[8] Gurobi Optimizer, http://www.gurobi.com/products/gurobi-
optimizer, (Last retrieved: June 2016).

[9] MOSEK, https://www.mosek.com/ (Last retrieved: 2016)
[10] FICO ® Xpress Optimization Suite,

http://www.fico.com/en/products/fico-xpress-optimization-suite,
(Last retrieved: June 2016).

[11] IBM ILOG CPLEX Optimization Studio: http://www-
03.ibm.com/software/products/en/ibmilogcpleoptistud, (Last
retrieved: June 2016).

[12] J. Forrest and R. Lougee-Heimer, "Cbc user guide,"
http://www.coin-or.org/Cbc/cbcuserguide.html, (Last retrieved:
June 2016)

[13] List of optimization software,
https://en.wikipedia.org/wiki/List_of_optimization_software, (Last
retrieved: June 2016).

[14] Baron Software, http://archimedes.cheme.cmu.edu/?q=baron,
(Last retrieved: June 2016)

[15] E. T.-H Chu, C.-Y. Lin, P. H. Tsai and J. W. S. Liu, "Design and
implementation of participant selection for crowdsourcing disaster
information," International Journal on Safety and Security
Engineering, vol. 3, No. 1, pp. 48-62, March 2015

[16] D. W. Penticoa, “Assignment problems: a golden anniversary
survey,” European Journal of Operational Research, Vol. 176, No
2, pp. 774–793, January 2007.

[17] http://en.wikipedia.org/wiki/Knapsack_problem, Knapsack
Problem, (Last retrieved, June 2016)

[18] L. Fleischer, et. al., “Tight approximation algorithms for
maximum general assignment problems,” in Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 611-620, 2006.

[19] D. G. Cattrysee and V. N. Van Wassenhove, “A survey of
algorithms for the generalized assignment problem,” European
Journal of Operations Research, August 1992.

[20] B. Meindl and M.Templ, "Analysis of commercial and free and
open source solvers for linear optimization problems," Report
from Essnet Project on Common Tools and Harmonized
Methodologies for SDC in the ESS, 13 pages, February 2012.

[21] C. Y. Lin, “Participant Selection Problems,” MS thesis,
Department of Computer Science, National Tsing-Hua University,
Hsinchu, Taiwan, August 2016.

[22] I. Beniaminy, “Approximate algorithms for generalized
assignment problems,” MS thesis, Department of Math and CS,
Open University of Israel, June 2005

[23] R. Fourer, D. M. Gay, and B. W. Kernighan, " AMPL: a
mathematical programming language," Management Science, Vol.
36, pp. 519-554, 1990.

[24] GAMS: General Algebraic Modeling Systems,
https://www.gams.com/, (Last retrieved: June 2016)

[25] A. Neumaier, O. Shcherbina, W. Huyer, and T. Vinko, “A
comparison of complete global optimization solvers,”
Mathematical Programming, vol.103, no 2, pp. 335-356, 2005.

[26] GurobiOptimization [42]
http://www.gurobi.com/pdfs/benchmarks.pdf

[27] Mixed Integer Problem Library, http://miplib.zib.de/ (Last
retrieved, June 2016).

[28] H. Mittelmann, Benchmarks for optimization software,
http://plato.asu.edu/guide.html, (Last retrieved: August 2016).

[29] Netlib, https://en.wikipedia.org/wiki/Netlib, (Last retrieved: June
2016

