
 TR-IIS-15-004

An Agent-Based Disaster
Simulation Environment

Tzu-Liang Hsu and J. W.S.Liu

Apr. 07, 2015 || Technical Report No. TR-IIS-15-004

http://www.iis.sinica.edu.tw/page/library/TechReport/tr2015/tr15.html

Institute of Information Science, Academia Sinica

Technical Report TR-IIS-15-004

An Agent-Based Disaster Simulation Environment

Tzu-Liang Hsu and J. W.S.Liu

ABSTRACT

Agent-Based Disaster Simulation Environment (ABDiSE) is a framework that

provides model elements and tools to support modeling and simulation of common

types of natural disasters, including fires, floods and debris flows. The underlying

disaster model is agent based: Active objects describe how agents move, attach, and

interact with each other and with their environment. ABDiSE is extensible: New agent

types and external simulators needed to model elements and dynamics of new disaster

scenarios and define behaviors and interactions of agents can be added without

requiring revision and recompilation of the framework. ABDiSE is a multi-threaded,

capable of taking advantage of available computing resource to speed up simulation.

Keywords: Agent-based model, Disaster simulation, Development environment

Copyright @ January 2015

 2

An Agent-Based Disaster Simulation Environment

Tzu-Liang Hsu and J. W. S. Liu

1 INTRODUCTION

In recent years, agent-based modeling (ABM) and simulation have proven to be an effective

tool for application domains as diverse as economical and market trend prediction; complex

system design; fluid, traffic and customer flow analysis; and so on [1-6]. According to ABM,

entities capable of taking actions are modeled as active objects called agents. Each agent is

defined by a behavior specification and a set of interaction rules. During simulation, each

agent assesses its situation, makes decisions and takes actions in accordance with its behavior

specification and interaction rules, and through the rules, taking into account the behavior of

other agents and states of the environment.

 This paper presents an agent-based framework called Agent-Based Disaster Simulation

Environment, or ABDiSE for short. The framework contains an extensible library of agents of

various types with which one can construct agent-based models of elements that cause natural

disasters (including fires, floods and debris flows) and elements of geographical areas

(including buildings, trees, and roads) that are affected by disasters. The framework also

contains an engine for executing the models and thus simulating the causes and developments

of natural disasters for the sake of understanding and predicting their dynamics and impacts.

The model elements provided by the framework build on common-sense concepts and notions.

By using them, complex processes of how a small mishaps (e.g., a cinder touching a dry leave)

develop into a major calamity (e.g., a forest fire) can be modeled with the desired fidelity in

an intuitive but formal and executable way.

 To illustrate, Figure 1 shows a screenshot of the main window of ABDiSE. The user can

access from the GUI (Graphical User Interface) tools provided by an experiment manager.

These tools enable the user to select and retrieve model elements from the model library and

use them to construct the simulation model, set up and control the simulation experiment, and

configure the simulation engine. We will explain in subsequent sections the available agent

types and the design of the experiment manager and experiment management tools.

 As one can see from Figure 1, the most prominently displayed tool is the Map Explorer in

area B where a flood affected area is displayed in its entirety as an example. Built on the cross

platform and open source .NET control GMAP.NET [7], the tool allows the user to control

 3

map attributes, including map provider (Bing, Google, and so on), overlay, marker and

zooming. In particular, it provides the user with an easy way to specify locations of agents in

a common geographic information system (GIS) format and have them displayed on the map.

In this example, small circles and squares in the area represent two types of agents which the

user has already selected from the agent library to be included in the simulation model and

placed them on the map as indicated. The user can also visualize in Area B the development

of the disaster scenario during the simulation run.

A

B

C

D

EF

Figure 1 Main window of ABDiSE GUI

 Area A is used for selecting agents to be included in the simulation model: To include an

agent of a specific type that is provided by the model library, the user only needs to first select

an agent type (e.g., flood) and then select a subtype (e.g., flash flood). If none of the available

agent types suits the disaster scenario which the user wants to simulate, the user can add a

new agent type and/or subtype by clicking the Select Agent Types (DLL) button: This

button enables the user to add new agent type(s) or remove some existing type(s) (e.g., add

fire type and remove flood type): The user adds a new agent type (e.g., tornado) to the library

by programming a customized Dynamic Link Library (DLL) function. The function will be

called during simulation to update the behavior of agents of the type. External simulation

 4

programs can also be incorporated into the model in a similar way. We will return to provide

further details on this extensibility feature.

 Properties of agents are stored in C# dictionary form. When the user selects an agent type

for a new agent in the simulation model, the default parameter values of the agent, including

the one and only Name property of the agent, is automatically filled in Area A, and an entry for

the agent is created in the dictionary. The user can freely assign properties to the new agent

except for its Name. Among the important properties of an agent are its coordinates that

specifies its location. The user can assign the latitude (lat), longitude (lng) and altitude of a

new agent by typing their values in the textboxes in Area A. (The values of lat and lng can

also be entered by double left clicking its location in Area B.) After all required agent

properties have been entered, the user then clicks Create New Agent button. Clicking it

creates a new agent according to the agent parameters entered in Area A. If the create

operation is successful, the new agent marker will appear in Map Explorer after the entry of

the agent in the dictionary is committed.

 At any point in time, the upper panel in Area C lists all the agents included in the

simulation model. The lower panel displays the properties of a selected agent (e.g., the one

marked by the red square in B and highlighted in C in Figure 1.)

 Within ABDiSE, simulation is time driven: The engine executes one step at a time, and

the update method of each agent is executed once in each step. Using buttons and text boxes

in Area D, the user can control the length of the time for each step, as well as the number of

time steps to execute during the current simulation. A special model element is environment,

which is included in every simulation model to take into account of the effect of

environmental condition on the development of natural disasters. Text boxes in Area E allow

the user to set environment properties (e.g., wind speed and direction, rainfall rate, etc.), and

thus, provide the user with control over environment during simulation. Finally, text boxes in

Area F allow the user to configure and test the simulation engine, in particular, whether the

multi-threaded engine executes correctly and performs well.

 The contributions of the work described here include the open source framework ABDiSE

for disaster simulation. Currently, simulators of natural disasters (e.g., [8-16]) are by and large

built one at a time, each for a specific type of disaster, locale, disaster situation, and so on.

ABDiSE aims to enable simulators for disasters of different types at different places and

likely scenarios to be easily constructed from model elements. Specifically, the framework

 5

supports common GIS data format and provides easy to use GUI and tools to input

information and model elements of the simulation world. Any time after a disaster scenario is

setup and simulation progresses, the user can save the current state of the simulation world as

a checkpoint and the initial condition for a later experiment. Extensibility is a distinguishing

feature of ABDiSE. Agents and simulators needed to model the dynamics of new disaster

types and scenarios can be added without modification and recompilation of ABDiSE core

controller: When a user wants to add one or more agent types, he/she only needs to write the

new agent classes, compile them to DLL (dynamic link library) files, and restart ABDiSE.

ABDiSE core controller will dynamically load the DLL functions and thus enable the user to

simulate new disaster scenarios modeled by the new type(s) of agents.

 The remainder of the paper is organized as follows. Section 2 presents related work on

disaster simulators and agent-based models and simulation. As it will be evident, they differ

from ABDiSE both in purposes and in design and functionalities. Section 3 describes ABDiSE

agent-based model elements. Section 4 describes the design and architecture of the framework.

Section 5 describes the implementation of the ABDiSE simulation engine and the interaction

between ABDiSE Core and GUI. Section 6 first presents as case studies examples illustrating

the use of ABDiSE for modeling scenarios of past disasters. It then summarizes the paper and

discusses future work.

2 RELATED WORK

As stated in the previous section, there are numerous disaster simulators for specific types of

disasters. An example is the advanced fire simulator Fire Dynamics Simulator (FDS) [8-10],

which was created at the US National Institute of standards and Technology (NIST). The

combination of FDS simulation [8] of smoke and heat transport based on computational fluid

dynamic models and visualization support from Smokeview program [9, 10] can provide

answers to critical questions on causes of rapid spread of fire and smoke within a building and

time required for residents to escape from the building. Similar to FDS, ABDiSE breaks a

large-scale simulation into computation of the behavior and interactions of elements within

each of the small grid cells. The incorporation of solutions of Navier-Stokes equations used in

FDS into ABDiSE is possible and is a part of our future work.

 Flood simulation can provide data and information on where an inundation may occur,

and its arrival time, flood wave speed and depth for various scenarios, and so on, critical to

 6

effective flood emergency and reclamation management. Numerous flood simulators are now

available for such proposes. Examples include Monticello Dam simulation and generation of

inundation map [11] based on the MIKE21 model (the Danish Hydraulic Institute 2-D

hydrodynamic model [12]) and simulation of Amazon flood pulse based on the 2-D

hydrodynamic model LISFLOOD-FP to quantify and predict the exchange between the

Amazon main stem and its floodplains [13, 14]. Simulation has also been an approach used to

study long term effects of climate change and to create high-resolution, static sea-level rise

image of specific area (e.g., Manhattan in New York) for a specific sea level rise value [15,

16]. This is a simple way to estimate flood disaster damage. Similar to these simulators,

ABDiSE also supports GIS file format and scenarios creation with Google Earth Map. The

default flood simulation is based on the altitude attribute in a way similar to the one used in

[15, 16]. Again, the user can incorporate more advanced flood models in ABDiSE by editing

the behavior rules of flood agent type and rules of individual flood agent instances and

structuring and compiling flood simulation programs into DLLs and use them for update

methods of the new flood agents.

 Being a framework of tools and a runtime support system for the construction and

execution of agent-based models of natural disasters, ABDiSE more closely resembles many

existing toolkits for the development of agent-based applications, in terms of its approach,

goals and design. There is no universal agreement on the exact definition of the term agent in

the context of agent-based modeling [17, 18]. Among all the definitions, the one most

appropriate for ABDiSE is the one defined for control systems [19]: An agent is an

encapsulated computer system or system component that is situated in some environment and

can act flexibly and autonomously to meet its design objectives [20]. ABDiSE captures the

core ideas of common agent-based models. Agents in the framework have the typically

attributes of agents. In addition to interactions such as contention for space and other common

interactions mentioned in [18], agents in ABDiSE can attach to each other and become joined

agents. Joined agents are models of entities such as burning trees, flooded homes, etc. Section

3 will present the definition of attach and its use in modeling dynamics of disasters.

 Specifically, the ABDiSE framework was motivated by many existing toolkits for

developing agent-based models and simulators [6, 21], including Repast (Recursive Porous

Agent Simulation Toolkit) [22], AnyLogic [23], and Natural Disaster Complex Systems

Framework [24]. Repast is a widely used open-source, cross-platform, agent-based modeling

 7

and simulation toolkit. The toolkit supports flexible models of living social agents (i.e., agents

that are permeable, interleaved, and mutually defining) and models of belief systems, agents,

organizations, and institutions as recursive social constructions. Repast includes a variety of

agent templates and examples and provides a variety of two-dimensional agent environments.

It allows users to dynamically access and modify agent properties, agent behavioral equations,

and model properties at run time. Moreover, Repast includes libraries of genetic algorithms,

neural networks, random number generation and specialized mathematics, as well as supports

for social network modeling. ABDiSE has a narrower focus. It specifically aims to make

modeling the causes and dynamics of natural disasters conceptually intuitive without loss of

rigor and fidelity, and the model base extensible. It adopts some of the ideas from Repast,

including dividing disaster events into smaller natural elements. ABDiSE also allows users to

access and modify agent and environment properties dynamically at run time.

 AnyLogic [23] is a multi-method simulation modeling tool developed by the AnyLogic

Company for modeling and simulating supply chains and logistics; passenger flows in airports

and subway stations; population, housing and transport infrastructure of a city, and so on.

Models can dynamically read and write data to spreadsheets or databases during a simulation

run, as well as charting model output dynamically. In addition to agent-based modeling,

AnyLogic also supports discrete event simulation and system dynamics. AnyLogic simulation

consists of stock and flow diagrams and process flowcharts. ABDiSE does not have these

capabilities. Rather it focuses on simulation of natural disasters: The framework offers easy to

use tools for agent model extensions, simulation state saver/loader, and run-time editing of

agent and environment properties.

 Natural Disaster Complex Systems Framework [24] provides tools for modeling and

simulation of natural disasters. In addition to elements for modeling natural disasters, these

tools also have elements for modeling and defining organizational structures and the policies

that must be taken into account to simulate real-life emergency management activities.

Similar to this framework, ABDiSE is also structured to facilitate simulation and observation

at different levels of abstraction and details the development of natural disasters. The current

versions of ABDiSE do not support the modeling of organizational structures and policies,

however. We plan to add to ABDiSE models of standard operating procedures (SOPs) and

human beings to enable the effectiveness of SOPs in simulated disaster scenarios to be

evaluated via simulation [25] in the near future.

 8

3 MODEL ELEMENTS

This section presents an overview of the ABDiSE model elements. As stated earlier, they

capture common-sense concepts in natural disasters. The goal is for disaster scenario models

built from the elements to be conceptually intuitive, easy to understand and use. The model

elements are implemented as C# classes. Subsequent sections on architecture and

implementation of agents and the simulation engine will provide further details.

3.1 Simulation World, Environment and God

Throughout any simulation experiment setup and carried out within ABDiSE, there is one and

only one simulation world. In the narrowest sense, the term world refers to the geographical

area specified by the user for the experiment at set up time. The world may be divided into

regions, each of which has a specified boundary. For sake of concreteness without loss of

generality, our discussion assumes that agent interactions are in a grid topology [17, 18]

except for where it is stated otherwise.

 Environments The simulation world has one or more environments. Each environment is

defined by a set of parameters for one or more regions. In general, the values of environment

parameters are functions of space and time. At each point in space and time, the values of

environment parameters specify attributes / conditions that affect the behaviors of all agents

around that point in space and time. The user can choose to provide the parameter values for

all or selected grid points within the world (or a region) and instants or intervals of time. The

environment parameters can also be defined by functions of space and time. For example, at

time t and a point (i.e., a location) with longitude log, latitude lat, and altitude alt, the

cumulative rain fall R, wind speed W, and wind direction D are given by functions R = F (log,

lat, alt, t), W = G (log, lat, alt, t), and D = H (log, lat, alt, t), respectively.

 As in real-life, the simulation world has a global environment. Some regions may have

local environments that differ from the global environment. In a region with a local

environment, the behavior of every agent depends on the local environment.

 God Agent The model for every simulation experiment has one and only one special agent

called God. As we will soon see that through this agent, ABDiSE provides the user with

capabilities control over all model elements during each simulation experiment. Conceptually,

God can create, and no other agent has this capability. The simulation world, environments

and agents running during the experiment are set up (i.e., created and initialized) by this agent.

 9

During any experiment, God has the records of all environments and agents in the simulation

world. To simulate a disaster scenario, the user starts from creating the instance of God agent.

This step is in fact automatically completed by ABDiSE GUI: After the GUI pops up, God of

the simulation world is ready to carry out user's wishes as specified by the user via the GUI.

 Figure 2 lists create and other capabilities of God. It is often convenient to create some

agents from the start but keep them inactive until some later time instant(s) or upon the

occurrence of some conditions. The update method of an agent is executed during the current

simulation step only if the agent is active at the time. The Activate method is for this

purpose. Using Affect and Control, the user can alter the simulated scenario in ways that

cannot be easily or conveniently defined by behavior specifications and interaction rules of

individual agents or changes in environments. Examples include a sudden raise in flow

volume and ambient temperature to simulate the effect of an upstream dam break and an

explosion nearby, respectively.

Create: This is the capability to create and initialize agents and
define simulation world and environments in the world.

Activate: This method activates specified agents.

Affect: This method changes environment parameters and agent
attributes in arbitrary ways, including non-causal ways.

Control: This method causes an agent to change behavior/state in
arbitrary ways, including ways not defined by the behavior-
change methods of the agent.

Figure 2 Core capabilities/methods of God agent

3.2 Agents

Hereafter, when there is no possibility of confusion, we will use the term agent and agent

instance interchangeably. As stated earlier, an agent is an active object. It can interact with the

environment and with other agents. Similar to agents in existing agent-based models, agents

in ABDiSE interact with each other during simulation according to rules governing their

interactions under various conditions. All entities that interact in the simulation experiment

can be modeled as agents. (Even markers in Map Explorer represent agents.) So, the user

cannot simulate any disaster scenario without creating or importing one or more agents.

 Major Types and Agent Properties In ABDiSE, every agent other than God belongs to one

of two major types: NaturalElementAgentType and AttachableObjectAgentType. Agents

of natural element types include cinder, smoke, fluid and so on. Disasters are typically caused

by this type of agents. Agents of attachable type are affected by disasters. Examples include

 10

tables, buildings, trees and cars. Disasters are due to their interactions with some of natural

element agents. Figure 3 lists some of the essential properties of each agent instance in

ABDiSE. Of which major type an agent instance belongs is indicated by its flags

IsNaturalElementAgent and IsAttachableObjectAgent. Clearly, only one of these flags

can be true. We will return to explain other properties shortly.

AgentType: A string for recording the type (e.g., fire) of the agent

ConfigStrings: Default configuration strings (e.g., common fire classes)

AgentProperties: Detail properties in dictionary<str, str> form
(e.g., Name, FireLevel, FireClass)

IsNaturalElementAgent: A Boolean flag
IsAttachableObjectAgent: A Boolean flag
IsJoinedAgent: A Boolean flag

Figure 3 Essential properties of agent

 Attach Method Attach is one of agent methods/rules. The Attach rule is applicable to a

natural element agent and an attachable object agent (or a joined agent). The result produced

by Attach is a joined agent. The natural element agent, or the attachable agent, or both may

disappear, and the new joined agent instance thus created inherits their attributes and status.

Depending on the type of the joined agent, the agent may also have its own methods/rules.

The Attach rule enables us to model events that cause disasters and the development of

disasters. As far as we know, no other agent-based model has this rule.

 An example is a cinder, which is an agent instance of the natural element type, attaches

itself to a table, which is an attachable object. The behavior of the table-joined-with-cinder

agent changes according to a method of the table agent used to model and simulate the start of

a fire from the table and subsequent development of the fire. Another example is water (a

fluid) attaches to a mud-sand mixture. Mud-sand with water attached becomes debris that

flows according to a debris flow law or as computed by a debris-flow simulator when given

the amount of water attached. In a forest fire scenario, a cinder attaches to a tree. A new

tree-joined-with-cinder joined agent instance is created. The behavior of the joined agent is

computed by a wild fire simulator.

 Joined Agent Again, a joined agent instance is composed of a natural element agent

instance and an attachable agent instance or a joined agent instance. The type of a joined

agent is decided by the two agents involved in the attach method. For example, fire attaches to

tree creates tree-joined-with-fire joined agent instance. For convenience, we denote the joined

agent by tree@fire. (In other words, we replace “joined with” by the symbol @.) Another

 11

example is building@smoke, which means building-joined-with-smoke. The fact that an agent

is a joined agent is indicated by the fact that the value of its IsJoinedAgent flag is true.

 The user can customize JoinedAgent type according to the existing agent types. As

examples, suppose that there are fire and smoke agents, which are of natural element agent

type, and building and tree, which are attachable object agent type. Possible combinations

include: building@fire, building@smoke, tree@fire, tree@smoke. The user can also

customize rules and properties for each joined agent type by customizing the update method

of the type. For example, if the user needs to use car@tornado in a scenario, he/she can create

car agent and tornado agent and invokes the attach method of tornado.

4 ARCHITECTURE AND IMPLEMENTATION

ABDiSE is written in C#. It has two versions. Version 1.0 was implemented primarily for the

proof-of-concept purpose. Version 2.0 was designed and implemented to provide extensibility:

It allows the user to add new agent types and extend the model base without having to revise

and recompile the entire framework and simulation engine.

4.1 Structure

Figure 4 shows the functional structure of both versions. In addition to libraries of reusable

agents, agent-based models, various tools and simulators, the framework provides three major

components: graphical user interface (GUI), experiment manager and simulation engine. Parts

of the GUI was described earlier in Section 1: The user sets up, controls simulation

experiments and visualizes simulation results via the GUI. The component is implemented

using Microsoft Windows Form.

 The Experiment Manager helps the user to build an agent-based model of the disaster and

sets up the experiment. To assist the user in this process, the experiment manager provides

select, load and build tools, which are accessible to the user via buttons and text boxes in Area

A shown in Figure 1. The Experiment Manager also allows the user to change the fidelity of

the model by adjusting simulation parameters such as spatial and time granularities and

choices of simulators. The user can configure the engine by adjusting the number of threads

used to run the simulation. The Model Builder loads agent data from agent library to create

agent instances. It also loads models, tools, simulation information and facts from libraries

and fact database.

 12

Graphical User Interface

Model
Builder

Agent

Instances

Simulation

Parameters

Simulator Lib

Tool library

Fact DB

Model library

Agent library

Simulator
Dll

Functions
Work item dispatcher

Simulation
Engine

Experiment Mgr.

New

Agent

Instances

Updated

Agent

Instances

Figure 4 ABDiSE structure and major components

 During a simulation experiment, the behavior rules of every activated agent instance are

executed during each time step. The rules (i.e., simulation programs that compute the dynamic

behavior of individual agents and joined agents) are programmed in Update methods of agent

classes. They are wrapped within work items and invoked as DLL functions. The Simulation

Engine uses a pool of worker threads to execute the work items. Specifically, at the start of

each time step, the simulation engine checks the agent list of God for activated agents. It

encapsulates the Update method of each activated agent into a work item, and queues the

work item into the work item queue in the thread pool. Worker threads in the thread pool

dequeue and execute work items. In this way, the states of agent instances and their

interactions are updated. In the process, new agents may be created and existing ones may

disappear according to their rules, all in time-driven manners.

4.2 Extensibility

In ABDiSE version 1.0, types of agents are fixed at compile time. Adding new agent types

and behaviors requires the user to edit and recompile the code of the simulation environment.

This shortcoming was removed in version 2.0 by providing the simulation engine with the

ability to load agent types dynamically at initialization time. Specifically, in version 2.0, each

agent type is defined by a class. The class inherits the abstract class Agent and implement

methods that override abstract methods of Agent. Agent classes are compiled as DLL

 13

functions. When ABDiSE 2.0 framework starts, the dynamic loader allows the user to

selectively load available agent classes and associated .dll files from the agent library. The

user can create new agent types by creating new agent classes for the types and compiling the

new classes as DLL functions. Like existing agent classes, the new classes also inherit the

abstract class Agent. Their .dll files are also loaded along with the .dll files of existing agent

classes. The next section will provide further details on the mechanism.

 In addition to enhancing ABDiSE with extensibility, we also restructured the code

according to the Model-View-Controller (MVC) architectural pattern [26] in order to improve

maintainability. Figure 5 shows how the major components of ABDiSE 2.0 fit in the MVC

pattern. According to the pattern, classes are divided into three parts: model, view and

controller. Model includes agents, joined agents, God, and environments. They directly

manage data, logic and rules. Classes in view handle button events and passes user inputs to

the controller. Controller manipulates data in the model. The controller also creates

agents by dynamically loading DLL functions, based on rules of the God agent. The core

controller uses a pool of worker threads to execute work items, as stated earlier. When the

model is updated, the view is refreshed to display updated information.

USER(S)

User Interface

GUI Main Window

V
I
E
W

Input Output

Updates

XML Controller

Dynamic Loader

Core Controller

Thread Pool

C
O
N
T
R
O
O
E
R

User

Input

M

Abstract Agent

Fire

Abstract Agent

Building

Building@Fire

Tree@Fire

God

Global Environment

Local Environment

M
O
D
E
L

Manipulates

Figure 5 ABDiSE 2.0 major components

4.3 Important Classes

Again, ABDiSE is written in C#. Attributes of each agent instance are updated during

simulation by the update method of the class implementing the agent. Documentation of

ABDiSE was generated by Doxygen [27] from source code and comments.

 14

 The top-left part of Figure 6 lists important classes in ABDiSE 2.0. They use three

namespaces: Model, View and Controller.

Partial List of ABDiSE 2.0 classes
ABDiSE.Program
ABDiSE.Model.Definitions
ABDiSE.Model.Environment
ABDiSE.Model.God
ABDiSE.Model.AgentClasses.Agent
ABDiSE.Model.AgentClasses.ConfigStrings
…
ABDiSE.Model.AgentClasses.SubTypeStrings
ABDiSE.Model.AgentClasses.Building
ABDiSE.Model.AgentClasses.BuildingJoinedFire
ABDiSE.Model.AgentClasses.Fire
ABDiSE.Model.AgentClasses.Smoke
…
ABDiSE.Controller.CoreController
ABDiSE.Controller.ThreadPool.SimpleThreadPool
ABDiSE.Controller.ThreadPool.SimpleThreadPool.WorkItem
ABDiSE.View.MainWindow
ABDiSE.View.SelectDLLForm
ABDiSE.View.GMapMarkerCircle

public class God {
public int CurrentStep = 0;
public Environment[] WorldEnvironmentList;
public Agent[] WorldAgentList;

public God () {
this.WorldEnvironmentList =

new Environment[MaximumEnvironments];
this.WorldAgentList = new Agent[MaximumAgents];

}

public MethodReturnResultsAddToEnvironmentList
(Environment en)

public void ClearDeadAgent()
public MethodReturnResults AddToAgentList

(Agent targetAgent)
public MethodReturnResults CheckAgentAttachment

(Agent targetAgent)
…

private MethodReturnResults activate (Agent target)
private MethodReturnResults affect

(Agent target, Dictionary<string, string> controls)
private MethodReturnResults control

(Agent target, Dictionary<string, string> controls)
}

static class Program
{

static void Main() {
CoreController CoreController = new CoreController();
Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run(new MainWindow(CoreController));

}
}

public abstract class Agent {
public string AgentType;
public CoreController CoreController;
public int CurrentStep = -1;
public Dictionary<string, string> AgentProperties;
public ConfigStrings ConfigStrings;
public bool IsNaturalElementAgent = false;
public bool IsAttachableObjectAgent = false;
public bool IsJoinedAgent = false;
public bool IsDead = true;
public bool IsActivated = false;
public Environment MyEnvironment;
public GMapMarkerCircle Marker;
public PointLatLng LatLng;
private Object agentLock = new Object();
public Agent(

CoreController CoreController,
Dictionary<string, string> Properties,
PointLatLng LatLng,
ABDiSE.Model.Environment AgentEnvironment

);
public void ThreadPoolCallback(Object threadContext);
public abstract MethodReturnResults Attach(Agent B);
public abstract void SetMarkerFormat();
public abstract ConfigStrings SetDefaultConfigStrings();
public abstract void Update();
public MethodReturnResults AgentDistance(Agent target);
public MethodReturnResults MoveByWind();

}
public class ConfigStrings {

public string ClassShortName;
public string ClassFullName;
public List<SubTypeStrings> SubTypes;
public List<string> Keys;

}

Figure 6 Parts of ABDiSE classes and class Program, God and Agent

 Program, Definition and Environment The simplest among all classes is

ABDiSE.Program. As one can see from its definition in the upper-right part of Figure 6, the

class has only one method, Main. It is the thread function of the main and only thread when

the ABDiSE framework starts. As the result of executing the method, an instance of

CoreController and an instance of MainWindow are created. In the process of creating the

MainWindow instance, Application.Run initializes the C# Windows Form.

 ABDiSE.Model.Definitions class includes the necessary definitions of constant data

types in ABDiSE. For example, this class defines basic movement distances of agents and

possible distances within which a natural element agent may attach to an attachable agent or

joined agent. The class also defines enumerations such as MethodReturnResults, which

record results returned by ABDiSE methods.

 15

 As stated in Section 1, an environment is defined by a set of parameters that specify

attributes / conditions of the simulation world (or a region) affecting the behaviors of all

agents in the world (or in the region). The class ABDiSE.Model.Environment provides the

data structures of these parameters. Each agent is affected by only one environment, i.e., the

environment of the smallest region that contains the location of the agent. Each environment

has a list for recording references / pointers of agents that are in its own region. The reference

to the environment is also kept by agents affected by it. These pointers accelerate the search

between agents and environments.

 Specifically, the data structure of environment parameters is the dictionary<string,

string> named EnvProperties. After ABDiSE framework starts and the instance of

CoreController is created, the controller automatically creates an instance of global

environment with parameters specified in the data structure Environment. Currently, the

elements of the structure include the avgAltitude, rainFall, windSpeed, windDirection,

temperature, and population, and weather.

 God Class The left part of Figure 6 lists parts of the God class. The class implements the

one and only one special agent instance of God of the simulation world. As a special agent,

God has four abilities: create, activate, affect and control. We can see from Figure 6, however,

that God class does not have a create method. The reason is that for sake of extensibility and

maintainability of the code, creating and initializing simulation world is done by

ABDiSE.Model.Program in version 2.0. In this way, the simulation world is created

automatically when ABDiSE framework starts. Agent creation is handled in turn by

CoreController. The user can have agents or joined agents created one at a time by entering

values of each agent instance via the GUI, which passes the values to CoreController. The

dynamic loader in CoreController then uses the parameters to create a new instance of the

specified agent type by loading the associated .dll file.

 In contrast to create, activate, affect and control are methods of God class. Each

agent has a Boolean flag: IsActivated. An agent is active, and its update method is executed

during the current time step, only when the simulation engine finds its IsActivated flag

being true at the start of the time step. So, applying activate method to a specified agent

instance simply turns on the IsActivated flag of the agent instance.

 Both of affect and control methods can change attributes of agent instances and

environment. The user can edit the values of environment properties using text boxes in Area

 16

E of the GUI. Thus directed by the user, these methods are invoked to carry out the changes.

In the current version, the GUI does not provide function for editing attributes of agents.

 Class God keeps track of all environments and agent instances of the simulation world.

WorldAgentList and WorldEnvironmentList are for this purpose. The user can call

AddToEnvironmentList and AddToAgentList methods to record a specified environment or

agent instance in the respective list.

 Each agent instance has a IsDead Boolean flag, which when true indicates that the

instance no longer exists, i.e., is dead. ClearDeadAgent is a bookkeeping method of God. It is

invoked at the end of each time step to delete all dead agent instances. Finally, the

CheckAgentAttachment method of God can help an agent instance to check whether there are

other agent instances suitable for attachment.

 Agent Class We can see from Figure 6 that ABDiSE.Model.AgentClasses.Agent is an

abstract class. Every agent type (e.g., fire, flood, and building) and every joined agent type

(e.g., tree@fire and building@flood) is defined by a class that inherits from this class. The

major type of an agent instance is indicated by the values of its Boolean flags: The difference

between an agent instance and a joined agent instance is the values of their Boolean flag

IsJoinedAgent. Similarly, the values of the Boolean flags IsNaturalElementAgent and

IsAttachableObjectAgent of an agent instance indicate to which one of two major agent

types (i.e., natural element type or attachable type) the instance belongs.

 During simulation, each agent instance records its properties and environment at its

location (i.e., at latitude and longitude LatLng) in the attribute CurrentStep. The string

attribute AgentType is used to record agent type of the instance (e.g., AgentType = “Flood”).

The create agent instance method has as an input parameter a dictionary<string key,

string value>. The data structure is used to record AgentProperties. At the time of its

creation, values of key and value of the initial dictionary is editable in area A of

MainWindow.

 The abstract methods SetDefaultConfigStrings, SetMarkerFormat, Update and

Attach need to be overridden and implemented by methods of children classes for specific

types of agents. Take Fire agent type as an example. The child fire agent type class

ABDiSE.Model.AgentClasses.Fire defines the specific behavior rules of fire agents in the

Update method of the class. Class Fire also has the related fire-building and fire-tree

simulators in Attach method. The user can customize the image, color, size and shape of map

 17

markers for fire agent instances shown in GUI by editing the Fire.SetMarkerFormat.

 The SetDefaultConfigStrings method is used to save data of fire agent attributes. The

data structure is described in class ConfigString, shown at bottom-right part of Figure 6.

The data in this method are filled in Area A of the GUI automatically. The user can define

attributes of different types of fire disasters in this method.

 Similarly, classes for other model elements such as Cinder, Smoke, Water, Building,

Tree, Building@Fire, Building@Water and so on inherit the abstract class Agent. They

use the same namespace ABDiSE.Model.AgentClasses. The differences among all the agent

classes and agent instances are given by values of AgentType, AgentProperties, Boolean

flags IsJoinedAgent, IsNaturalElementAgent, and IsAttachableObjectAgent in

addition to the rules in the four methods.

 Finally, ThreadPoolCallback method and agentLock object is used in multi-threaded

simulation. The next section will describe how they are used.

 More on Update and Attach Update and Attach are core methods of Agent class. In

general, properties of each agent instance change through time (e.g., fire intensity decreases

and smoke moves with wind). The behavior rules dedicating the changes are defined by the

Update method that is executed during each simulation step. When the simulation engine is

multi-threaded, the method is wrapped into a work item, and the work item is inserted in the

Workitem queue and executed by a worker thread. When the engine is single-threaded, the

method is executed by the main thread.

 Attach method defines the rules for creating new joined agents. This method is always

executed by main thread. At the start of each time step, each activated natural element agent

instance (again, take a fire for example) calls God.CheckAgentAttachment(theFireAgent)

to check whether any of the attachable object agent instances nearby are suitable for

attachment. Then the fire agent instance executes the Attach method Fire.Attach. The

method gets one suitable agent instance at a time from the return value of AgentDistance

(oneNearbyAgent): When AgentDistance returns as an acceptable result a target agent

instance, the Attach method checks the type of the target agent. As an example, suppose that

the target agent is of a tree type. Because the rule for “fire attaches to tree” exists and is legal,

the Attach method calls the dynamic loader in CoreController with properties of fire and

tree agents as parameters to create an instance of Tree@Fire. On the other hand, if the

Attach finds no rule for Fire attach to the target agent or properties of the specific agent

 18

instances are such that the existing rule cannot be applied, the method moves on to get the

next target agent until all suitable agents found during the current time step have been

processed.

5 CORE CONTROLLER AND SIMMULATION ENGINE

Figure 7 shows parts of the code of ABDiSE.Controller.CoreController and

CoreController constructor. During initialization of ABDiSE 2.0, the constructor of

CoreController creates the one and only one instance of God; initializes the XML file

controller; creates instance(s) of Model.Environment with parameters provided by the user

via GUI; and launches the dynamic loader; and when the user commands to create agents via

the GUI, uses the dynamic loader to load agent instances (i.e., the associated .dll files) from

the agent library dynamically.

public class CoreController {
public God God;
public SimpleThreadPool STP;
/// Configuration strings from agent types in DLL.
public List<ConfigStrings> ConfigStrings;

/// All loaded DLL classes
public ArrayList Classes;

/// Types of agent classes: for xml save/load
public Type[] AllTypes;

/// XML save/load functions
public XMLController XMLController;

public CoreController ()
public ArrayList GetAllTypesFromDLLstring (string dllName)
public ArrayList GetAllTypesFromClass (string dllName,

string className)
public object RunClass (string dllName, string className,

string methodName)
public object CreateDLLInstance (string className,

params object[] args)
public void EnableMarkerAnimation()
public void DisableMarkerAnimation()
public void DeselectMarkers()
public void StartThreadPool (int ThreadsNum, int IdleTimeout,

int ExecuteTime)
}

public CoreController ()

{
this.God = new God();
this.XMLController = new XMLController(this);

ABDiSE.Model.Environment SimulationWorld =
new ABDiSE.Model.Environment (…);

God.AddToEnvironmentList (SimulationWorld);
string DLLName = "AgentDLL";

Classes = GetAllTypesFromDLLstring (DLLName);
ConfigStrings = new List<ConfigStrings>();

for (int ii = 0; ii < Classes.Count; ii++)
{

ConfigStrings configStr = (ConfigStrings)RunClass (
DLLName,
Classes[ii].
ToString (),
"SetDefaultConfigStrings“);

ConfigStrings.Add(configStr);

}
}

Figure 7 Parts of class CoreController and CoreController constructors.

 For sake of concreteness, we assume hereafter that the user has chosen via text boxes in

area D of the MainWindow to run the multi-threaded simulation engine. As the next step

during start up, the CoreController creates the thread pool of the simulation engine with

user specified number of threads. ABDiSE.Controller.ThreadPool.SimpleThreadPool is

a custom thread pool. It includes a pool of worker thread(s), a FIFO queue for holding work

items waiting to be executed, and methods of controlling worker thread(s). Details on the

thread pool and the WorkItem classes and key parts of their code can be found in [28].

 During simulation, CoreController interacts with all models elements, including agents,

 19

environments, and God and the GUI, while the simulation engine uses the worker threads in

the thread pool to execute work items. Again, the dynamic behavior of individual agents and

joined agents are defined by update methods of their respective types, and update methods of

all activated agent instances in the simulation world are wrapped within the work items,

invoked as DLL functions and executed by worker threads during a simulation step.

 Several parts of the update method need to be marked as critical sections and guarded by

locks. An example is the code for agent attachment: When the attach method returns

successfully, the attachment will affect the agent instances being attached. Both of them must

be locked until the attachment operation ends. Similarly, God.WorldAgentList must be

locked by agent creation code when adding a new agent instance to the list, and each agent

instance must be locked during its state update.

 Lock contention is reduced and time order is preserved by dividing each simulation step

into two parts. The second part starts after the first part completes. In the first part, the update

methods of all activated joined agent instances are executed. The update method of each

joined agent updates its state and may create new agent instances. The update methods of all

agent instances that are not of joined agent types are executed in the second part of the time

step. As stated earlier, the method first tries to find suitable agent instances nearby and attach

to them if possible. When attachment of an agent instance succeeds, there is no need to update

the state of the agent instance. In other words, the state of any agent instance is updated only

when the instance does not attach to another agent instance. At the end of the second part of a

step, when update methods of all agent instances have completed, the God instance executes

ClearDeadAgent method to remove all dead agent instances.

6 SUMMARY AND FUTURE WORK

The previous sections described the agent-based models and tools provided by the

agent-based disaster simulation environment ABDiSE for construction and execution of the

agent-based models to simulate several common types of natural disasters. Models available

in the agent library of the latest version, ABDiSE 2.0, includes agent classes/DLL functions

for modeling fire, smoke, flood, tornado, buildings, trees, and joined agents of them. In

addition to model elements, the framework provides the user with several easy-to-use tools,

including tools for agent creation, environment control, simulation control, and an interactive

GIS map, which the user can access via MainWindow of the GUI. XMLController is for

 20

saving/loading the state of agents in the simulation world at any point during a simulation run

to be used as a checkpoint and as an initial state of simulation experiments to be done later

 In case studies for purposes of assessing the usefulness and usability of the model

elements and tools, we constructed from available model elements in the agent library several

customized simulators of disasters at locations of well-known past disasters, including a

simulator of the devastating flood at Xiaolin Village in Taiwan caused by Typhoon Morakat in

2009 [29]; a simulator of an earthquake-triggered fire along Van Ness Avenue, San Francisco,

CA, in the midst of the region hard hit by the 1906 San Francisco earthquake [30] and a

simulator of frequent bushfires in New South Wales, Australia [31]. The screen shot shown in

Figure 1 was taken during the early part of a simulation run of the flood simulator. (Again, the

small squares and circles in Area B represent houses/buildings in the affected area.) Similarly,

Figure 8 shows the screen shots generated by the San Francisco fire simulator on the left and

the South Wales bushfire simulator on the right showing the quick spread of fire (in red) and

smoke (in dark cloud shapes) from a few buildings and trees.

Figure 8 Screen shots generated by fire simulators

Left: Fire developing at a few buildings along Van Ness Avenue in San Francisco
Right: Bushfire spreading from a few trees)

 Thus far, we have focused primarily on ABDiSE models and tools using which a user with

can easily construct customized simulators of different scenarios for diverse types of disasters

at different locales. Our experimentation has demonstrated that we have achieved this goal.

The accuracy of the simulators requires significant improvement, however. This can be done

by incorporating accurate and detailed fire and flood simulation programs in the update

methods of joined agents as discussed in Section 2. Indeed, the most important future work is

to provide a wide selection of accurate simulation programs for various disasters.

 21

 ABDiSE 2.0 not only allows the user to import external simulators but also to add new

agent types without having to modify and compile the source code of the framework: It will

be straightforward to add agent types needed to model scenarios such as infectious diseases,

terrorist attacks and major traffic accidents. It will also be straightforward to add agents that

model people in different roles during disasters and thus make ABDiSE applicable for

modeling and simulating SOPs in response to common types of disasters [25].

 The source code of ABDiSE 2.0 is released under the GPL license. The concept of

agent-based model supported by the framework and ABDiSE code are easy-to-understand. A

user willing to revise the source code can enhance the framework along many directions. For

example, in current version, the God.CheckAgentAttachment() method is invoked by every

activated natural element agent during each simulation step. The method confines the search

for agent instances suitable for attachment among attachable object agent instances.

Consequently, multi-level attachment is not supported. (In other words, it is not possible for

joined agents to attach to another agent and other joined agent.) This limitation can be easily

removed by modifying this method and behavior rules in attach methods to include joined

agent instances as attachable objects without changing ABDiSE 2.0 system architecture.

ACKNOWLEDGEMENT

This work was supported by the Taiwan Academia Sinica thematic project OpenISDM

(Open Information Systems for Disaster Management).

REFERENCES

[1] E. Bonabeau, “Agent-based modeling: methods and techniques for simulating human

systems”, Proceedings of National Academy of Science,, May 14, 2002.

[2] J. M. Epstein, et al., “Combining computational fluid dynamics and agent-based modeling:

a new approach to evacuation planning,” Plos ONE, 6(5), May 2011

[3] D. Helberg and S. Balictti, “How to do agent-based simulation in the future: from

modeling social mechanism to emergent phenomena, to interactive system design,” SFI

Working paper No. 11-06-024, 2011.

[4] S. Bandini, et al., “Agent-based modeling and simulation: an informatics perspective,”

Journal of Artificial Societies and Social Simulation, Vol.12, No. 4, 2009.

[5] N. Gilbert, Agent-Based Models, Sage Publications, 2007.

[6] “Comparision of agent-based modeling software,” at

 22

http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software

[7] “GMap.NET homepage,” at http://greatmaps.codeplex.com/

[8] “Fire simulation with FDS” , at

http://ejrh.wordpress.com/2011/04/14/fire-simulation-with-fds/

[9] “Fire Dynamics Simulator (FDS) and Smokeview (SMV),”

https://code.google.com/p/fds-smv/

[10] Harrington Group, “Fire Dynamics Simulator (FDS) and Smokeview (SMV) – Bringing

Fire Analysis to Life”, at

http://www.hgi-fire.com/blog/fire-dynamics-simulator-fds-and-smokeview-smv-bringing-

fire-analysis-to-life

[11] Michael Sebhat and Tom Heinzer, “The Development of an ArcInfo Interface to the

National Weather Service DAMBRK Model”

http://proceedings.esri.com/library/userconf/proc97/proc97/to600/pap581/p581.htm

[12] MIKE21 User Guide and Reference Manual, Danish Hydraulic Institute, 1996

[13] Paul Bates and Dr. Mark Trigg, et al., “Amazon modeling,”

http://www.bris.ac.uk/geography/research/hydrology/research/flooding/amazon/

[14] LISFLOOD-FP, http://www.bris.ac.uk/geography/research/hydrology/models/lisflood

[15] Leszek Pawlowicz, “High-Resolution Sea Level Rise Flooding Animations in Google

Earth”,

http://freegeographytools.com/2007/high-resolution-sea-level-rise-flooding-animations-in

-google-earth

[16] “Animated Sea Level Rise in Manhattan”,

https://www.youtube.com/watch?v=RUNsV0ofX-s

[17] Charles M. Macal and Michael J. North, “Introduction to Agent-based Modeling and

Simulation”, MCS LANS Informal Seminar, November 29, 2006, at

http://www.mcs.anl.gov/~leyffer/listn/slides-06/MacalNorth.pdf

[18] Charles M. Macal and Michael J. North, “Introductory Tutorial: Agent-Based Modeling

and Simulation”, Proceedings of the 2011 Winter Simulation Conference.

[19] Nicholas R. Jennings and Stefan Bussmann, “Agent-Based Control Systems – Why Are

They Suited to Engineering Complex Systems”, IEEE Control Systems Magazine, June

2003

[20] M.Wooldridge, “Agent-based software engineering,” Proc. Inst. Elec. Eng., vol. 144, pp.

 23

26-37, 1997.

[21] Rob Allan. “Survey of Agent Based Modeling and Simulation Tools”, at

http://www.grids.ac.uk/Complex/ABMS/

[22] “Repast”, at SourceForge http://repast.sourceforge.net/repast_3/index.html and

http://en.wikipedia.org/wiki/Repast_(modeling_toolkit)

[23] “AnyLogic official website”, at http://www.anylogic.com/

[24] Karam Mustaphaa, Hamid Mcheicka, Sehl Melloulib, “Modeling and Simulation

Agent-Based of Natural Disaster Complex Systems”, EUSPN-2013, Procedia Computer

Science 21, 148-155, 2013.

[25] C. Y. Wu, “Approaches to Model People and SOP in Disaster Scenarios,” MS thesis,

Department of Computer Science, National Tsing Hua University, Taiwan, April 2015.

[26] Model–view–controller architectural pattern, at ABDiSE - Agent-Based Disaster

Simulation Environment.doc

[27] Doxygen (tool) at http://www.stack.nl/~dimitri/doxygen/

[28] T. L. Hsu, “An Agent-Based Disaster Simulation Environment,” MS thesis, Department

of Computer Science, National Tsing-Hua University, Taiwan, December 2014

[29] Typhoon Morakot, at http://en.wikipedia.org/wiki/Typhoon_Morakot

[30] 1906 San Francisco earthquake,

http://en.wikipedia.org/wiki/1906_San_Francisco_earthquake

[31] 2013 New South Wales bushfires”,

http://en.wikipedia.org/wiki/2013_New_South_Wales_bushfires

