
 TR-IIS-15-002

Optimizing Control Transfer and Memory
Virtualization in Full System Emulators

Chun-Chen Hsu, Ding-Yong Hong, Cheng-Yi Chou,
Jan-Jan Wu, Wei-Chung Hsu, and Pangfeng Liu

Feb. 04, 2015 || Technical Report No. TR-IIS-15-002

http://www.iis.sinica.edu.tw/page/library/TechReport/tr2015/tr15.html

Optimizing Control Transfer and Memory Virtualization in Full System
Emulators

Chun-Chen Hsu‡, Ding-Yong Hong§, Cheng-Yi Chou§,
Jan-Jan Wu§, Wei-Chung Hsu‡, and Pangfeng Liu‡

‡Department of Computer Science and Information Engineering, National Taiwan University
{d95006,pangfeng,hsuwc}@csie.ntu.edu.tw

§Institute of Information Science, Academia Sinica
{dyhong,maxchou,wuj}@iis.sinica.edu.tw

Abstract

Full system emulators provide virtual platforms for sev-
eral important applications, such as kernel and system
software development, co-verification with cycle accu-
rate CPU simulators, or application development for
hardware still in development. Full system emulators
usually use dynamic binary translation to obtain reason-
able performance. This paper focuses on optimizing the
performance of full system emulators. First, we opti-
mize performance by enabling classic control transfer
optimizations of dynamic binary translation in full sys-
tem emulation, such as indirect branch target caching and
block chaining. Second, we improve the performance
of memory virtualization of cross-ISA virtual machines
by improving the efficiency of the software translation
lookaside buffer (software TLB). We implement our op-
timizations on QEMU, an industrial-strength full system
emulator, along with the Android emulator. Experimen-
tal results show that our optimizations achieve an average
speedup of 1.92X for ARM-to-X86-64 QEMU running
SPEC CINT2006 benchmarks with train inputs. We use
a set of real applications downloaded from Google Play
as benchmarks for the Android emulator. Experimental
results show that our optimizations achieve an average
speedup of 1.42X for the Android emulator running these
applications.

1 Introduction

Cross-ISA virtualization techniques allow programs
compiled for one instruction set architecture (ISA) (e.g.,
Intel IA-32) to be run on platforms based on a differ-
ent ISA (e.g., IA-64). A dynamic binary translator and
a binary optimizer are used to translate a guest instruc-
tion into a sequence of host instructions with a different
ISA. Some of these virtualization systems could emulate
the entire ISA including privileged instructions. Hence,
an entire guest OS could be booted up and run virtually

on a host OS with a completely different ISA. This type
of technology is used in popular functional simulators
such as Simics [25] and QEMU [10]. Such virtualiza-
tion systems have many important and practical applica-
tions such as enabling the implementation of secure en-
vironments in which operating systems are isolated, or
to speed up CPU execution flow tracing and OS kernel
debugging by emulating a slower platform (e.g., ARM)
on a faster one (e.g., x86-64).

This paper focuses on cross-ISA system-level emula-
tion, i.e., the guest and the host belong to different in-
struction set architectures, using dynamic binary trans-
lation (DBT) techniques. Improving the performance of
cross-ISA system-level DBT involves overcoming many
challenges that are different from those faced by DBT
at the process (application) level. For process VMs, the
host OS is the OS. The memory address space of process
VMs is managed by the host OS and the DBT’s job is to
map the virtual address space of the process to the host
virtual memory. For a system VM, however, the memory
used in each process of the guest VM is managed by the
guest OS. This raises two problems.

1) The virtual address in each process must be mapped
to the guest physical address which is managed by the
guest OS, and the guest physical address is allocated and
assigned by the host OS. So the guest physical address
must be mapped to the host virtual address in an addi-
tional step.

2) All software-based caching techniques used to im-
prove memory access in process VM are now subject
to the condition that the virtual addresses are managed
by the guest OS, and may be changed by the guest OS
during context switching or system calls. A naive ap-
proach is to flush such caches but this could significantly
increase the cost of context switching. Hence, all opti-
mizations related to memory access introduced to pro-
cess virtual machines must be rethought and redesigned.

In this paper, we investigate two optimizations related
to memory access: (1) branch optimization, including

1

block linking [16] and indirect branch translation cache
(IBTC) [28], and (2) software-based translation looka-
side buffer (software TLB) to improve performance of
address translation. We discuss design issues encoun-
tered during implementation in system mode DBT. We
also propose effective methods to solve these problems.

For branch optimization, the first issue is that, when
a cross-page branch is executed, the DBT must ensure
the branched guest page is valid, otherwise an exception
should be raised. Another issue is that the DBT must effi-
ciently and effectively detect the validity of the branches
across page boundaries. To solve the cross-page prob-
lem, we introduce the software instruction TLB (iTLB)
to efficiently validate cross-page branches and to mit-
igate the large overhead incurred by walking the guest
page table. Cross-page block linking (CPBL) is also pro-
posed to handle direct branches across pages. With the
proposed approaches, the emulation performance is fur-
ther enhanced as a result of re-enabling the optimiza-
tions of block linking and IBTC in the full-system DBTs.
To the best of our knowledge, this is the first work
using software-based approach to optimize cross-page
branches.

For memory translation optimization, to speed up the
aforementioned multi-level memory translation in sys-
tem VMs, similar to hardware TLB, DBT systems, such
as QEMU, keep the latest memory translations in a spe-
cial cache, called Software Translation Lookaside Buffer
(SoftTLB) to translate a guest virtual address directly to a
host virtual address. However, even with SoftTLB, mem-
ory translation still consumes a significant portion of exe-
cution time. For example, Chang et al. [14] reported that
QEMU spends nearly 40% of execution time in memory
translation.

We propose two optimizations to improve the perfor-
mance of SoftTLB in cross-ISA system mode emulation.
We begin by identifying the overhead induced by inef-
ficient support of multiple page sizes in SoftTLB. We
find that most overhead comes from unnecessary Soft-
TLB flushes due to invalidation of large pages. We pro-
pose an optimization, SoftTLB partial-flush, to precisely
track the SoftTLB entries used for large pages so that
we only need to flush these used entries instead of the
whole SoftTLB. Second, the optimization Dynamically
Resizing SoftTLB improves performance by increasing
the SoftTLB hit rate and avoiding unnecessary overhead
for SoftTLB flushing. The key idea in this optimization
is to resize SoftTLB according to the per-process Soft-
TLB utilization.

We implemented these optimizations on the official
QEMU v2.2.0 [27] emulator and the Android emulator
of the Android Open Source Project (AOSP) [5] ver-
sion 5.0.1 r1, which is also based on QEMU. Our ex-
perimental results demonstrate that, for ARM-to-X86 64

Dynamic Binary Translator

Guest
Binary

Emulation Unit

Just-In-Time
Compiler

D
is

pa
tc

he
r

Code Cache

Translated
Host Binary

Figure 1: A general framework of a dynamic binary
translator.

QEMU emulation, our optimization achieves an average
1.92X speedup against the unmodified official QEMU
v2.2.0 for SPEC 2006 CPU Integer benchmarks and a
speedup of up to 3X for a memory bound, cache sensitive
benchmark. For the Android emulator, our optimization
achieves an average 1.43X speedup against the unmodi-
fied Android emulator for Android benchmarks. We also
put our works in the GitHub.com for interested readers
to download. Please refer to Section 6.

The rest of the paper is organized as follows. Sec-
tion 2 gives an overview of the control transfer opti-
mization and the software TLB optimization, with dis-
cussion of related work. Section 3 describes the con-
trol transfer problem in cross-ISA system-level emula-
tion and presents our approach to solve this problem effi-
ciently. Section 4 presents our optimizations for software
TLB. Section 5 reports our experimental results, and Sec-
tion 6 concludes.

2 Background and Related Work

Dynamic Binary Translation
Dynamic binary translators (DBTs) emulate a guest bi-
nary code in one ISA on a host machine with a same
or different ISA. It operates directly on binaries with no
need to access the source code of the guest operating
systems and applications, which is important for execut-
ing unmodified and proprietary guests. There are gen-
erally two types of binary translators: user-mode DBT
and full-system DBT. User-Mode DBTs emulate an ap-
plication binary interface, while full-system DBTs emu-
late the entire guest ISA interface, including privileged
instructions. User-mode DBTs has been widely used
for runtime profiling [24, 26, 30, 32], transparent per-
formance optimization [6, 13] and migration of legacy
code [7, 15, 33]. In this section, we briefly introduce
DBT architecture, the virtualization of CPU and mem-
ory for full-system virtualization and related works.

Figure 1 illustrates the architecture of a DBT system.

2

A typical DBT system generally has four components:
a just-in-time (JIT) compiler, an emulation unit, a dis-
patcher and a code cache. When the translation starts,
the JIT compiler fetches guest binary code and translates
it to the binary code of the host ISA. The translated host
code is cached in a software-based code cache to enable
reuse and to amortize code translation overhead. The em-
ulation unit provides special handlers for exceptions and
interrupts, e.g. emulating I/O devices. The dispatcher
coordinates the translation and execution of binary code.
It determines whether to resume execution in the code
cache or to kick-start the JIT compiler if an untranslated
guest code is encountered.

For CPU virtualization, most modern CPU architec-
tures contain sets of privileged and unprivileged instruc-
tions. When attempting to execute such instructions in
a de-privileged mode, the misbehaving instructions must
be trapped and correctly handled. Previous work, such as
KVM [23] and Xen [8], has proposed hardware-assisted
or paravirtualized approaches to trap and emulate such
sensitive instructions.

In contrast, DBTs, such as VMWare [4] and
QEMU [10], solve such CPU virtualization problems
through binary rewriting. While translating the guest bi-
nary, the semantic of the guest instructions is translated
based on current guest CPU states and privilege levels.
The sensitive instructions issued from the guest system
are also translated to safe host instructions. Hence, one
instruction in different guest privileged modes is trans-
lated into precise emulation code. In addition, the trans-
lator emits trapping code around an illegal instruction
once it is detected during translation.

Control Transfer Optimizations

Control transfer optimizations refer to optimizations that
can transfer execution directly from one translation block
to another without interference from the runtime system.
Existing control transfer optimizations and superblock
optimizations in dynamic binary translation (e.g., block
chaining [16, 29], trace optimization [6, 12, 24, 21, 20],
and indirect branch target caching [28]) have been shown
to be effective and have been widely adapted to high
level language virtual machines [22], or dynamic script-
ing languages [19, 9]. However, these optimizations are
either not used in dynamic binary translation in system
mode emulation, or only adopted conditionally. For ex-
ample, QEMU [10], a retargetable DBT system support-
ing many guest and host ISAs, only applies the optimiza-
tion of block linking for branches among the same guest
page. In another example, Böhm et al. [11] built traces
with the limitation that blocks from a single trace cannot
span across page boundaries.

Existing solutions for cross-page control transfers

come mostly from hardware based solutions. IBM’s
DAISY system [18] runs a PowerPC guest on a VLIW
machine. To the best of our knowledge, DAISY is
the first and the only such system that explicitly men-
tions the page boundary problem for cross-page con-
trol transfer optimizations. DAISY formed several ba-
sic blocks into a tree-region which can leverage the
advantage of VLIW architecture to increase the num-
ber of instructions per cycle (IPC). To address transfers
that cross page boundaries, a special hardware instruc-
tion called LOAD REAL ADDRESS AND VERIFY
(LRAV) is used to detect whether a code page is valid and
to check that mapping does not change with the creation
of the tree-region. The Transmeta code morphing soft-
ware [17] forms traces that contains several blocks, and
chains translation blocks. Although they did not explic-
itly mention how to handle the page boundary problem,
they mention that, with hardware support for commit and
rollback, they can preserve precise exceptions that hap-
pen during execution at the x86 instruction boundary.

Unlike their frameworks, we propose a pure software-
based approach (the details are discussed in Section 3) to
validate cross-page branches. With this approach, we can
enable control transfer optimizations developed in user-
mode DBT in system mode DBT.

Memory Virtualization

Memory virtualization optimization have been well stud-
ied and developed in same-ISA virtualization. For ex-
ample, before hardware-assisted virtualization was sup-
ported in AMD64 CPUs, Xen and VMWare [4] devel-
oped shadow page table approaches to efficiently support
memory virtualization. The shadow page table is essen-
tially the cache of the address translation. The key ques-
tion is how to maintain coherence between the shadow
page table and the guest page table.

To maintain coherence, Xen modifies the guest kernel
in a process called para-virtualization, so that the virtual
machine manager (VMM) is notified when the guest ker-
nel is about to modify the guest page table. On the other
hand, VMWare uses a hardware page protection tech-
nique called tracing to become trapped when the guest
page table is modified so that VMM can maintain coher-
ence between the shadow page table and the guest page
table.

Intel VT-x and AMD-V provide a hardware-assisted
mechanism for memory virtualization to efficiently
support same-ISA virtualization in AMD64 machines.
KVM [23], for example, uses this hardware-assisted
memory virtualization mechanism.

Without specially-designed hardware, memory vir-
tualization in cross-ISA virtualization can only use
software-based approaches. QEMU and Simics use such

3

software-based approaches. Tong el. [31] is the first
work found in the literature that focuses on optimizing
of software-based memory virtualization. They propose
several techniques to increase SoftTLB hit rates as well
as to reduce the overhead of SoftTLB maintenance. In
particular, they improve performance by resizing Soft-
TLB to increase the hit rate, using victim cache to re-
duce the overhead of SoftTLB misses, and using helper
threads to flush SoftTLB to reduce flushing overhead.

In this paper, we deal with the cross-page problem of
control transfer optimizations that Tong et al. [31] do not
discuss in their work. They also fail to mention the effi-
ciency problem of SoftTLB described in Section 4.1. Al-
though both works propose dynamical resizing SoftTLB
approaches, our approach adjusts the size of SoftTLB ac-
cording to the per-page-table (per-process-like) SoftTLB
utilization information instead of system-wide SoftTLB
utilization information. The per-page-table SoftTLB uti-
lization provides more finer granularity than the system-
wide SoftTLB utilization.

3 Enabling Control Transfer Optimiza-
tions

Cross-Page Problem
Dynamic binary translators translate and execute guest
code, often at a granularity of one basic block. To en-
hance execution performance and avoid frequent switch-
ing between the translator and code cache, common con-
trol transfer optimizations such as block linking [16] and
indirect branch translation caching (IBTC) [28] are re-
spectively used for direct and indirect branches. For sim-
plicity, the following discussion refers to the guest code
page of the branch target as the target guest page.

When the target guest page differs from the same
target page of the branch instruction, control transfers
across pages in system mode could cause system failure
if not handled properly. This is because the destination
code page may no longer be mapped in the guest page
tables, thus jumping to an invalid code page will crash
the system. Even if the code page is valid in the guest
page table, the mapping of the target code page may be
changed after the transfer link is created. Consequently,
jumping along the transfer link will result in executing
code in the wrong code page. This usually occurs when
the guest operating system performs context switches.

Therefore, when transferring execution controls across
pages, we must check that (1) the target guest page is
valid in the guest page table, and (2) the guest physical
address of the target guest page remains the same when
the transfer link is created. Violating either of these two
conditions (e.g., the mapping of the target guest page is
changed or is not valid or present in the guest page table)

IndirectBr: (GuestPC=0x8111, Flag=0x4)

IBTC hashtable

GuestPC/Flag HostPC

‐1 ‐1
0x8111/0x4 0x1234

0x1234

(a) User-Mode DBT

GuestPageNo

‐1
0x8

iTLB hashtable IBTC hashtable

IndirectBr: (GuestPC=0x8111, Flag=0x4)

GuestPC/Flag HostPC

‐1 ‐1
0x8111/0x4 0x1234

0x1234

(b) Full-System DBT

Figure 2: IBTC implementation in user-mode and full-
system DBTs. GuestPC and Flag respectively represent
virtual address of guest basic block and runtime CPU
flags; HostPC represents host virtual address of trans-
lated code in the code cache; GuestPageNo represents
the guest virtual page number. An invalid value is set as
-1.

should be trapped and invoke a page fault in the guest
operating system. User-mode DBTs do not require ex-
amining these two conditions before jumping to blocks
of any page because the conditions will be resolved by
the host operating system transparently if violation oc-
curs. Thus, no examining code is emitted around the
translated branch instructions. In the following, we in-
troduce two approaches using software instruction trans-
lation lookaside buffer (iTLB) to efficiently check the va-
lidity of pages.

3.1 Page Validation Check with Virtual
iTLB

The first approach of page validation is the virtual-iTLB
approach. We begin by classifying the branch instruc-
tions into two categories: direct branch across page
boundary, and indirect branch. For direct branches that
do not cross page boundary, the technique of block link-
ing is applied in the same way as in user-mode DBTs,
and no examination on the branched page is needed be-
cause the page property remains valid while executing
the two blocks.

Indirect branches, such as indirect jump, indirect call
and return instruction, are optimized with IBTC when
translating these instructions. IBTC is usually designed
as a hash table for fast lookup inside the code cache. Fig-
ure 2 (a) shows an IBTC lookup example in user-mode
DBTs. The lookup in user-mode DBTs is fed the guest
virtual address plus some runtime flags. The runtime
flags represent the system status, such as privilege level.
An IBTC hit returns the next translated code address
to jump to. In a system-mode DBT, we need to deter-
mine the validity of the jumped guest page if the branch
crosses the guest page boundary. All indirect branches
have to be examined since the indirect branch address is

4

unknown at translation time, and the given information
(i.e. the address and flags) is insufficient to determine
whether the indirect branch is within the same guest page
or not. One naive approach to validate a guest page is to
walk the guest page table, however, this would signifi-
cantly lengthen the lookup time for every IBTC lookup.

To mitigate such overhead, we introduce a software
virtual iTLB , virtual iTLB for short, in our DBT system
as shown in Figure 2 (b). The concept of the virtual iTLB
is similar to hardware TLB, which is a CPU cache to
improve virtual address translation speed. Unlike hard-
ware TLB where virtual-to-physical address mappings
are recorded for both data and code pages, our virtual
iTLB is a simplified hash table and it caches the guest
virtual page number for the code page only.

The virtual page number of the indirect branch address
must be matched against the virtual iTLB before jump-
ing across pages. Upon a virtual iTLB miss, the exe-
cution goes back to the DBT’s dispatcher, performs ex-
pensive guest page table walking, and records the virtual
page number in the virtual iTLB if the guest page is valid.
Upon a hit, the indirect branch is then allowed to jump
to the next guest block. As the example in Figure 2 (b)
illustrates, the branch address 0x8111 and flag 0x4 are
looked up against the IBTC and iTLB hash tables. As-
suming the guest page size is 4 KBytes, the same values
are found in the IBTC hash table, as well as the page
number 0x8 in the iTLB table. The translated code ad-
dress 0x1234 is then returned, and the execution jumps
directly to that address without leaving the code cache.

In the translation of direct branch across two pages, the
chaining scheme in user-mode DBTs that emits the host’s
direct/indirect jump instruction is inadequate and is not
used. Instead, we apply the same hash table technique
used in IBTC to solve the problem. Although we can
redirect such direct branches to look up the same IBTC
hash table in our system, we create another hash table
used only for the cross-page block linking (CPBL). The
CPBL hash table caches guest blocks and their translated
code addresses to which those guest blocks have recently
jumped through cross-page direct branches. On a CPBL
lookup hit, the same virtual iTLB is looked up against the
branch address to determine its validity. Leaving code
cache only occurs when the hash table lookup incurs a
miss.

When a context switch happens in the guest operating
system, we need to flush the virtual iTLB since the target
page tables may be changed. Virtual iTLB only ensures
the target code page is valid when virtual iTLB hits, but
we cannot ensure that the mapping the target code page
remain the same. Therefore, when a context switch hap-
pens in the guest operating system, we need to flush the
virtual iTLB, the IBTC, and CPBL tables. Also, invali-
dating a page by the guest also results in invalidation to

associated entries of the hash tables. For this situation,
we search for each entry of the hash tables and flush the
entry if it belongs to the invalidated guest page.

3.2 Optimization with Physical iTLB
This flushing of three hash tables limits the performance
improvement of IBTC and CPBL. Flushing itself poses
extra overhead, so the table size should be restricted to
ensure performance is not affected. However, limiting
the size of IBTC and CPBL tables limits their hit rate. To
overcome these shortcomings, we propose the physical
iTLB approach in which we store the guest virtual page
number and the physical page number in iTLB, and the
IBTC/CPBL tables contain both the guest physical and
virtual addresses of the branch target. With the physical
target address information, we can check the second con-
dition that we fail to check in virtual iTLB. Before jump-
ing across pages, both the page numbers of the guest vir-
tual address and the guest physical address of the branch
target must be matched against the physical iTLB.

When context switches occurs, we need only to flush
the physical iTLB. The IBTC/CPBL tables do not need
to be flushed. Where the mapping of the guest target ad-
dress changes, the addresses in the IBTC table will not
match the physical iTLB, and the cross-page branch will
not be taken. Compared to virtual iTLB, the shortcoming
of this approach is it requires extra comparison for phys-
ical addresses, but it poses advantages in that (1) we can
avoid the flushing overhead induced from IBTC tables;
(2) the entries in IBTC/CPBL tables can survive across
context switches; and (3) we can enlarge IBTC tables to
improve performance by increasing the hit rate.

4 Optimizations for Software Translation
Lookaside Buffer

In this section, we propose two optimizations to improve
the efficiency of the software translation lookaside buffer
(SoftTLB) of address translation. The first optimization
reduces unnecessary SoftTLB flushes induced by large
page invalidation. The second optimization dynamically
resizes SoftTLB such that we can increase the SoftTLB
hit rate while reducing the SoftTLB flush overhead.

4.1 Supporting Multiple Page Sizes in
Guest CPU

Modern microprocessors support multiple page sizes to
reduce the number of TLB misses and the number of
page lookups, such as IA32/AMD64 [2] and ARM [1].
To run a guest system with multiple page sizes, VM must
also support multiple page sizes in its software transla-
tion lookaside buffer.

5

1 LOOKUP_sTLB:

2 mov %ebp, %esi

3 and $0xfffffc03, %esi

4 mov %rbp, %rdi

5 shr $0x5, %rdi

6 and $0x1fe0, %edi

7 lea 0x4c8(%r14, %rdi, 1), %rdi

8 cmp (%rdi), %esi

9 mov %ebp, %esi

10 jne LOOKUP_MISS

11
12 LOOKUP_HIT:

13 add 0x10(%rdi), %rsi

14 mov (%rsi), %ebp

Figure 3: Routine of SoftTLB Lookup

Before describing how to support multiple page sizes
in SoftTLB, we first introduce the basic mechanism of
software-based TLB. SoftTLB is usually implemented as
a directly mapped hash table relying on virtual guest ad-
dresses for efficiency. This is because, unlike the fully
associative hardware TLB, SoftTLB cannot search its
content in a parallel manner. For example, as shown in
Figure 3, ARM-to-x86 64 QEMU takes 9 instructions to
lookup the SoftTLB.

In LOOKUP sTLB routine, we obtain the page frame
address from lines 3 and 5. In lines 2, 4, 6 and 7, we
look up SoftTLB by right-shifting and bit-AND opera-
tions. We compare the page frame address (stored in
%esi), and the address in SoftTLB (stored in %edi) to
determine whether it is hit or miss.

The direct-map SoftTLB works well for a single page
size architecture. There are many ways to extend the di-
rect map SoftTLB to support multiple page sizes. One
possible solution is to have one SoftTLB for each page
size. For example, in ARM architecture, the pages can
be 4KB, 64KB, 1MB, and 16MB. The ARMv5 also sup-
ports tiny 1KB page sizes. This introduces the complex-
ity of SoftTLB lookups. That is, to lookup a guest virtual
address, we have to first decide which SoftTLB should
be used. Tong el. [31] experimentally adapted this ap-
proach.

To maintain one rather than multiple SoftTLBs, two
design choices support multiple page sizes: varied-page-
size SoftTLB and uniform-page-size SoftTLB. In varied-
page-size SoftTLB, each softTLB entry can have differ-
ent page sizes.

One possible implementation of the varied-page-size
SoftTLB is to let the TLB entry have different page sizes
in one SoftTLB. In such an implementation, the SoftTLB
lookup routing requires at least two more instructions.
One is an ALU instruction to calculate the address of the
page size information, and the other is a load instruction
to load it. These extra instructions can introduce extra

0%

20%

40%

60%

80%

100%

120%

140%

Android Boot

Antutu

Vella
mo-M

etal

Vella
mo-B

rowser

Geekbench

Quadrant

Octane2.0

Kraken

Peacekeeper

Browserm
ark

P
e
rc

e
n
ta

g
e
 (

%
)

Android Benchmarks

Large Page Invalidation
Context Switch

Others

84% 85%
73% 77%

95%

56%

98% 93%
82%

74%

Figure 4: Breakdown of SoftTLB flushes in emulation of
Android benchmarks

overhead of the SoftTLB lookup, and will hurt the per-
formance of SoftTLB lookup, which is crucial for effi-
cient VM execution.

In the uniform-page-size SoftTLB design, which is
used in QEMU, we break down a larger guest page into
smaller sub-pages of the same size. When accessing a
larger page, only the accessed sub-page is stored in the
SoftTLB. The uniform page size should use the mini-
mum supported page size of the guest ISA. The advan-
tage of this approach is that no extra overhead is intro-
duced into the SoftTLB lookup routine. However, there
are two potential shortcomings of this approach.

The first potential shortcoming is that more than one
TLB entry is needed for a larger guest page. Each ac-
cessed subpage of the larger page takes up one entry in
SoftTLB. If the SoftTLB is small, this may introduce
misses since we may need to evict entries for other sub-
pages of the larger page. We will deal with this problem
in Section 4.2.

The second potential shortcoming is that, when a
larger page is invalidated, all entries of subpages belong-
ing to the larger guest page in SoftTLB must be invali-
dated. A simple solution to this problem is to flush the
whole SoftTLB when a larger page is invalidated. We
refer to this approach as full-flush. Full-flush is used in
QEMU and may be sufficient if larger pages are not fre-
quently used in guest systems. In the following section,
we show that full-flush is not adequate in that it results in
too many SoftTLB flushes.

To investigate the efficiency of full-flush, we profile
the SoftTLB flushes in the ARM-to-x86 64 Android em-
ulator. Please refer to Section 5 for detail benchmarks
description and experimental settings. We classify the
causes of SoftTLB flushes into three parts. The first part
is due to larger page invalidation. The second part is
caused by a write to the page table base register when
a context switch happens in the guest OS. The third part

6

0

200000

400000

600000

800000

1000000

1200000

1400000

Android Boot

Antutu

Vella
mo-M

etal

Vella
mo-B

rowser

Geekbench

Quadrant

Octane2.0

Kraken

Peacekeeper

Browserm
ark

N
u
m

b
e
r

o
f
S

o
ft
T

L
B

 F
lu

s
h
e
s

Android Benchmarks

full-flush partial-flush

Figure 5: Number of SoftTLB flushes in the full-flush
approach and our partial-flush approaches.

includes other miscellaneous causes, such as guest sys-
tem instructions that flush TLB.

In Figure 4, the profiling results show that full-flush
causes 56% 98% of SoftTLB flushes due to large page in-
validation. The high percentages of large page invalida-
tion is because the default page size used by the Android
emulator is 1KB, which is necessary to provide backward
support for the minimum page size used in ARMv5. As
a consequence, the most commonly used 4KB page is
treated as a large page. Frequent SoftTLB flushes can
affect VM performance in two ways. The first is the in-
creased overhead of SoftTLB flush. The second is that it
prohibits increasing the size of SoftTLB due to the flush
overhead. As a result, it may lose the performance gains
from larger SoftTLB, which can improve performance
by increasing the hit rate of SoftTLB.

We propose an approach to efficiently handle large
page invalidation in the uniform-page-size SoftTLB de-
sign. The idea is to remember the used entries of one
large page so that we can invalidate only these entries
when the large page is invalidated, which we refer to as
partial-flush. Partial flush works as follows. Three data
are maintained for each accessed large page: the start-
ing address, the size and a list of SoftTLB entries occu-
pied by its sub-pages. This information is called the large
page metadata.

When inserting a sub-page into the SoftTLB, we first
search the metadata of the large page. We create the
metadata for the accessed large page if it does not already
exist. We then add the location of the newly added entry
to the used list in the large page metadata. When invali-
dating a large page, we find its metadata and just flush all
SoftTLB entries in the used list, instead of flushing the
whole SoftTLB. We use a hash table to store these large
page metadata. Also, because this hash table needs to
be flushed with SoftTLB, individual hash table can also
reduce the flush overhead.

0%

5%

10%

15%

20%

25%

30%

35%

40%

W6 W7 W8 W9 W10 W11 W12 W13

D
is

tr
ib

u
ti
o
n
 o

f
S

e
s
s
io

n
s
(%

)

Working Set Group

Android Boot
GeekBench

Figure 6: Distributions of execution sessions’ working
sets.

Among different Android benchmarks, partial-flush
can eliminate 26% to 95% of unnecessary SoftTLB
flushes due to large page invalidation in the full-flush ap-
proach. Figure 5 compares the number of flushes in the
full-flush approach and our partial-flush approach.

4.2 Supporting Dynamically Resizing Soft-
ware TLB

4.2.1 The SoftTLB Utilization

We further investigate the utilization of SoftTLB to as-
sess potential performance improvement. For conve-
nience, we partition the VM execution time into sessions
by SoftTLB flushes. That is, an execution session starts
immediately after a SoftTLB flush and ends just before
the next SoftTLB flush. We profile the number of Soft-
TLB entries used for execution sessions. To obtain an ac-
curate number of SoftTLB used entries, we prevent con-
flict by enlarging the number of SoftTLB entries to 216.
During profiling, at the end of each execution session we
count the number of used SoftTLB entries, which can be
considered the session’s working set.

We group those sessions by their working sets into
working set group Wi. The working set group Wicontains
sessions with between 2i−1 and 2i entries. That is, if a
session is in group Wi, then between 2i-1 and 2i SoftTLB
entries are used at the end of this session. We want to
observe the working set distribution of each session. We
profile the Android Boot and GeekBench benchmarks
and the results are shown in Figure 6. For detailed ex-
perimental settings please refer to Section 5.

Figure 6 shows the percentage of working set groups.
As shown in the Figure, respectively 37% and 33% of
Boot and GeekBench sessions use SoftTLB entries be-
tween 28 and 29 in group W9. Most of the other ses-
sions are distributed among groups W7, W8, W9 and W10
in the Android Boot and GeekBench from 7% to 37%.
Th Moreover, the results indicate that over 95% of exe-

7

1 LOOKUP_sTLB:

2 mov %rbp, %rdi

3 mov %ebp, %esi

4 shr $0x5, %rdi

5 and $0xfffffc03, %esi

6 ; dedicate %r15d to hold the mask

7 ; value of the current SoftTLB size.

8 and %r15d, %edi

9 lea 0x4c8(%r14, %rdi, 1), %rdi

10 cmp (%rdi), %esi

11 mov %ebp, %esi

12 jne LOOKUP_MISS

13
14 LOOKUP_HIT:

15 add 0x10(%rdi), %rsi

16 mov (%rsi), %ebp

Figure 7: SoftTLB lookup routine for dynamically resiz-
able SoftTLB.

cution sessions use no more than 211 SoftTLB entries.
From these observations, we conclude that a single

size SoftTLB cannot fit to all sessions. Ideally, the size of
SoftTLB should be set to maximize the SoftTLB hit rate
as well as to minimize the SoftTLB flush overhead. As
we can see from the Figure 6, although a 212 SoftTLB is
sufficient to ensure a high hit rate for over 95% of execu-
tion sessions, we incur flush overhead for sessions with
low SoftTLB utilization.

We propose a dynamically re-sizeable SoftTLB to
maximize the hit rate and minimize the flush overhead.
To minimize the performance impact for the lookup of a
resizable SoftTLB, we reserve a host register to hold the
value of the SoftTLB size information. Before entering
the translation code cache, we need to load the current
SoftTLB size value into the dedicated register. Figure 7
shows the modification of the lookup routine.

Line 7 in Figure 7 shows that reserving a dedicated
host register may affect the performance of translated
code since we lost a free host register in register allo-
cation. However, in QEMU, most translation blocks do
not fully use all host registers because of the small gran-
ularity of its translation unit. That is, QEMU translates
one guest basic block at a time, each of which usually
contains less than 10 guest instructions.

The next question is when to resize the SoftTLB.
Similar to [31], we resize SoftTLB based on uti-
lization information, where utilization is defined as
#used SoftTLB entries/#total SoftTLB entries. This re-
quires profiling the utilization of SoftTLB during VM
execution. Ideally, instead of keeping one system-wide
set of utilization information in [31], we would keep a
set of utilization information for each running process
inside the guest operating system. But a full system em-
ulator cannot get process ID inside the guest operating

Table 1: Workloads and Optimization List

Benchmarks Description

SPEC CINT2006
(train inputs)

Standardized benchmark for testing single process
performance. Run on QEMU v2.2. Compiled by
GCC 4.8.3 with O3 flags.

Android Booting Boot the Android System.

Antutu Test Android overall system performance of user
experience, CPU, RAM, GPU, I/O.Vellamo-Metal

GeekBench

Quadrant Professional
Edition

Test Dalvik VM performance. Note: Skip 2D/3D
tests.

Octane 2.0 Test javascript performance with Android
browser.Karern 1.1

Vellamo-Browser
Test Android browser performance.Peacekeeper

Browsermark

Optimization Lists

Abbreviation Description

Baseline Official QMEU/Android Emulator

CPBL Cross-Page Block Linking + Physical iTLB

IBTC Indirect Branch Target Caching + Physical iTLB

PF Partial-Flush for Large Page Invalidation

RS Dynamically Resizing SoftTLB
Note: All benchmarks are ARM programs.

system without the guest ISA support or kernel modifi-
cation. Therefore, we use the page table base address
as the pseudo process ID of the running process in the
guest operating system. For each page table, we keep a
set of utilization information and a set of SoftTLB size
information, referred to the page table metadata.

We then update the per-page-table metadata at two
places: at the end of the execution session and when a
SoftTLB miss occurs. When the execution is at the end
of the session, we compute the SoftTLB utilization and
update its SoftTLB size information for this page table.
The size information stays unchanged when the utiliza-
tion is in the stable range of utilization. For example,
we can set the stable range of utilization to [25%, 50%].
Thus, if the utilization is smaller than the lower bound of
the stable range, we reduce the size information. Simi-
larly, if the utilization is larger than the upper bound of
the stable range, we increase the size information. Oth-
erwise, the size information stays unchanged. Then, just
before a new execution session begins, we re-size the
SoftTLB according to the current page table metadata.
To avoid sudden bursts of SoftTLB misses, we enlarge
the SoftTLB in the event of a SoftTLB miss. When a
SoftTLB miss occurs, we enlarge it if the utilization is
over 50%.

8

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

400.perlb
ench

401.bzip2

403.gcc

429.m
cf

445.gobmk

456.hmmer

458.sjeng

462.lib
quantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

Geomean

Android Boot

Antutu

Vella
mo-M

etal

Geekbench

Quadrant

Octane-2.0

Kraken-1.1

Vella
mo-B

rowser

Peacekeeper

Browserm
ark

GeoMean

S
p
e
e
d
u
p
 (

%
)

206%

117%
132%

106%
116%

Baseline

CPBL
IBTC+CPBL

Android BenchmarksSPEC2006 Integer Benchmarks

Figure 9: Performance breakdown of control transfer optimizations.

0%

20%

40%

60%

80%

100%

120%

140%

Android Boot

Antutu

Vella
mo-M

etal

Geekbench

Quadrant

Octane-2.0

Kraken-1.1

Vella
mo-B

rowser

Peacekeeper

Browserm
ark

GeoMean

S
p
e
e
d
u
p
 C

o
m

p
a
re

d
 w

it
h
 t
h
e
 B

a
s
e
lin

e
(%

)

Android Benchmarks

116%
110%

93%
Baseline

Page Walk Virtua iTLB Physical iTLB

Figure 8: Performance results for Android benchmarks
of page validation approaches for cross-page control
transfers.

5 Experimental Results

In this section, we evaluate the performance of our opti-
mizations implemented on the official QEMU v2.2.0 [27]
emulator and the Android emulator of the Android Open
Source Project (AOSP) [5] version 5.0.1 r1. The An-
droid emulator is a special version of QEMU designed
for Android kernel/application development. Both emu-
lators are configured as ARM-to-X86 64 full system em-
ulators.

Both QEMU and Android emulator are configured to
have a ARM Cortex-A9 CPU with 2GB memory. We run
Linaro Ubuntu 13.08 image [3] in QEMU, and Android
v5.0.1 r1 images with Goldfish kernel 3.4.67 in Android
emulator. The host machine has an Intel Core i7-5930k
3.50 GHz with 16GB RAM and the operating system
is 64-bit Gentoo Linux 3.16.5. Detailed information of
workloads are shown in Table 1.

For performance comparison, we use official QEMU

v2.2.0 and Android emulator v5.0.1 r1 as our perfor-
mance baseline. We take the median of 3 runs as the
final performance result for each benchmark. All re-
ported performance results are normalized to baseline.
But if the benchmark’s score is timing information, such
as SPEC CINT2006 and Karern v1.1, we report the re-
ciprocal of the normalized number because higher per-
formance figures are preferred. Optimizations are abbre-
viated as shown in Table 1.

5.1 Experimental Results for Enabling
Control Transfer Optimizations

5.1.1 Page Validation Approaches

We begin by comparing the page validation approaches
for cross-page control transfers. We compare three ap-
proaches, the page-walk, the virtual iTLB and the phys-
ical iTLB described in Section 3. We use each approach
to enable CPBL and IBTC.

For virtual iTLB, we use two hash tables with 213 en-
tries for IBTC and CPBL tables, which is the best bal-
ance between performance gained and flushing overhead.
Since the IBTC and CPBL tables do need to flush when
context switches, we set the size of physical iTLB to 216

entries to obtain a higher hit rate. In both approaches, we
set the iTLB table to 212 entries.

Due to page limits, we only show the performance re-
sults of Android benchmarks in Figure 8. The results
show that we achieve an average speedup of 1.16X in
physical iTLB, which outperforms the average speedup
of 1.1X in virtual iTLB. As expected, the page-walk has
the worst performance: only 0.93X of baseline. The
physical iTLB outperforms the virtual iTLB because
it avoids the flushing overhead and also benefits from
higher hit rates due to larger table sizes. We will use
physical iTLB in the following experiments.

9

0%

50%

100%

150%

200%

250%

300%

400.perlb
ench

401.bzip2

403.gcc

429.m
cf

445.gobmk

456.hmmer

458.sjeng

462.lib
quantum

464.h264ref

471.omnetpp

473.astar

483.xalancbmk

Geomean

Android Boot

Antutu

Vella
mo-M

etal

Geekbench

Quadrant

Octane-2.0

Kraken-1.1

Vella
mo-B

rowser

Peacekeeper

Browserm
ark

GeoMean

S
p
e
e
d
u
p
 (

%
) 196%

191%

133%
143%
142%
117%

Baseline

PF+IBTC+CPBL
2

12
+PF+IBTC+CPBL

RS+PF+IBTC+CPBL

Android BenchmarksSPEC2006 Integer Benchmarks

Figure 10: Performance breakdown of SoftTLB optimizations.

5.1.2 Performance Breakdown of CPBL and IBTC

Figure 9 shows the performance breakdown of CPBL
and IBTC with physical iTLB. In single process work-
loads, CPBL achieves an average speedup of 1.17X com-
pared to the baseline performance, while CPBL + IBTC
achieves an average speedup of 1.32X. 483.Xalancbmk
provides maximum performance of more than 2X
speedup, while 429.mcf and 456.hmmer show no im-
provement at all with these two optimizations.

Performance is related to the frequency of cross-page
transfers. Cross-page block links usually happen in li-
brary calls since library functions are likely to be in dif-
ferent code pages from the program text section. So if
the program contains lots of library calls, it may benefit
from CPBL optimizations. Similarly, if programs con-
tains more indirect branches, such as return instructions,
they benefit more from the IBTC optimizations.

In the Android benchmarks, CPBL achieves an av-
erage speedup of 1.06X compared to the baseline per-
formance, while CPBL + IBTC achieves an average
speedup of 1.16X. Vellamo-Metal and Browsermark
achieve an average speedup of 1.24X, the maximum
performance improvement among Android benchmarks
which, overall, gain less improvement from these con-
trol transfer optimizations than single process workloads
because context switches happen more frequently in An-
droid workloads.

5.2 Experimental Results on SoftTLB Op-
timizations

5.2.1 Experimental Results of Partial-Flush

In this subsection, we evaluate the performance of the
full-flush and partial-flush approaches described in Sec-
tion 4.1 with different SoftTLB sizes (28 entries and 212

0%

50%

100%

150%

200%

Android Boot

Antutu

Vella
mo-M

etal

Geekbench

Quadrant

Octane-2.0

Kraken-1.1

Vella
mo-B

rowser

Peacekeeper

Browserm
ark

GeoMean

S
p
e
e
d
u
p
 (

%
)

Android Benchmarks

133%
122%

Baseline

2
8
+FF+IBTC+CPBL

2
8
+PF+IBTC+CPBL

2
12

+FF+IBTC+CPBL
2

12
+PF+IBTC+CPBL

Figure 11: Performance comparison between Full-Flush
(FF) and Partial-Flush (PF) on Android Benchmarks dif-
ferent SoftTLB sizes.

entries). For partial-flush, we set the large page metadata
hash table to 212 entries. Again, due to space limitations,
we only show the performance of Android benchmarks.

In Figure 11, for each benchmark, the results depicted
in the first and the second bars have 28 SoftTLB en-
tries, while the results in the third and the fourth have 212

SoftTLB entries. Full-flush and partial-flush respectively
achieve average speedups of 1.16X and 1.17X with 28

SoftTLB entries, thus there is no performance difference
between the two approaches. Due to search overhead and
the flushes of the large page metadata hash table, partial-
flush does not exhibit much performance gain even if the
number of SoftTLB flushes is reduced.

However, by reducing those unnecessary SoftTLB
flushes, partial-flush provides an opportunity to improve
performance by enlarging the SoftTLB without incurring
flushing overhead. As shown in Figure 11, after enlarg-
ing the SoftTLB size to 212 entries, the partial-flush-212

achieves an average speedup of 1.33X, which outper-

10

forms the average speedup of 1.22X of full-flush-212.
The results for full-flush-212 also demonstrate the

downside of full-flush in that flushes for large page in-
validation hurt performance when SoftTLB size is in-
creased. Antutu and GeekBench only achieve 0.9X of
the baseline performance in full-flush-212. In summary,
partial-flush effectively reduces the number of SoftTLB
flushes and allows us to use a larger SoftTLB size to raise
average performance to 1.33X.

5.2.2 Performance of Dynamically Resizing Soft-
TLB

We evaluate the performance of dynamically resizing
SoftTLB. The stable range of utilization is set to [25%,
50%]. The table size ranges from 26 to 214 entries.
From the previous section, we know that large table sizes
achieve good performance with partial-flush. We com-
pare the performance of dynamic-resizing with fixed-size
SoftTLB. The fixed-size SoftTLB is set to 212 entries.
Performance results are shown in Figure 10.

For single workload benchmarks, CPBL + IBTC +
PF + RS achieves an average speedup of 1.91X from
1.33X of CPBL + IBTC + PF, while CPBL + IBTC +
PF + 212 achieves an average speedup of 1.87X. Ten out
of 12 benchmarks show the same performance between
dynamic-resizing and fixed-size SoftTLB. RS only out-
performs fixed-size SoftTLB in 429.mcf and 473.astar
where 429.mcf is a memory bound and cache sensitive
benchmark.

On the other hand, in Android benchmarks, CPBL +
IBTC + PF + RS achieves an average speedup of 1.42X
from 1.17X of CPBL + IBTC + PF, and CPBL + IBTC +
PF + RS outperforms CPBL + IBTC + PF + 212 from
1.33X to 1.42X. RS shows a significant improvement
in GeekBench, Vellamo-Browser, and Octance-2.0 com-
pared to fixed-size SoftTLB.

6 Conclusion

We propose effective optimizations to improve the per-
formance of a cross-ISA system level emulator, along
with efficient approaches to check page validity with the
software instruction TLB to enable classic control trans-
fer optimizations of dynamic binary translation in sys-
tem level emulations. By enabling two classic dynamic
binary optimizations (indirect branch target caching and
cross-page block linking/chaining) average performance
speedups of 1.32X and 1.16X speedup are respectively
achieved on SPEC CPU 2006 integer benchmarks and
popular Android benchmarks. The results are promis-
ing because our approaches allow for the implementation
of dynamic binary optimizations, such as trace optimiza-

tions, to further improve cross-ISA system mode emula-
tion performance.

The second group of proposed optimizations focus on
improving the performance of memory virtualization of
cross-ISA virtual machines by improving the efficiency
of the software translation lookaside buffer (TLB). We
reduce the overhead of unnecessary SoftTLB flushes re-
sulting from the full-flush approach for large page inval-
idation. The proposed partial-flush approach can effec-
tively reduce unnecessary SoftTLB flushes, and can also
be used to avoid unnecessary page walks when SoftTLB
misses.

We further improve performance by adaptively resiz-
ing SoftTLB through per-page-table SoftTLB profiling.
In this way we can resize SoftTLB according to the cur-
rent utilization of SoftTLB. This can both improve the
SoftTLB hit rate and reduce flushing overhead.

Our experimental results on ARM-to-X86 64 QEMU
and an ARM Android emulator show that our opti-
mizations improve SPEC CINT2006 integer benchmarks
by an average of 1.92X. For Android benchmarks, we
achieve an average speedup of 1.42X. The results show
that our optimizations improve performance on system
level emulators running real applications.

We have made our implementation available for down-
load at the GitHub.com. The optimized Android em-
ulator is available at https://github.com/tkhsu/

quick-android-emulator. The optimized QEMU is
at https://github.com/tkhsu/quick-qemu.

6.1 Future Works
This paper shows that control transfers optimizations do
improve performance for a wide range of applications.
We expect more improvement from other dynamic bi-
nary optimizations such as trace optimizations in sys-
tem level emulations. Also, further experiments should
be conducted on other architectures, such as emulating
X64 64 on ARM64, to compare optimization improve-
ment.

Acknowledgment

This work is supported in part by the Ministry of Science
and Technology of Taiwan under grant number NSC102-
2221-E-001-034-MY3.

References
[1] Cortex-a9 technical reference manual.

http://infocenter.arm.com/help/index.jsp.

[2] Intel developer manuals. http://www.intel.com/content/www/us/en
/processors/architectures-software-developer-manuals.html.

[3] Linaro versatile express 13.08 release.
http://releases.linaro.org/13.08/ubuntu/vexpress.

11

[4] ADAMS, K., AND AGESEN, O. A comparison of software and
hardware techniques for x86 virtualization. In Proceedings of the
12th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (New York, NY,
USA, 2006), ASPLOS XII, ACM, pp. 2–13.

[5] ANDROID.GOOGLESOURCE.COM. Android qemu emulator.
https://android.googlesource.com/platform/external/qemu.git.

[6] BALA, V., DUESTERWALD, E., AND BANERJIA, S. Dynamo:
a transparent dynamic optimization system. In PLDI ’00: Pro-
ceedings of the ACM SIGPLAN 2000 conference on Program-
ming language design and implementation (New York, NY, USA,
2000), ACM, pp. 1–12.

[7] BARAZ, L., DEVOR, T., ETZION, O., GOLDENBERG, S.,
SKALETSKY, A., WANG, Y., AND ZEMACH, Y. Ia-32 execu-
tion layer: a two-phase dynamic translator designed to support
ia-32 applications on itanium-based systems. In Microarchitec-
ture, 2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM In-
ternational Symposium on (Dec. 2003), pp. 191–201.

[8] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In SOSP ’03:
Proceedings of the nineteenth ACM symposium on Operating sys-
tems principles (New York, NY, USA, 2003), ACM, pp. 164–177.

[9] BEBENITA, M., BRANDNER, F., FAHNDRICH, M., LOGOZZO,
F., SCHULTE, W., TILLMANN, N., AND VENTER, H. Spur:
a trace-based jit compiler for cil. SIGPLAN Not. 45 (October
2010), 708–725.

[10] BELLARD, F. Qemu, a fast and portable dynamic translator. In
USENIX Annual Technical Conference, FREENIX Track (2005),
pp. 41–46.

[11] BOHM, I., VON KOCH, T. E., KYLE, S., FRANKE, B., AND
TOPHAM, N. Generalized just-in-time trace compilation using a
parallel task farm in a dynamic binary translator. In Proc. PLDI
(2011).

[12] BRUENING, D. Efficient, Transparent, and Comprehensive Run-
time Code Manipulation. Ph.d. thesis, Massachusetts Institute of
Technology, Cambridge, MA, Sep 2004.

[13] BRUENING, D., GARNETT, T., AND AMARASINGHE, S. An
infrastructure for adaptive dynamic optimization. In Interna-
tional Symposium on Code Generation and Optimization (2003),
pp. 265–275.

[14] CHANG, C.-J., WU, J.-J., HSU, W.-C., LIU, P., AND YEW, P.-
C. Efficient memory virtualization for cross-isa system mode em-
ulation. In Proceedings of the 10th ACM SIGPLAN/SIGOPS In-
ternational Conference on Virtual Execution Environments (New
York, NY, USA, 2014), VEE ’14, ACM, pp. 117–128.

[15] CHERNOFF, A., HERDEG, M., HOOKWAY, R., REEVE, C., RU-
BIN, N., TYE, T., YADAVALLI, S. B., AND YATES, J. Fx!32:
A profile-directed binary translator. IEEE Micro 18, 2 (1998),
56–64.

[16] CMELIK, B., AND KEPPEL, D. Shade: a fast instruction-set
simulator for execution profiling. In SIGMETRICS ’94: Proceed-
ings of the 1994 ACM SIGMETRICS conference on Measurement
and modeling of computer systems (New York, NY, USA, 1994),
ACM, pp. 128–137.

[17] DEHNERT, J. C., GRANT, B. K., BANNING, J. P., JOHNSON,
R., KISTLER, T., KLAIBER, A., AND MATTSON, J. The trans-
meta code morphingTMsoftware: using speculation, recovery,
and adaptive retranslation to address real-life challenges. In CGO
’03: Proceedings of the international symposium on Code gen-
eration and optimization (Washington, DC, USA, 2003), IEEE
Computer Society, pp. 15–24.

[18] EBCIOGLU, K., ALTMAN, E., GSCHWIND, M., AND SATHAYE,
S. Dynamic binary translation and optimization. IEEE Trans.
Comput. 50, 6 (2001), 529–548.

[19] GAL, A., EICH, B., SHAVER, M., ANDERSON, D., MAN-
DELIN, D., HAGHIGHAT, M. R., KAPLAN, B., HOARE, G.,
ZBARSKY, B., ORENDORFF, J., RUDERMAN, J., SMITH, E. W.,
REITMAIER, R., BEBENITA, M., CHANG, M., AND FRANZ,
M. Trace-based just-in-time type specialization for dynamic lan-
guages. SIGPLAN Not. 44 (June 2009), 465–478.

[20] HONG, D.-Y., HSU, C.-C., LIU, P., WANG, C.-M., WU, J.-J.,
, YEW, P.-C., AND HSU, W.-C. Hqemu: A multi-threaded and
retargetable dynamic binary translator on multicores. In CGO
’12: Proceedings of the 10th annual IEEE/ACM international
symposium on Code generation and optimization (2012).

[21] HSU, C.-C., LIU, P., WU, J.-J., YEW, P.-C., HONG, D.-Y.,
HSU, W.-C., AND WANG, C.-M. Improving dynamic binary
optimization through early-exit guided code region formation.
In Proceedings of the 9th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (New York, NY,
USA, 2013), VEE ’13, ACM, pp. 23–32.

[22] INOUE, H., HAYASHIZAKI, H., WU, P., AND NAKATANI, T.
A trace-based java jit compiler retrofitted from a method-based
compiler. In IEEE/ACM International Symposium on Code Gen-
eration and Optimization (2011), pp. 246–256.

[23] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND
LIGUORI, A. kvm: the linux virtual machine monitor. In OLS
’07: The 2007 Ottawa Linux Symposium (July 2007), pp. 225–
230.

[24] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER,
A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZEL-
WOOD, K. Pin: building customized program analysis tools
with dynamic instrumentation. In PLDI ’05: Proceedings of the
2005 ACM SIGPLAN conference on Programming language de-
sign and implementation (New York, NY, USA, 2005), ACM,
pp. 190–200.

[25] MAGNUSSON, P. S., CHRISTENSSON, M., ESKILSON, J.,
FORSGREN, D., HÅLLBERG, G., HÖGBERG, J., LARSSON, F.,
MOESTEDT, A., AND WERNER, B. Simics: A full system sim-
ulation platform. Computer 35, 2 (Feb. 2002), 50–58.

[26] NETHERCOTE, N., AND SEWARD, J. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In Proc. PLDI
(2007), pp. 89–100.

[27] QEMU.ORG. QEMU. http://qemu.org.
[28] SCOTT, K., KUMAR, N., CHILDERS, B. R., DAVIDSON, J. W.,

AND SOFFA, M. L. Overhead reduction techniques for software
dynamic translation. In Proc. IPDPS (2004), pp. 200–207.

[29] SMITH, J. E., AND NAIR, R. Virtual Machines: Versatile Plat-
forms for Systems and Processes. Morgan Kaufman, 2005.

[30] SRIDHAR, S., SHAPIRO, J. S., NORTHUP, E., AND BUNGALE,
P. P. Hdtrans: an open source, low-level dynamic instrumentation
system. In VEE ’06: Proceedings of the 2nd international con-
ference on Virtual execution environments (New York, NY, USA,
2006), ACM, pp. 175–185.

[31] TONG, X., KOJU, T., KAWAHITO, M., AND MOSHOVOS, A.
Optimizing memory translation emulation in full system emula-
tors. ACM Trans. Archit. Code Optim. 11, 4 (Jan. 2015), 60:1–
60:24.

[32] ZHAO, Q., BRUENING, D., AND AMARASINGHE, S. Umbra:
efficient and scalable memory shadowing. In CGO ’10: Proceed-
ings of the 8th annual IEEE/ACM international symposium on
Code generation and optimization (New York, NY, USA, 2010),
ACM, pp. 22–31.

[33] ZHENG, C., AND THOMPSON, C. Pa-risc to ia-64: Transparent
execution, no recompilation. Computer 33, 3 (2000), 47–52.

12

