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Abstract—This paper presents integer linear programming 
formulations of four variants of the participant selection 
problem (PSP) that we may encounter in likely disaster 
scenarios. An evaluation study was carried out to quantify 
the relative performance of popular optimization solvers 
and a greedy heuristic algorithm when used to solve the PSP. 
The paper describes the study and presents the data.  
 
Index Terms—participant selection, generalized assignment, 
integer linear programming, optimization solvers, greedy 
algorithm, performance data 
 

I. INTRODUCTION 

We are concerned here with the combinatorial 
optimization problem called the participant selection 
problem (PSP). A variant of PSP is a special case of the 
generalized assignment problem (GAP) [1,2]. We 
encountered the PSP when we want to select participants 
from available volunteers and assign the selected 
participants to disaster threatened regions in order to 
gather and report observational data from the regions.  

A. Background 

Typical disaster monitoring and surveillance systems 
(e.g., [3, 4]) use physical sensors at selected locations in 
disaster threatened area to capture observational data. 
Base on data from available sensors, the system makes 
appropriate response decisions. Many factors, including 
deployment cost and physical damages, may prevent a 
system from having a sufficient number of physical 
sensors to provide it with full coverage of the threatened 
area. When this happens, crowdsourcing is an effective 
way to get additional observational data [5, 6]. By 
crowdsourcing, we mean the use of volunteers with 
wireless devices and social services as mobile human 
sensors. The system sends human sensors to locations 
where physical sensors are missing or are inadequate. 
Their eyewitness reports can complement data from 
physical sensors to eliminate blind spots and improve 
resolution in sensor coverage. 

Take the crowdsourcing support system CROSS [7] as 
an example. When the system finds the coverage of 
physical sensors inadequate, it starts a human sensor data 
collection process by broadcasting a call for participation 
to registered volunteers. The system then solves a PSP 
after receiving their responses: The input to the problem 
includes the number ρ (≥ 1) of regions R1, R2, … Rρ in the 
disaster affected area. The regions have values v1, v2, … 
vρ, respectively. Also given are the number π (>1) of 
volunteers available for selection and assignment and a 
benefit matrix and a cost matrix characterizing the 
volunteers: The element bik (0 < bik < ∞) of the benefit 
matrix and the element cik (0 < cik < ∞) of the cost matrix 
represent the benefit achievable by the selected 
participant Pi and the cost incurred by the participant, 
respectively, when he/she is assigned to the region Rk. 
The budget B constrains the total cost of all participants. 
A solution specifies whether each volunteer is selected 
and if selected to which region he/she is assigned. Among 
all solutions, the system tries to find one that maximizes 
the total benefit achievable by all selected participants 
subject to specified constraints, including that the total 
costs of all participants is no greater than the budget. 

We formulated four variants of PSP, each of which 
takes into account of requirements and constraints in 
participant selection for some disaster scenarios. The 
variants are PSP-Frugal, PSP-Reliable, PSP-Practical 
and PSP-Backup. PSP-Frugal requires that the solution 
never assigns more participants to any region than needed 
to fully explore the region: A region is said to be fully 
explored when the total benefit achievable by all 
participants assigned to the region is at least equal to the 
value of the region; otherwise, it is said to be partially 
explored. Solutions of PSP-Frugal may leave some 
regions partially explored. When such solutions are not 
acceptable, PSP-Reliable and PSP-Practical offer good 
alternatives. The former admits only solutions according 
to which every region is fully explored. The latter admits 
solutions which are such that every region is either fully 
explored or not explored at all (i.e., is assigned no 
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participants). PSP-Backup reserves some volunteers as 
backups to handle future unexpected emergencies. 

B. Objective and Contributions 

Today, many optimization solvers (e.g., [8-14]) can be 
used to solve these variants of PSP. Given sufficient 
computation time, the solvers can find optimal solutions, 
but may be outperformed by simple heuristics when 
available time is limited. We present in this paper an 
evaluation study aiming to determine the relative 
performance of five popular optimization servers (i.e., 
Gurobi [8], MOSEK [9], XpressMP [10], CPLEX [11], 
and Cbc [12]) and the greedy heuristic PSP-G  algorithm 
[15] when used to solve the PSP-Frugal and PSP-
Practical variants. The reason for focusing on these 
variants is that they model many real-life situations more 
closely: By allowing solutions which assign no 
participants to some regions, PSP-Practical enables the 
system to work with limited budget. PSP-Backup is 
essentially the same as PSP-Frugal when participants are 
selected from specified available volunteers instead of 
selecting participants from all available volunteers.  

  A contribution of the paper is the formulations of the 
variants of PSP. Another contribution is the performance 
data from our extensive experiments. We use several 
figures of merits to compare the performance of the 
solvers and the heuristic algorithm along multiple 
dimensions. The data provide insight into characteristics 
of problem instances for which different methods (i.e., 
evaluated solvers and heuristic algorithm) can produce 
good solutions in available time. Based on such decision 
support data, a participant selection tool can better choose 
a method to use when presented with a PSP instance.  

  Following this introduction, Section II presents 
related work. In particular, the section describes the 
above mentioned optimization servers and presents 
reasons for choosing them over other solvers. Section III 
presents the four formulations of PSP. Section IV 
presents how parameters that define individual problem 
instances are generated and the rationales behind their 
generation. The section also defines figures of merits 
used to compare the performance of solvers. Section V 
and VI present the results produced by the solvers and 
PSP-G algorithm and discuss the choice(s) of solvers for 
different instance of the variants of PSP. Chapter VII 
presents our conclusions. 

II. RELATED WORK 

We note that in the case of infinite budget (i.e., B = ∞), 
PSP-Frugal is a special case of the well-known maximum 
general assignment problem (GAP) [1, 2]. In turn, GAP is 
a generalization of the assignment problem [16].  

A.   Related Problems and Classical Solutions 

GAP arises in numerous real-life applications, 
including task scheduling, resource allocation, vehicle 
routing, computer network, and product planning. GAP is 
known to be NP-hard and APX-hard to approximate it. 
Over the years, numerous algorithms for solving or 
reducing GAP have been proposed and studied. They 
include relaxation algorithms, branch and bound 

algorithms, branch and cut algorithms, and heuristic 
algorithms. Some algorithms for solving the problem use 
solutions of the knapsack problem [17] as the basis. The 
heuristic algorithm PSP-G [15] and the enhanced version 
of PSP-G to be described in Section IV are examples. In 
addition to survey papers such as [2, 16-20], overviews of 
applications and solutions of GAP can be found in many 
graduate theses (e.g., [21, 22]) as well.  
     For finite B, the PSP-Frugal variant resembles the 
general distributed caching problem (DCP) treated in [18]. 
The problem can be stated in context of a server with a 
set of π known requests of t (≤ π) request types and ρ 
cache locations. Each location has a storage limit and a 
bandwidth limit, each request type has a known size, and 
each request has a bandwidth requirement and an 
associated profit. The server can respond to a request 
from a cache location if the request type is stored at the 
location and the location has sufficient bandwidth to meet 
the bandwidth requirement of the request. The server 
wants to find an assignment of request types to cache 
locations subject to the storage and bandwidth limits of 
the locations and selections of requests of the types stored 
at each location to respond with the objective of 
maximizing the total profit of all responded requests.  
     The DCP problem is one of the so called separable 
assignment problems (SAP), the optimization problem of 
assigning objects to bins with separate constraints for 
each bin. It is easy to see that PSP-Frugal is not a SAP 
but becomes one when the budget B constraining the total 
cost of exploring all regions is replaced by per region 
budgets Bk, for k = 1, 2 … ρ where Bk is the budget for 
exploring region Rk and ∑1≤k≤ ρ Bk = B. We can solve the 
PSP-Frugal problem approximately by first allocating the 
given budget to regions. There are many ways to solve 
the separable assignment problem, including the LP-
rounding based approximation algorithm and polynomial-
time local search approximation algorithm [18]. 

B.  Optimization Solvers 

As it will be evident in the next section, the variants of 
PSP studied here are binary integer linear programs (ILP), 
i.e., ILP in which every variable is constrained to be 0 or 
1. Recent advances in modeling languages and software 
tools have produced over 60 optimization solvers. 
Typical PSP instances presented by crowdsourcing 
support systems (e.g., [7]) are small to intermediate in 
size (e.g., numbers of regions and volunteers are in order 
of tens); available time for computing a solution is in 
order of minutes to tens of minutes, and near-optimal 
solutions are often acceptable. Many of the existing 
optimization solvers are well suited for them. For this 
reason, we choose to direct our attention to selecting and 
identifying optimization solvers that can produce good 
solutions for frequently encountered types of PSP 
instances, rather than modifying and evaluating existing 
approximate and heuristic algorithms developed to solve 
related problems in order to make them work sufficiently 
well for PSP. 

Specifically, among the state-of-the-art solvers, we 
chose to evaluate in depth the performance of the 
following five solvers when used to find optimal 
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solutions of PSP-Frugal and PSP-Practical. Hereafter, 
they are referred to as evaluated solvers.  

 Gurobi Optimizer [8]: Gurobi is one of the fastest, 
most powerful commercial solvers for linear 
programming (LP), quadratic programming and 
mixed integer programming (MIP) problems. 
Gurobi supports a variety of commonly used 
programming and model building languages. 

 MOSEK optimization software [9]: MOSEK is a 
high-performance optimization solver. Besides 
linear and mixed integer programming problems, 
MOSEK can solve quadratic and convex nonlinear 
programming problems and has interfaces to C, 
Java, MATLAB, .NET, and Python. 

  FICO ® Xpress Optimization Suite [10]: Xpress 
offers a powerful and versatile solver for solving 
highly complex, real world LP, MIP and NLP 
problems. It also provides a collection of 
optimization algorithms for solving large-scale 
linear problems and mixed integer problems.  

 CPLEX [11]: CPLEX Optimization Studio is a 
commercial solver designed to solve large scale 
linear programming problems. It was named for 
the simplex method implemented in the C. 
CPLEX is accessible through modeling systems 
such as AMPL (a mathematical programming 
language) [23] and GAMS (General Algebraic 
Modeling System) [24]. 

 Cbc (Coin-or branch and cut) [12]: Cbc is an open 
source mixed integer programming solver. As its 
name indicates, Cbc uses branch and cut algorithm 
to solve optimization problem. It can be used as a 
callable library or a stand-alone executable. 

C.   Performance Comparisons 

In practice, optimization solvers may not find and 
return optimal solutions when the problem size becomes 
large and time available to find the solutions are limited. 
This fact motivated several previous studies on relative 
performance of optimization solvers, as well as the 
evaluation study to be reported later in the paper.  

As an example of efforts in this direction, A. 
Neumaieret, et al. [25] evaluated several existing 
optimization software, including BARON [14], for global 
optimization problems and constraint satisfaction. Their 
goal, like ours, is to provide data on the relative 
performance of optimization solvers that can help us to 
determine the choice(s) of solvers for specific problem 
instances. The results of the study showed that BARON 
was the fastest and most robust solver: BARON was able 
to complete the search in over two third of the 
optimization problems with less than 100 variables. For 
larger problems, other optimization solvers may have 
higher success rate in finding an optimal solution than 
BARON, but may have longer execution time.  

  The benchmarks published in [26] compared the 
performance of Gurobi with many commercial and open 
source optimization solvers. The test sets include internal 
type and public type. The internal-type test set has over 
10,000 problems. They were used to assess performance 

improvements achieved by Gurobi from version to 
version. The public type uses 2010 MIPLIB (Mixed 
Integer Problem Library) [27] as test sets to compare the 
performance against other solvers. The performance data 
showed Gurobi is the fastest solver for linear 
programming, mixed integer programming or quadratic 
programming models. XPRESS is a slightly slower than 
Gurobi on linear programming problems, and so is Cbc.  

  Our choices of the above listed optimization solvers 
for in depth evaluation are based on the benchmark 
performance of state-of-the-art solvers published in [28]. 
The test cases used are from NETLIB [29] and MIPLIB 
library containing a collection of real-life problems. The 
evaluation set 25,000 seconds as time limit. The results 
on benchmark performance of commercial optimization 
solvers (including Gurobi, MOSEK, and XPRESS and 
CPLEX) show that they perform better than other solvers. 

III. FORMULATIONS OF PSP 

Specifically, the participant selection problem (PSP) 
can be formulated as an integer linear programming 
problem. The parameters of the formulations are denoted 
by the following notations. They are positive integers:  

 V is the objective value and is also referred to as 
the total value of the selection.  

 The threatened area contains ρ regions R1, R2, … 
Rρ, and their values are v1, v2, … vρ, respectively. 

 A selection is from π volunteers; They are referred 
to as P1, P2, … Pπ .  

 For i = 1, 2, … π and k = 1, 2, … ρ,  
- bik is the benefit achieved by Pi if he/she is 

assigned to region Rk.. 
- cik is the cost of Pi when the participant is 

assigned to region Rk. 
 {xik} for i = 1, 2, … π and k = 1, 2, … ρ, is a 

boolean set. xik = 1 indicates that Pi is selected and 
is assigned to Rk; xik = 0 otherwise.   

 B is the total budget available to be spent on all 
selected participants. 

 A selection has η groups G1, G2, … Gη of 
participants: Each participant belongs to one group 
according to his/her skills and the organization 
he/she belongs. 

A.  PSP-Frugal 

 PSP-Frugal is a variant that resembles GAP in general.   
Formally, the formulation of PSP-Frugal is stated below. 

PSP-Frugal:    

     Maximize   V =∑1≤k≤ ρ ∑ 1≤i≤ π bik xik                 (1) 

     Subject to   xik ϵ {0,1}   i = 1, 2, … π                        (2) 
                                           k = 1, 2, … ρ    

                        ∑1≤k≤ ρ xik ≤ 1     i = 1, 2, … π                  (3) 

                        ∑1≤i≤ π bik xik ≤ vk    k = 1, 2, … ρ             (4)                      

                        ∑1≤k≤ ρ ∑1≤i≤ π cik xik ≤ B                   (5)  

     The total value V of the selection, as given by Eq. (1), 
is the sum of benefits achieved by all of the selected and 
assigned participants. Like all variants of PSP, the 
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objective of PSP-Frugal is to maximize the total value. 
The set {xik} for all i = 1, 2, … π and k = 1, 2, … ρ gives 
the selection of a subset of volunteers to be participants 
and an assignment of the participants to regions. The 
inequality (3) ensures that each participant is assigned to 
at most one region. The constraint (4) ensures that the 
solution {xik} never assigns more participants to any 
region than needed to achieve the full value of the region. 
This is why this variant is called PSP-Frugal. The 
inequality (5) says the total cost incurred by all selected 
participants must not be greater than the budget B.  

Because of constraint (4), PSP-Frugal allows 
solutions in which the total benefit of all participants 
assigned to a region may be less than the value of the 
region. In other words, the numbers of participants 
assigned to some regions are insufficient to achieve the 
full values of the regions. We call such a region a 
partially explored region and the difference between the 
value of a region and the total benefit of all participants 
assigned to the region the shortfall of the region. 

B.  Other Variants 

In scenarios where it is not acceptable to have some 
regions partially explored, PSP-Reliable is an alternative: 
The PSP-Reliable variant is the same as PSP-Frugal, 
except constraint (4) is replaced by  

 PSP-Reliable:     ∑1≤i≤ π bik xik ≥ vk   k = 1, 2, … ρ  (4a) 

PSP-Reliable guarantees that all regions in the threatened 
area are fully explored to achieve the full values of the 
regions. Because of this constraint, PSP-Reliable is 
unlike GAP and variants of GAP. 

 PSP-Reliable may not have a solution since solutions 
that satisfy constraints (2), (3) and (4a) may be too costly 
and hence exceeds the budget limit. A more practical 
alternative is called PSP-Practical: For this variant the 
constraint (4) is replaced by 

PSP-Practical:     ∑1≤i≤ π bik xik ≥ vk , or = 0      
                                               k = 1, 2, … ρ               (4b) 

The variant is said to be practical because it always has 
feasible solutions. A solution of PSP-Practical aims to 
maximize the total benefit of all the selected participants 
under the condition that each region is either to be fully 
explored or not explored at all. PSP-Practical resembles 
0/1 assignment in general.  

 While PSP-Frugal may have the shortfall problem, 
PSP-Practical may have the waste problem: Constraint 
(4b) allows assignments according to which the total 
benefits of some regions exceed the values of the regions. 
In other word, there may be some region Rk, for which βk 
= ∑1≤i≤ π bik xik > vk. We call the difference βk − vk the 
waste of region Rk.  

The variants defined above assume that all of 
volunteers are eligible for selection. Their solutions may 
leave no participants available to handle unexpected 
emergencies. This fact motivated the condition stating the 
need to reserve some volunteers as backups. In this case, 
we divide volunteers into η groups G1, G2, … Gη 

according to some criteria (e.g., skills such as first aid, 

fire control, etc.) PSP-Backup is defined by the following 
constraint in addition to (1) - (5).  

    PSP-Backup:   ∑PiϵGj (1 −∑1≤k≤ ρ xik) ≥ ψj ,      
                                                            j = 1, 2,… η    (6) 

ψj in the right hand side of the inequality denotes the 
required number of reserved volunteers in group Gj. The 
sum on the left hand side is the number of volunteers in 
group Gj who are not selected. 

IV. PERFORMANCE EVALUATION METHODS 

We conducted simulation experiments to determine the 
relative performance of popular optimization solvers 
Gurobi, MOSEK, Xpress, CPLEX, and Cbc [8-12] when 
used to solve the PSP-Frugal and PSP-Practical variants 
of the participant selection problem. In particular, we aim 
to get data on their relative performance for different 
distributions of the parameters that define individual 
problem instances. We also aim to determine how the 
simple greedy heuristic algorithm PSP-G [15] and an 
enhanced version of PSP-G algorithm perform relative to 
the evaluated solvers.  

A.  Parameter Generation and Rationales 

In each experiment, we invoked the solvers and PSP-G 
algorithm to find solutions of a synthetic instance of PSP. 
We divide the parameters that specify each instance into 
two subsets: a task assignment specification (TAS) and a 
participant selection specification (PSS). The values of 
the parameters in each TAS and PSS were generated 
randomly and independently. 

 Specifically, the TAS of a problem instance includes 
the number of regions and the values of the regions. PSS 
includes the number of volunteers, the benefits and costs 
of each volunteer, and the total budget. For each 
simulation experiment, we generated 3,000 sets of TAS 
and PSS samples, one for each simulation run. 
Performance data collected during the experiments 
indicated that the sample size is large enough to make the 
statistical error in each of the estimated performance 
measure less than 2% with 95 percent confidence.  

Number of Regions: We chose the range of ρ (the 
number of regions) based on Taiwan geography: A 
threatened area is a county (e.g., Yunlin County) or city 
(e.g., Taipei City and Hsinchu City). Each region is a 
district in the county/city. We started from the minimum 
number of region being 5, since areas with fewer than 5 
regions are too small for our purpose. The maximum 
number of districts is 38; that is the number of districts in 
Kaohsiung City. So, for each simulation experiment, we 
started from ρ = 5 and multiplied ρ by 2 or incremented ρ 
by 10 per step until ρ = 40. 

 Region Values: The total benefit achieved by the 
participants assigned to a region should be limited by the 
value of the region. Hence, region values affect the 
amounts of resources required to explore the threatened 
area. In our previous efforts to evaluate the PSP-G 
algorithm, we experimented with setting region values 
according to the population, productivity (e.g. tourism 
consumption, farming and fishery productions), 
transportation development, etc. of the districts [7] or 
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based on the number of injuries and values of property 
damages incurred in past disasters [15]. Region values 
thus chosen do not provide complete coverage of the 
range and variations of the parameter. So, we chose to 
generate region values randomly from distributions listed 
in Table 1: In some experiments, we selected region 
values randomly from uniform distributions with small 
coefficients of variation (CV). The regions with values 
thus selected are said to be similar. In other experiments, 
region values were selected from the exponential and 
multi-modal distributions with larger CV. In these cases, 
regions are said to be dissimilar. 

TABLE I.  RANGES AND DISTRIBUTIONS OF PARAMETERS 

Parameters CV Ranges Distributions

Region values < 0.1 [7000, 8000] Uniform 

Region values ~0.3 [4000, 11000] Uniform 

Region values 1.0 [100, 15000] 
Truncated 

exponential 

Region values  > 1.0 
[100,1500] [6750,8250] 

[13000, 15000] 
Multi-modal 

uniform 

Benefits  ~ 0.5  [1,α] Uniform 

Costs  ~0.5 [1, γ] Uniform 

 
Benefit and cost values: We exploited the relationships 

among the parameters in TSS and PSS in the generation 
of benefits and costs of volunteers. In particular, for any 
meaningful problem instance, the benefit values of 
volunteers should be chosen relative to the values of 
regions. The total budget B should be set based on the 
costs of the volunteers. This is the rationales behind the 
generation of benefit and cost values of the volunteers. 

 Specifically, for each simulation experiment, we first 
generated the number ρ of regions and values vk of the 
regions randomly as described above. We then computed 
α = ∑ 1≤ k≤ ρ  vk / π and γ = B / π. α can be thought of as 
the average benefit achievable by the volunteers if they 
all are selected. For a budget B,γ can be thought of as 
the average of available budget per volunteer. These 
values are used to set the ranges of the uniform 
distributions from which benefit and cost values in PSS 
were generated randomly. This fact is summarized by the 
last two lines in Table 1.  
     Budget: The budget B constrains the numbers and 
types of participants selected and assigned to regions. We 
divide the available budget into five levels, hereafter 
referred to as B = 20%, 50%, 80%, 100% and 200%. In 
the severely budget-poor case, the available budget can 
cover only 20% of the average total cost of all volunteers. 
In the budget-constrained and budget-rich cases, the 
available budget can cover 80% or 100% of the total cost 
of available volunteers, respectively. Setting B = 200% in 
essence removes the budget constraint. 

B.  Figures of Merits 

We measure the merit of a solution {xik}, and hence the 
solver or algorithm that produces the solution, by the 
figures of merits defined below:  

 Objective value of the solution {xik} is given by 
(1). This is the criterion most commonly used to 
compare solutions.  

 The total number of selected participants is given 
by ∑1≤i≤ π ∑1≤k≤ ρ xik , i.e., sum over all elements of 
{xik}. A good solution may use more participants 
with less total cost. However, in most situations, 
we consider solutions that select fewer participants 
to be better solutions. 

 Total cost of selected participants is given by the 
sum ∑1≤i≤ π ∑1≤k≤ ρ  cik xik . A solution incurring less 
total cost is clearly better than the ones incurring 
higher total costs. 

 The execution time of a solver (or algorithm) 
refers to the amount of time required by the solver 
(or algorithm) to return a solution. In all the 
experiments, we set an upper limit of time that 
each optimization solver is allowed to take to 
return a solution. A solver may return a bad 
solution or no solution when it requires more than 
the allowed time to find an optimal solution. 

 The amount of shortfall of a region Rk incurred by 
a solution of an instance of PSP-Frugal measures 
the degree the region is partially covered. It is 
given by vk - ∑1≤i≤ π bik xik . A good solution is one 
that keeps the total amount of shortfall small. 

 The waste of a region Rk incurred by a solution of 
an instance of PSP-practical tells us the degree to 
which extra participants were assigned to the 
region beyond what is needed to fully explore the 
region. It is given by ∑1≤i≤ π bik xik  - vk.. We use the 
total waste of all regions as a figure of merit.  

     For ease of comparison, we normalize the value of 
each figure of merit by the corresponding maximum 
possible value: They are, respectively, the total value of 
all regions, total number of volunteers, total cost of all 
volunteers, the maximum time limit set for the solvers 
and total value of all regions. Except for where it is stated 
otherwise, the maximum time limit for the solvers is 1000 
seconds. The values of normalized figures of merit 
depicted by all figures presented hereafter are averages of 
results obtained from 3000 simulation runs. The 95% 
confidential intervals are within two percent of the 
corresponding average values. 

C.  PSP-G Algorithm 

We also compare the performance of the above 
mentioned optimization solvers against the performance 
of two versions of greedy heuristic PSP-G algorithm. The 
original version of PSP-G algorithm is described in [15]. 
Designed to solve the PSP-Frugal variant, it is essentially 
a first-fit non-increasing bin-packing algorithm: The 
decision on participant selections and assignments are 
made in non-increasing order of the benefit-to-cost (B2C) 
ratios Qi,k = bik / cik of participant Pi and region Rk. The 
description of the original version is omitted due to space 
limitation and its similarity with the enhanced PSP-G 
algorithm, which is described in Figure 1. The 
enhancement is necessary to make the algorithm 
applicable to the PSP-Practical variant.  
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Pseudo code of enhanced PSP-G algorithm
Inputs: TAS and PSS parameters of the problem instance

Outputs: βk, k = 1, 2, … ,ρ; objective value ∑k βk

{xik}: The selections and assignments of volunteers

Local variables: 
βk : Current total benefit of participants assigned to Rk ;
Ck : Current total cost of participants assigned to Rk ;
ψ: The remaining budget;
Qk: List of B2C ratios Qi,k of volunteer Pi to region Rk ;
L:  List of region ratios Lk = ∑1 ≤ i ≤π Qi,k of all regions ;

Initialization

1. Initialize xik = 0 for i = 1, 2, … , π and k = 1, 2, …, ρ;

2. Set ψ = B; setβk and Ck = 0, k = 1, 2, …, ρ; 
3. For each region Rk, k = 1, 2, …ρ, calculate B2C ratios Qi,k

= bik / cik , for i = 1, 2, … , π, of all volunteers and put the 
ratios in the list Qk in non-increasing order; 

4. Compute region ratios Lk = ∑1 ≤ i ≤π Qi,k , k = 1, 2, … , ρ;
5. Sort list L of Lk in non-increasing order;

Selection and Assignment

6. while (L is not empty) do
7. Get k ;  // The region ratio Lk is at the head of list L.
8. while (list Qk is not empty) do
9. Get Pi ; // Qik is at the head of Qk

10. if (Pi is not selected and βk < vk and Ck + cik <=ψ)  
11. βk += bik; Ck += cik ; xik = 1 ;
12. end if
13. remove  Qik ;
14. end while
15. ψ −= Ck; 
16. if (βk < vk)  
17. for i = 1, 2, … , π, xik = 0; 
18. βk = 0;  ψ +=Ck;
19. end if
20. Remove Lk from the head of list L;
21. end while
22. return outputs; 

 
Figure 1.   Pseudo-code description of the enhanced PSP-G algorithm 

Similar to the original version, the enhanced version 
also works with benefit to cost (B2C) ratios of volunteers 
to regions, computed in line 3. Both versions use the 
ratios to decide the order in which volunteers are 
considered for selection and assignment (lines 8-14). A 
major difference between the versions is that the 
enhanced version focuses on one region at a time in non-
increasing order of region ratios: The region ratio Lk  of 
each region Rk is the sum of the B2C ratios over all 
volunteers if they are assigned to Rk (line 4). When 
selecting participants for the region Rk with the largest 
region ratio in the list L (line 7), the enhanced version 
uses the B2C list Qk for the region Rk (lines 8-14) , rather 
than the global B2C list for all regions used by the 
original version. Consequently, the enhanced version has 
a lower complex (i.e., O( log)) than the complexity of 
the original version (i.e., O( log )). 

Another difference between the versions is the 
selection rules (lines 10-12). The enhanced version 
decides to select a participant for a region if he/she is still 
available for selection and total benefit of all participants 
already assigned to the region is still less than the value 
of the region. In contrast, the original version is for PSP-

Frugal; it selects and assigns a participant to a region only 
if the sum of his/her benefit and the current total benefit 
of the region does not exceed the value of the region, thus 
making sure that the total benefit of every region is at 
most equal to region value. 

Lines 16-20 in Figure 1 ensures that the 0/1 constraint 
required by PSP-Practical is satisfied: If the total benefit 
βk of the region Rk is not at least equal to its value, the 
participants assigned to the region are freed and their 
costs is returned to the remaining budget, thus leaving the 
region Rk without any participants.  

D.  GAMS and NEOS Server 

To evaluate the performance of optimization solvers, 
the first step is to rewrite the formulations of PSP-Frugal 
and PSP-Practical in terms of a general algebraic 
modeling language so that they can be processed by the 
solvers. For this purpose, we use the modeling language 
provided by the General Algebraic Modeling System 
(GAMS) [24]. As stated earlier, GAMS is a high-level 
modeling system for mathematical programming and 
optimization. It provides not only a compiler that 
translates the formulations of linear, mixed integer linear, 
nonlinear and quadratic programs into inputs required by 
the solvers, but also accesses to the solvers.  

Due to limitation on the number of constraints and 
variables and number of nonzero elements allowed by the 
free license, demo version of GAMS, we used it together 
with the NEOS Server [14] and implemented a tool for 
submitting GAMS model files to NEOS server. NEOS 
Server is a free internet-based service for solving 
numerical optimization problems. It provides access to 
more than 60 state-of-the-art solvers in more than a dozen 
optimization categories and offers a variety of interfaces 
for accessing the solvers. Sample code of software tools 
for creating and submitting jobs to the server and 
retrieving and parsing solutions returned by the solver 
can be found in [21]. For each submission, we can 
specify the optimization solver to be used and upper limit 
of time the solver can take to return a solution, while 
providing the solver with an external file containing data 
that specify the model and instance of PSP to be solved.   

V. RELATIVE PERFORMANCE FOR PSP-FRUGAL  

We now present the data on the relative performance 
of the evaluated methods (i.e., the optimization solvers 
[8-12] and the original version of PSP-G algorithm [15]) 
when they are used to solve instances of PSP-Frugal. The 
data were obtained via simulation experiments. Four data 
sets containing parameters that specify representative 
instances of PSP-Frugal were used for this purpose. The 
data sets differ in the underlying distributions from which 
values of parameters were selected randomly: Table 1 
lists the distributions.  

As stated earlier, the purpose of this evaluation is to 
obtain insight and data to support the choices of solvers 
and heuristics used to solve the problems instances that 
may arise in real-life scenarios. For this purpose, we 
measure the merit of a solution produced by a solver or 
algorithm, hence the merit of the solver or algorithm used 
to produce the solution, by the figures of merit defined in 
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Section IV. Each of the plots presented in this and the 
next section shows the dependency of a specified 
normalized figure of merit on the number ρ of regions, 
typically for values of ρ equal to 10, 30 and 40, 
corresponding to small to large threatened areas. The 
plots are parameterized by available budget, typically for 
B equals to 50%, 80% and 100%, corresponding to 
budget-poor, budget-constrained and budget-rich 
scenarios, respectively. Due to space limitation, only 
representative plots are presented here. Plots that are 
similar to the ones included here and plots for cases 
where all solvers and the PSP-G algorithm have similar 
performance are omitted. They can be found in [21]. 

A. Case of Similar Regions 

Again, we say that regions with values selected from 
uniform distributions listed in the first two rows of Table 
1 are similar. The results reported by Figures 2, 3 and 4 
are for the case where the coefficient of variation (CV) of 
the underlying uniform distribution is 0.3; the results for 
the case of CV = 0.1 are similar and hence omitted.   

Objective Values: According to objective values, all 
evaluated solvers have similar performance for different 
number of regions and available budget. The normalized 
objective values achieved by all solvers increases from 
0.58 – 0.65 for B = 50% to 0.89 – 0.9 for B = 80%. With 
budget thus constrained, PSP-G algorithm achieved a 
smaller objective value, but the difference is within 5%. 
When B = 100%, all methods achieve the best possible 
normalized objective value of 1.0. 

Number of selected participants:   Figure 2 shows the 
normalized number of selected participants for budget 
equal to 80% and 100% . (We omit the plots for B equal 
to 50%. When the budget is so severely constrained, the 
solvers and PSP-G algorithms use essentially the same 
number of participants.)  One can see that with B = 80%, 
the budget constraint the selection and assignment of 
participants. All evaluated solvers and PSP-G algorithm 
perform similarly along this dimension. The numbers of 
participants used by these methods differ noticeably 
when available budget is 100%: Part (b) of Figure 2 
shows that the solution from MOSEK use approximately 
10-20% fewer participants while achieving the same 
objective value as other solvers and PSP-G algorithm. 

The total cost of select participants: Figure 3 shows 
the normalized total cost of selected participants incurred 
by solutions produced by the evaluated solvers and PSP-
G algorithm for B = 80% and 100%. We note that in both 
cases, the total cost incurred by solutions produced by 
PSP-G algorithm decreases with number of regions. The 
algorithm also produces selections that incur less total 
costs than solutions produced by evaluated solvers, in 
some cases by over 30%. The reason is that PSP-G 
algorithm makes selection decisions in non-increasing 
order of benefit to cost (B2C) ratios of participants. In 
contrast, B2C ratios are not considered by the solvers.  

Execution time: Figure 4 shows that the execution 
time of evaluated methods for B equals to 50% and 80%. 
(The plot for the case of B = 100% is similar to the plot 
for B = 80% and hence is omitted.) As expected, PSP-G 
algorithm has the smallest execution time. MOSEK and 

Cbc have longer execution time than other solvers when 
available budget is under 100%. MOSEK has the longest 
execution time when available budget is under 50%, and 
Cbc has longest execution time when available budget is 
over 80%. In general, Cbc has the longest execution time, 
and PSP-G algorithm has the smallest execution time in 
all simulation experiments. 
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Figure 2.  Normalize number of selected participants  for  the case of 
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Figure 3.  Normalized total cost of selected participants for the case of 
PSP-Frugal and similar regions  

 Amounts of shortfall: The amount of shortfall 
incurred by a solution for region Rk  equals to vk −βk 

where βk equals to the total benefit of all participants 
assigned to the region. Hence, the normalized total 
shortfall is equal to one minus the normalized objective 
value. The solutions produced by all evaluated solvers 
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have comparable amounts of total shortfalls, while the 
solution produced by PSP-G algorithm has a slightly 
larger amount of shortfall. 
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Figure 4.  Normalized execution times for the case of PSP-Frugal and 

similar regions 

B. Case of Dissimilar Regions 

We also experimented with PSP-Frugal problem 
instances with dissimilar region values. The values were 
generated randomly from the exponential distribution 
(with CV = 1.0) and multi-modal distribution (with CV > 
1) listed in rows 3 and 4 in Table 1. From the results of 
all experiments on instances of PSP-Frugal, we can 
conclude that for all practical purposes, the relative 
performance of evaluated solvers and PSP-G algorithm is 
insensitive the distribution of region values. So, the 
discussions presented above for the case of similar 
regions by and large apply to the case of dissimilar 
regions as well. For example, the normalized objective 
values and total shortfalls of solutions produced by all 
evaluated solvers are essentially the same. Again, the 
solution found by the PSP-G algorithm has a slightly 
smaller total value (and larger shortfall) and the value 
increases with number of regions. 

Performance data on number of selected participants 
obtained from experiments on problem instances with 
dissimilar region values exhibit the same behavior as the 
data for the case of similar regions. Figure 5(a)  depicts 
the normalized selected number of participants for the 
case of dissimilar regions and B equals 100%.  
Comparing this plot with the one shown in Figure 3(a), 
we see again that the solutions returned by MOSEK use 
the fewest number of participants when available budget 
is 100%, while the solutions from CPLEX and Cbc use 
larger number of participants. Figure 5(b) depict the plots 
for normalized total costs incurred by solutions produced 

by the evaluated solvers and PSP-G algorithm for B = 
100%. As expected, the PSP-G algorithm has the best 
performance from the perspective of total cost; solutions 
from CPLEX and Cbc incur the highest total costs to 
select participants. 
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Figure 5.  (a) Normalized number and (b) normalized total cost of 
selected participants for PSP-Frugal and dissimilar regions 

VI. RELATIVE PERFORMANCE FOR PSP-PRACTICAL 

We also assessed the relative performance of the 
evaluated solvers and the enhanced PSP-G algorithm  
when they were applied to solve instances of PSP-
Practical: We used the four sets of problem instances 
described in Section IV in this series of simulation 
experiments as well. In addition to objective values, total 
number and cost of selected participants and execution 
time taken by the solvers and the algorithm, we also 
compared these evaluated methods according to the total 
waste incurred by the solutions produced by them.  

Objective values: The data obtained from our 
experiments on PSP-Practical also indicate that the 
relative performance of evaluated methods is not 
sensitive to the coefficient of variation of the distribution 
from which region values were selected. This statement is 
particularly true from the perspective of objective values. 
The normalized objective values achieved by solutions 
produced by all evaluated solvers and the enhanced PSP-
G algorithm  range from approximately 0.95 to 1.0 when 
the available budget is equal to 80% and 100%.  The only 
exception is that the normalized objective value achieved 
by MOSEK for ρ = 40 similar regions and B = 100% 
budget is only 0.38. The reason is that MOSEK could not 
return a good solution within the available time of 1000 
seconds. When we extended the time limit to 2,000 
seconds, the normalized objective value achieved by 
MOSEK grew to 0.95. 

Total number and cost of selected participants: Figure 
6 and 7 show the normalized total number and 
normalized total cost of selected participants for B = 
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100%, respectively.  (Data for B = 80% exhibit similar 
behavior.) In general, the solutions from almost all 
evaluated methods use slightly fewer participants in case 
of dissimilar regions. Relatively, the solutions produced 
by MOSEK and the enhanced PSP-G algorithm use more 
participants while solutions from Gurobi and XpressMP 
use fewer participants.  
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Figure 6.  Normalized total number of selected participants for the case 

of PSP-Practical and B = 100% 

Figure 7 shows the normalized total cost of selected 
participants incurred by solutions obtained by the 
evaluated solvers and the enhanced PSP-G algorithm. 
One can see that in terms of this figure of merit, all the 
methods perform slightly better for dissimilar regions 
than for similar regions. The enhanced PSP-G algorithm 
achieves the least total cost among all evaluated methods, 
as it is for PSP-Frugal problem instances.  

For both figures of merit, an exception to the general 
observations occurs for MOSEK with B = 100% and ρ = 
40 similar regions. Again, this happened when the solver 
was given only 1000 seconds to compute and was not 
able to return a good solution.  

Execution time: Figure 8 shows the log of normalized 
execution time used by the evaluated solvers and the 
enhanced PSP-G algorithm to return their solutions of 
instances of PSP-Practical. Similar to the data on other 
figures of merit, the evaluated solvers and the enhanced 
PSP-G algorithm all perform slightly better for the case 
of dissimilar regions. The execution time taken by 
MOSEK is the longest in all simulation experiments, 
while the enhanced PSP-G algorithm takes significantly 
short time to return as good solutions as the solvers.  

Waste of region: Every solution of PSP-Practical must 
either satisfies the constraint βk = ∑1≤i≤ π bik xik > vk, or βk 

= 0. The total waste of all regions equals to ∑1≤k≤ ρ βk − 
vk. Performance data shows that the normalized total 
waste of regions incurred by solutions produced by the 
evaluated solvers and the enhanced PSP-G algorithm is   
at most 6% of total region value when B = 100%.  
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Figure 7.  Normalized total cost of selected participants for the case of 
PSP-Practical and B = 100% 
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VII. SUMMARY AND CONCLUSION  

The previous sections described four variants of the 
PSP (Participant Selection Problem): PSP-Frugal, PSP-
Reliable, PSP-Practical and PSP-Backup. We counter the 
problem when we try to select participants from π of 
volunteers and assign the selected participants to ρ 
disaster threatened regions to collect data. Each volunteer 
is characteristics by ρ benefit values and ρ cost values 
he/she can achieve and incur if assigned to the regions. 
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The variants take into account different requirements and 
constraints in participant selection in difference disaster 
scenarios. PSP-Frugal is a variant of the well-known 
generalized assignment problem (GAP) [7]. The other 
variants are new formulations.  

The evaluation study presented in the paper aims to 
determine the relative merits of five popular optimization 
solvers when used to find solutions of PSP-Frugal and 
PSP-Practical. The solvers are Gurobi [8], MOSEK [9], 
XpressMP [10], CPLEX [11], and Cbc [12]. We also 
evaluated the performance of two versions of the PSP-G 
algorithm for PSP-Frugal and PSP-Practical. The 
performance data reported here were obtained via 
simulation using four sets of problem instances defined 
by parameters selected randomly from four different 
distributions. They intend to model similar and dissimilar 
regions and different disaster scenarios.  

As expected, when compared according to the object 
values achieved by their solutions, the evaluated solvers 
have essentially the same performance. PSP-G algorithm 
achieves a slight smaller objective value, but the 
difference is within a few percents, insignificant for most 
practical purposes. Another commonly used figure of 
merit is execution time. According to this criterion, PSP-
G algorithm is significantly more advantageous. MOSEK 
and Cbe have the longest execution time. In the case of 
40 similar regions, MOSEK even took more than the 
allowed 1000 time limit to produce a good solution.  

We also compared the solvers and PSP-G algorithm by 
the total number and cost of selected participants. The 
solutions provided by the PSP-G algorithm consistently 
incur the least total cost. The reason is that the algorithm 
uses the benefit to cost ratios of volunteers to guide its 
selection and assignment decisions. In contrast, the cost 
factors are not taken into account by the evaluated solvers. 
MOSEK uses fewer participants to achieve the same 
objective values.  

We plan to use data obtained from the study to support 
the choices of solvers or algorithm by the participant 
selection tool in CROSS [7] when it is presented with 
PSP instances.  All things considered, the tool can choose 
to use the PSP-G algorithm for most problem instances. 
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