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Abstract

In this paper, we propose a dictionary updating method, called the PMK-SVD method,

and show numerically that it can stabilize the dictionary updating process, increase the

convergence speed, and converge to a dictionary that outperforms the dictionary derived

by the K-SVD method. The proposed method is based on the proximal point approach,

which imposes a constraint on the distance of the dictionary modifications in the dictionary

updating process. Specifically, we incorporate the approach into the well-known MOD and

K-SVD dictionary updating algorithms and combine the results to obtain the PMK-SVD

method. We analyze the complexity of the proposed method and compare it with that of

the K-SVD method. The results of experiments demonstrate that our method outperforms

K-SVD.

1 Introduction

Sparse approximation means that a signal, as a vector, can be well approximated in a low-

dimensional column subspace of a matrix. If a signal is sparsely approximated by some basis

elements (atoms), then its structure can be derived from that of the atoms. The discrete

Fourier and wavelet transforms, represented as square matrices, are sparse approximations of

the stationary oscillatory signals and the piecewise smooth signals respectively [1]. This is the

reason that the Fourier and wavelet transforms have been widely applied in various domains. For

a signal rich in structure that cannot be sparsely approximated by the Fourier or wavelet atoms

(i.e., the Fourier or wavelet representations are less effective on the signal), a recently proposed

approach [2] derives a sparse approximation of the signal with an over-complement dictionary.

Basic linear algebra rules out the unique representation of the signal with the dictionary. Thus,

to derive a sparse solution, a constraint is usually imposed on the number of non-zero coefficients.

The sparse coding problem and the dictionary learning problem are always encountered when

deriving sparse representations with a dictionary. The sparse coding problem tries to derive the

sparse solution (where the dictionary is supposed to be known and fixed); while the dictionary
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learning problem involves designing a dictionary that can simultaneously approximate a large

class of signals sparsely. A plenty of algorithms have been proposed to solve the sparse coding

problem [3, 4, 5, 6, 7, 8]. In this paper, we focus on the dictionary learning problem.

Let Y = [y1, · · · , yL] be a matrix of L training signals with yi ∈ RN . The objective of the

dictionary learning problem is to design a proper dictionary D ∈ RN×K (with the normalized

column norm) that can derive a sparse representation of the training signals simultaneously.

The problem can be formulated as the following minimization problem:

min
W,D
∥Y −DW∥2F subject to ∥wi∥0 ≤ S, for i = 1, · · · , L, (1)

where wi is the ith-column of the matrix W , and S is the maximal number of non-zero elements

in each column of W . Usually, iterative algorithms are employed to solve the problem. Each

iteration is comprised of two steps: a sparse-coding step and a dictionary-updating step. In the

first step, the dictionary is fixed and the elements in W are updated; and in the second step, the

dictionary is updated and used in the sparse-coding step of the next iteration. The only difference

between the various dictionary learning algorithms is the way they execute the dictionary-

updating step. Conceptually, most of the algorithms are based on the Method of Optimal

Directions (MOD) algorithm [9] and the K-SVD algorithm [10]. The dictionary-updating step

in the MOD approach is based on the least square solution of a system of equations; and in the

K-SVD approach, the step is based on the K-means algorithm. The K-SVD approach extends

the code words of the K-means algorithm from 1-sparse (at most 1 non-zero coefficient) to S-

sparse (at most S non-zero coefficients). The state-of-the-art algorithms based on both batched

approaches achieve almost the same convergence rates and yield optimal dictionaries for various

sets of experimental data [11].

In this article, we propose a novel dictionary updating approach that exploits the proximal

point method, a well-known convex optimization algorithm [12, 13], to solve the dictionary

learning problem. The proximal point method has been used to solve the sparse coding problem

[13, 8, 14, 15, 16]; however, to the best of our knowledge, it has not been applied to solve the

dictionary updating problem. For the sparse coding problem, the proximal point method is used

to solve variations of the problem where the L0 or L1 norm is replaced with another non-smooth

regularization term [17, 18], such as the trace norm [19] or the hierarchical norm [20, 21, 22].

Other works that utilize the proximal point approach to solve the sparse coding problem are

discussed in [23, 24].

To solve the dictionary updating problem, the MOD algorithm updates the dictionary D in

Equation (3) with fixed coefficients W in each iteration; while the K-SVD algorithm updates

the dictionary and the coefficients simultaneously. K-SVD also places a constraint on the sup-

port of the derived coefficients, but not on the derived dictionary; thus, the variation in the
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sequence of dictionaries derived by the K-SVD approach can be large. In numerical analysis,

a large variation in the sequence of the dictionaries may overshoot the optimal dictionary and

slow down the convergence process. The overshooting problem can be solved by imposing a reg-

ularization term on dictionary modifications to control the variations in the derived dictionaries.

Specifically, we extend K-SVD by using the proximal point method to regularize the distance

between the dictionaries obtained in two consecutive iterations. Therefore, the dictionary up-

dating process derives a new dictionary that takes account of the current estimated dictionary

and the estimation method. The approach is similar to the successive over-relaxation approach1

which is normally used to stabilize and increase the convergence of Newton’s method. The

over-relaxation approach resolves the overshooting problem in cases where the first derivative

of a function does not behave well in the neighborhood of a root or several roots are closely

aggregated. Moreover, we show that the proposed approach (1) preserves the characteristics of

the K-SVD method; and (2) integrates the MOD algorithm and the K-SVD dictionary updating

method in a single framework.

Normally, the optimal point method is exploited when the original objective function of an

optimization problem is not differentiable, or it is difficult to derive an optimal solution directly.

When the proximal point method is applied to an optimization problem, an extra function

d(x, xi) is added to the original objective function f(x) to form the proximal (or surrogate)

function q(x, xi), where xi is derived from the previous iteration. Under the proximal point

approach, q(x, xi) must have the following properties: (1) q(xi, xi) = f(xi); and (2) q(x, xi) ≥

f(x) for all x and xi in the feasible domain so that the sequence generated by the recurrent

equation

xi+1 = argmin
x

q(x, xi) (2)

converges to a local minimum of the original function f(x) as i → ∞. Under the proximal

point approach, the dictionary learning problem can be defined so as to solve the following

optimization problem:

min
W,D
∥Y −DW∥2F + λ||D −Dold||2F subject to ∥wi∥0 ≤ S, for i = 1, · · · , L, (3)

where ∥Y −DW∥2F+λ||D−Dold||2F is the proximal function, wi is the ith-column of the matrixW ,

S is the maximal number of non-zero elements in each column of W , and Dold is the dictionary

derived in the previous iteration.

The optimization problem in Equation (3) can be solved by a number of techniques. In this

paper, we use a combination of matrix calculus and singular value decomposition (SVD). As the

1The formulation of a successive over-relaxation depends on the problem. The simplest formulation may be

xn+1 = λxn + (1− λ)f(xn), where f(xn) is the root estimation function, and λ is the relaxation parameter.
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MOD method is based on matrix calculus and the K-SVD method is based on singular value de-

composition, the proposed method is called PMK-SVD. To evaluate the method’s performance,

we conduct experiments on dictionary recovery, sparse approximations, filling in the missing

pixels of an image, and compression of an image. The results demonstrate that the PMK-SVD

method outperforms the K-SVD method.

The reminder of this paper is organized as follows. In Section 2, we review the MOD and

the K-SVD approaches. In Section 3, we present two proximal point-based dictionary learning

approaches for the MOD method and the K-SVD method, and show that the approaches can

be combined to derive a new learning algorithm. We also analyze the complexity of different

learning methods. In Section 4, we consider a number of implementation issues, and discuss

the results of experiments conducted to compare the performance of the dictionaries learned by

different methods. Section 5 contains some concluding remarks.

2 The MOD and K-SVD Approaches

Many dictionary learning algorithms are conceptually similar to the original algorithms in the

MOD approach and the K-SVD approach.

2.1 The MOD approach

The MOD approach tries to update a dictionary D based on the current coefficients W , derived

by a sparse coding method, to minimize the least square error of

min
D
||Y −DW ||2F . (4)

The optimal dictionary is obtained by solving the following equation:

∂∥Y −DW∥2F
∂D

= 0, (5)

and the analytical solution is

D = YW T (WW T )−1. (6)

Because WW T is not always a full-rank matrix, the iterative steepest descent update rule is

proposed in place of Equation (6), and the dictionary is updated by

D = Dold + η(DW − Y )W T , (7)

whereDold is the dictionary before the updating step in the current iteration, and η is a coefficient

that determines the speed of convergence. The iterative LS-based dictionary learning algorithm
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(ILS-DLA) is a state-of-the-art algorithm that is conceptually similar to MOD method. It ex-

tends the MOD method by designing signal dependent block-based dictionaries and overlapping

dictionaries.

The MOD method was originally designed for the batch processing. Recently, an on-line

dictionary learning algorithm and a recursive least squares dictionary learning algorithm (RLS-

DLA) were proposed by Mairal et al. [25] and Skretting and Engan [11] respectively. The

algorithms use on-line dictionary updating rules that perform dictionary learning by processing

one signal at a time in sequence. They are suitable for dictionary learning in on-line applications.

2.2 The K-SVD Approach

Next, we consider the K-SVD algorithm. In contrast to the algorithms in the MOD category,

which are based on the linear regression approach, the K-SVD algorithm is conceptually gener-

alized from the K-means algorithm. Let Dold be the current dictionary and Wold be the current

coefficients derived by the sparse coding step for Dold. The K-SVD algorithm tries to solve the

following optimization problem, using Dold and Wold as the initial inputs:

min
D,W
||Y −DW ||2F with supp(W ) ⊆ supp(Wold), (8)

where the support of W (supp(W )) represents the locations of the non-zero coefficients in W .

In the dictionary updating step, the K-SVD approach imposes a stronger constraint than the

number of non-zero coefficients, because it requires that the locations of the non-zero coefficients

of W are a subset of those of Wold. Aharon et al. [10] show that the solutions, D and W , of

the above optimization problem can be derived in an iterative manner by updating one column

dk at a time in the dictionary along with the corresponding k-th row coefficients, denoted as rTk

(the transpose of rk). To do this, we let ∥rTk ∥0 denote the number of non-zero coefficients in rTk ,

and pk(i) denote the index of the i-th non-zero coefficient in rTk . In addition, we let Ωk be the

L×∥rTk ∥0 matrix, with the entries (pk(i), i) set at one and other entries set at zero. As a result,

the i-th column of the matrix WΩk becomes the pk(i)-th column of the matrix W . To modify

the column dk and the corresponding coefficients rTk simultaneously, we rewrite Equation (8) as

follows:

||Y Ωk −DWΩk||2F = ||Y Ωk −
K∑
j=1

djr
T
j Ωk||2F (9)

= ||EkΩk − dkr
T
k Ωk||2F , (10)

where Ek = Y −
∑

j ̸=k djr
T
j . Let EkΩk = Uk∆V T

k be the singular value decomposition of EkΩk.

The K-SVD algorithm updates dk by setting it as the first column of Uk, updates rTk Ωk by

setting it as the first row of Vk, and then multiplies the result by ∆(1, 1). The modification of

one column and the corresponding coefficients reduces the value of Equation (10).
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Skretting [11, 26] observed that, in practice, the K-SVD and the ILS-DLA algorithms con-

verge to a dictionary in almost the same number of iterations. However, the computation time

of K-SVD is longer due to the higher computational complexity (SVD calculations) of the dic-

tionary updating rule.

3 The Proximal Point Approach

The proposed proximal point approach updates the dictionary by solving the following opti-

mization problem with λ ≥ 0:

min
W,D
∥Y −DW∥2F + λ||D −Dold||2F subject to ∥wi∥0 ≤ S, for i = 1, · · · , L, (11)

where ∥Y −DW∥2F +λ||D−Dold||2F is the proximal function, Dold is obtained from the previous

iteration, and wi is the ith-column of W . Next, we show that the optimization sequence in

Equation (11) converges. Let (Dn,Wn) and (Dn−1,Wn−1) be the solutions derived by the

equation in any two consecutive iterations. The dictionary updating step of the proximal point

approach converges because

||Y −DnWn||2F ≤ ||Y −DnWn||2F + λ||Dn −Dn−1||2F (12)

≤ ||Y −Dn−1Wn−1||2F + λ||Dn−1 −Dn−1||2F (13)

= ||Y −Dn−1Wn−1||2F . (14)

The inequality in Equation (13) occurs because (Dn,Wn) minimizes Equation (11) with Dold =

Dn−1. The proximal function in (11) can be solved by applying matrix calculus (the MOD style)

or singular value decomposition (the K-SVD style), which we discuss in the next two subsections.

3.1 Proximal MOD (P-MOD) Method

In the MOD method, the dictionary is updated with a fixed coefficient matrix. The proximal

point approach can be incorporated into the MOD method by rewriting Equation (4) as follows:

min
D
∥Y −DW∥2F + λ∥D −Dold∥2F . (15)

Let g(D,Dold) = ∥Y − DW∥2F + λ∥D − Dold∥2F be the proximal function. Then, the optimal

dictionary of Equation (15) can be derived by taking the partial derivative of g(D,Dold) with

respect to D and setting the result to 0. Let tr(A) represent the trace of the matrix A. Given

the fact that tr(ATA) = ∥A∥2F , after some straightforward calculations, we obtain

∂g(D,Dold)

∂D
=

∂∥Y −DW∥2F
∂D

+ λ
∂∥D −Dold∥2F

∂D

= 2(−YW T +DWW T + λ(D −Dold))

= 0. (16)
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Thus, the dictionary updating rule (called the P-MOD method) is formulated as

D = (Dold +
1

λ
YW T )(I +

1

λ
WW T )−1, (17)

where I is the identity matrix. Because we can select the value of the coefficient λ to ensure

that the matrix (I+ 1
λWW T ) is a full rank matrix, and therefore invertible, the derived optimal

dictionary is reliable.

We use D̃n−1 and W̃n−1 to denote, respectively, the dictionary and the coefficient matrix

derived in the previous iteration of the P-MOD method. The current dictionary is obtained by

D̃n = (D̃n−1 +
1

λ
Y W̃ T

n−1)(I +
1

λ
W̃n−1W̃

T
n−1)

−1; (18)

and the current coefficient matrix W̃n can be derived by solving the following sparse coding

problem:

min
W̃
∥Y − D̃nW̃∥ subject to ∥w̃i∥0 ≤ S. (19)

Because of the dictionary and the coefficient updating rules in Equations (18) and (19), respec-

tively, the P-MOD method converges since

||Y − D̃nW̃n||2F ≤ ||Y − D̃nW̃n−1||2F (20)

≤ ||Y − D̃nW̃n−1||2F + λ||D̃n − D̃n−1||2F (21)

≤ ||Y − D̃n−1W̃n−1||2F . (22)

Equation (20) is obtained because W̃n is the solution of Equation (19); and Equation (22) is

obtained because D̃n solves Equation (15) with Dold = D̃n−1 and W = W̃n−1.

3.2 Proximal K-SVD (PK-SVD) Method

The proximal point approach can be incorporated into the K-SVD method, which minimizes

the following proximal point surrogate function:

min
D,W
||Y −DW ||2F + λ||D −Dold||2F with supp(W ) ⊆ supp(Wold). (23)

If λ = 0, this optimization problem becomes the K-SVD problem. To solve it, we use the same

approach as K-SVD by iteratively updating one column at a time in the dictionary along with

the corresponding non-zero row coefficients. Let dk and rTk denote the k-th column in D and

the k-th row in W respectively. In addition, let pk(i) be the i-th non-zero index in rTk , and let

||rTk ||0 be the number of non-zero coefficients. If we let Ωk be an L×∥rTk ∥0 matrix in which the

entries (pk(i), i) are set at one and other entries are set at zero, rTk Ωk is a 1× ||rTk ||0 row vector

with non-zero entries; for example, if rTk = [0 1 0 0 2], then rTk Ωk is [1 2].
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Next, we consider the procedure used to update the k-th column dk in the dictionary and

the corresponding non-zero coefficients rTk Ωk. First, we have

||Y Ωk −DWΩk||2F = ||(Y −
∑
j ̸=k

djr
T
j )Ωk − dkr

T
k Ωk||2F (24)

= ||EkΩk − dkr
T
k Ωk||2F , (25)

= ||Ẽk − dkx
T
k ||2F , (26)

where Ek = Y −
∑

j ̸=k djr
T
j , Ẽk = EkΩ, and xTk = rTk Ωk. Equation (26) is the K-SVD updating

rule, which uses a rank 1 matrix, dkx
T
k , to approximate the error matrix Ẽk. Let doldk denote

the k-th column in the dictionary Dold; then, we have

||Y Ωk −DWΩk||2F + λ||D −Dold||2F = ||Ẽk − dkx
T
k ||2F + λ||dk − doldk ||2F + Ck, (27)

where Ck is a constant that is independent of dk and xTk . Now, to obtain the optimal solution

of the problem in Equation (23), we have to solve the following subproblem:

min
dk,x

T
k

||Ẽk − dkx
T
k ||2F + λ||dk − doldk ||2F . (28)

Comparison of Equations (26) and (28) shows that our approach is a rank 1 approximation of

Ẽk like the K-SVD approach; however, our dk is penalized because of its distance from doldk .

Therefore, the optimal solution cannot be obtained by the K-SVD method, which takes the

SVD of Ẽk = U∆V T , and then assigns dk = u1 (the first column of U) and xTk = ∆(1, 1)vT1 (by

multiplying the first row of V T by the (1, 1) element of ∆).

Let f(dk, xk; Ẽk, d
old
k ) = ||Ẽk − dkx

T
k ||2F + λ||dk − doldk ||2F . After taking the partial derivative

of f(dk, xk; Ẽk, d
old
k ) with respect to dk and xk and setting the results to zero, we obtain the

following equations for the optimal solution of Equation (28):

(||xk||2 + λ)dk = Ẽkxk + λdoldk (29)

||dk||2xk = ẼT
k dk, (30)

where ||dk|| = 1 because each column of the dictionary is normalized. Next, we derive the

solutions of dk and xk in (29) and (30). For convenience, we omit the subscript indices in the

equations. We can rewrite Equation (29) as

||x||2d = Ẽx+ λ(dold − d), (31)

and multiply ||x||2 on both sides of Equation (30) to obtain

||x||2x = ẼT ||x||2d. (32)
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Then, we substitute ||x||2d obtained in Equation (31) into Equation (32) to obtain

||x||2x = ẼT Ẽx+ λẼ(dold − d). (33)

Let us assume that x is in the direction of an eigenvector of ẼT Ẽ; that is, x = ||x||x̂ and

µx̂ = ẼT Ẽx̂; (34)

then, Equation (33) becomes

∥x∥3x̂ = µ∥x∥x̂+ λẼT (dold − d). (35)

If λ = 0 and if x̂ and µ are chosen as the first eigenvector and the corresponding largest eigenvalue

of ẼT Ẽ, we can derive the K-SVD solutions from the above equation. For λ > 0, if we multiply

both sides of Equation (35) by ẼT+ = (ẼẼT )−1Ẽ (the pseudo inverse matrix of ẼT ), we have

∥x∥3ẼT+x̂ = µ∥x∥ẼT+x̂+ λP (dold − d), (36)

where P = ẼT+ẼT is the orthogonal projection onto the range of Ẽ. Re-arranging the terms in

Equation (36), we obtain

Pd =
1

λ
(µ∥x∥ − ∥x∥3)ẼT+x̂+ Pdold. (37)

If we let Q = I − P be the orthogonal complement of P , we have

(P +Q)(d− dold) = P (d− dold) +Q(d− dold) = d− dold. (38)

By imposing Q(d−dold) = 0 (that is, the dictionary columns d and dold have the same projection

in the orthogonal complement space of P ), we have

d = (P +Q)d = Pd+Qd = Pd+Qdold. (39)

To derive the norm of x, we could substitute Equation (37) into Equation (39) to obtain

d as a function of ||x||; and then solve ||x|| by exploiting the fact that dTd = 1. However,

the approach would derive the roots of a polynomial of ||x|| with degree 6, which would be

computationally inefficient. Instead, we use the following approach to find the norm of x.

From Equation (30), we have xTx = ∥x∥2 = dT ẼẼTd. In addition, we let the SVD of ẼẼT

be

ẼẼT =

l∑
i=1

σ2
i viv

T
i . (40)

The norm of x can be written as

∥x∥2 =
l∑

i=1

σ2
i < d, vi >

2, (41)
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where l is the rank of Ẽ and σ1 ≥ · · · ≥ σl. This equation gives the bounds of the norm by

σl ≤ ||x|| ≤ σ1. (42)

Because of Equation (30), we can substitute x for ẼTd in Equation (35) and obtain

(∥x∥2 + λ− µ)x = λẼTdold. (43)

Taking the norm on both sides of the above equation, we obtain

(∥x∥2 + λ− µ)∥x∥ = λ∥ETdold∥. (44)

Let do be the current estimate of d. Then, to update the dictionary column (atom) dnew

and the corresponding coefficient vector xnew and use the following procedure: (1) if λ = 0, we

return the result of the K-SVD method; or (2) if λ > 0, we substitute the current estimate do

into Equation (41) to derive ||xo||, which is used in the term ∥x∥2 + λ− µ in Equation (44), to

update the norm by

∥xnew∥ ←


λ∥ET dold∥
∥xo∥2+λ−µ

, if ∥xo∥2 + λ− µ ̸= 0,

∥xo∥, otherwise.
(45)

The term ||xnew|| replaces ||xo|| in subsequent iterations until the norm does not change2. At that

point, we substitute ||xnew|| for ||x|| in Equation (37) and derive Pdnew. Then, the dictionary

column is updated by

dnew ← Pdnew +Qdold (46)

and used in place of do to repeat the process until some stopping condition is reached.

The updating rule in Equation (46) has a special case where dnew is not updated. This

occurs when P is an identify matrix and therefore Q = 0. In this case, we can re-formulate

Equation (31) as a root-finding problem and use Newton’s method to update the vector dnew.

Let the root-finding problem be g(d) := (||xnew||2 + λ)d− Ẽxnew + λdold, where the root of g(d)

is the solution of Equation (31). Then, based on Newton’s method, the vector dnew is updated

by

dnew ← do −
g(do)

g′(do)
= do −

(||xnew||2 + λ)do − Ẽxnew + λdold

||xnew||2 + λ
. (47)

This procedure yields the solutions of Equations (29) and (30), and thereby solves the optimal

problem in Equation (28). Table 1 summarizes the steps of the proposed one column dictionary

and coefficient updating method, called the One-Atom-PK-SVD method. Note that, in Step

1, the initial do and x̂ are derived by the K-SVD method; that is, do is the first eigenvector of

2In practice, we found that one iteration is sufficient to derive the norm of x.
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ẼẼT by default and µ is therefore the largest eigenvalue. Moreover, in Step 6, we can use an

alternative condition, such as the maximum number of iterations, to exit the algorithm. In Table

2, based on the One-Atom-PK-SVD, we present the proximal point K-SVD dictionary updating

method, called the PK-SVD method; and Table 3 shows the PK-SVD-Learning algorithm,

which utilizes the sparse coding step and the PK-SVD dictionary updating step alternately to

learn an optimal dictionary for the training signals.

3.3 Combining the Proximal MOD and Proximal K-SVD Approaches

We combine the proximal point approaches of P-MOD and PK-SVD as follows.

Let Dn−1 and Wn−1 be, respectively, the dictionary and the coefficient matrix derived in the

(n− 1)-th iteration. First, we update the dictionary in the n-th iteration by using the P-MOD

method, which modifies Dn−1 by solving

min
D
||Y −DWn−1||2F + λp||D −Dn−1||2F , (48)

and letting Dpmod be the solution of the above equation. Then, we modify the dictionary by

solving

min
D,W
||Y −DW ||2F + λs||D −Dpmod||2F with supp(W ) ⊆ supp(Wn−1). (49)

The above optimization procedure is convergent. Let Dn andWn be, respectively, the dictionary

and the coefficient matrix after the n-th iteration. Then, we have

||Y −DnWn||2F ≤ ||Y −DnWn||2F + λs||Dn −Dpmod||2F (50)

≤ ||Y −DpmodW
n−1||2F + λs||Dpmod −Dpmod||2F (51)

≤ ||Y −DpmodW
n−1||2F + λp||Dpmod −Dpmod||2F (52)

≤ ||Y −DpmodW
n−1||2F + λp||Dpmod −Dn−1||2F (53)

≤ ||Y −Dn−1Wn−1||2F (54)

In the above derivations, Equation (51) is derived because Dn and Wn are the solutions of

Equation (49); and Equation (54) is obtained because Dpmod is the solution of Equation (48).

Table 4 shows the combined dictionary learning approach. Because the method is a combination

of the P-MOD and PK-SVD dictionary updating methods, we call it the PMK-SVD Learning

method.

3.4 Computational Complexity of Dictionary Updating Methods

We compare the computational complexity of the following dictionary updating methods: K-

SVD, P-MOD, PK-SVD, and PMK-SVD. The complexity is represented by the parameters: S,

N , K, L, which correspond to the number of non-zero elements, the dimensions of signals, the
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number of columns in a dictionary, and the number of training signals respectively. Generally,

we use L ≥ K ≥ N ≥ S for dictionary learning. According to [27], the complexity of the SVD

calculation of a matrix of size Rm×n is O(mn2+m2n+n3). Because all the dictionary updating

methods are iterative algorithms, it is difficult to compare their complexity without knowing the

number of iterations that each algorithm requires to converge. Thus, our comparison is based

on one iteration of each method.

A. The K-SVD Method:

This method’s complexity is bounded by calculating the matrix EkΩk and performing SVD

on it. Calculating EkΩk (Equation (10)) takes O(KLN) steps because Ek can be obtained by

KNL steps and Ωk is used to to select some columns from Ek, therefore, the calculation takes

at most NL steps.

The average complexity of SVD is bounded by the size of the matrix EkΩk. The number

of rows in EkΩk is N ; and the number of columns is the number of non-zero coefficients in the

k-th row of the coefficient matrix W of size K × L. Because each column of W contains at

most S non-zero coefficients, the number of non-zero coefficients in W is bounded by LS. If the

non-zero coefficients are distributed uniformly in W , the average non-zero coefficient in each row

is SL
K ; thus, the size of EkΩk is N × SL

K . As a dictionary has K columns, each iteration of the

K-SVD dictionary’s update procedure takes O(K(KLN +N2(SLK ) +N(SLK )2 + (SLK )3)) time.

B. The P-MOD Method:

This method is based on Equation (17). Its complexity is bounded by the inverse of theK×K

matrix, which costs O(K3), and three matrix multiplications take O(NLK) (YW T ), O(K2L)

(WW T ), and O(NK2) (the multiplications of the matrices (Dold+
1
λYW T ) and (I+ 1

λWW T )−1).

The complexity of the P-MOD method is O(K2L) +O(K3) +O(NLK) +O(NK2).

C. The PK-SVD Method:

The step-wise complexity of PK-SVD is shown in the last column of Table 2. Step 2.1

calculates Ek and Ωk (the cost was given in part A of this section). The complexity is bounded

by Step 2.2, which updates one column of the current dictionary and its corresponding coefficients

at a time. The step-wise complexity of One-Atom-PK-SVD is detailed in the last column of

Table 1. The complexity is bounded by the SVD decomposition in Step 1. As a result, the

PK-SVD and the K-SVD methods have the same order of complexity, which is O(K(KLN +

N2(SLK ) +N(SLK )2 + (SLK )3)).

D. The PMK-SVD Method:

The complexity of the P-MOD+PK-SVD method is a combination of the complexities of the

P-MOD and the PK-SVD methods. When the number of training signals, L, is the dominant

parameter, the complexities of the K-SVD, P-MOD, PK-SVD, and PMK-SVD methods are

O(L3), O(L), O(L3), and O(L3) respectively.
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4 Implementation Issues and Performance Evaluation

In this section, to distinguish between a dictionary updating method and a dictionary learning

method, we use boldface letters to denote the latter. We consider a number of implementation

issues and compare the performances of the dictionaries learned by theK-SVD learning method,

the PK-SVD learning method (see Table 3, the algorithm PK-SVD-Learning), and the

PMK-SVD learning method (See Table 4 the algorithm PMK-SVD-Learning).

4.1 Implementation Issues

We consider three implementation issues: (1) the sparse coding algorithm; (2) the values of

the Lagrangian multiplier (λs and λp); and (3) the balance between the actual running time

and the performance. For the first issue, we conducted experiments on the dictionary learning

methods by using the Order Recursive Matching Pursuit (ORMP) method proposed in [28, 29]

to implement the sparse coding stage. The ORMP method is more efficient than the OMP

method [5, 11, 26], and it achieves a better performance. For the second issue, the values of the

Lagrangian multipliers λs (in the PK-SVD updating step) and λp (in the P-MOD updating step)

are derived experimentally. We suggest setting the value of λs at σ2

100 , where σ is the 2-norm

of xo in Equation (45), and setting the value of λp in the range [3 − 10]. Meanwhile, in the

PMK-SVD learning method, shown in Table 4, the original value of λp is set at 10, and the

value is reduced to 0.8λp in Step 4 after every 3 iterations.

For the third issue, the proximal point-based dictionary updating method employs a loop

that modifies the dictionary derived in the previous iteration. The modification is necessary

to ensure that the proximal point method converges to an optimal solution in each dictionary

updating stage. However, we found that, in practice, convergence is not necessary in each

stage for the proximal point method to achieve a good dictionary learning performance. In our

implementation, the PK-SVD learning algorithm performs the PK-SVD dictionary updating

step in one iteration; and the PMK-SVD learning algorithm performs the PK-SVD dictionary

updating step as well as the P-MOD dictionary updating step in one iteration.

4.2 Performance Evaluation

We evaluate the performance of the dictionary learning algorithms in terms of (1) recovery

of the original dictionary from the training data; (2) deriving sparse approximations; and (3)

supporting image processing applications.
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4.2.1 Recovery of the Original Dictionary

In this experiment, the original random dictionary D of size 20 × 50 is generated with i.i.d.

uniformly distributed entries, where each column of the dictionary is normalized to 1 by the l2

form. Then, 1, 500 items of training data are generated from D. Each synthetic training signal is

a linear combination of the three columns in D, where the coefficients and the column locations

in D are selected in a uniformly distributed i.i.d. random distribution. Finally, white Gaussian

noise is added to the training signals to obtain noisy signals with various signal-to-noise ratios

(SNRs).

The initial dictionary for the dictionary learning algorithm is comprised of the first 50 training

signals. The sparsity level, s, is set at 3; and each learning algorithm performs 30 iterations.

To evaluate the performance of the learned dictionary D̂ in recovering the original dictionary,

we compare it with the performance of the original dictionary D that generates the training

data. Because the order of the columns in D and D̂ may be different, the comparison is made

by measuring the distances between their columns via

1− ∥dTi d̂j∥, (55)

where di is the i-th column of D, and d̂j is the j-th column of D̂. If the distance is less than

0.01, the column di is regarded as successfully recovered. The recovery ratio is calculated by

dividing the number of recovered columns by the total number of columns, which is 50 in this

case.

Table 5 compares the recovery ratios of K-SVD, ODL (Online Dictionary Learning) [30],

and RLS (Recursive Least Square dictionary learning) [11]. The table also shows the ratio gains

of the proposed methods over K-SVD. The experiments were conducted on training data with

the following noise levels: 5, 10, 15, and 20 dBs as well as on the noiseless case. The experiment

for each noise level involved 100 trials that used different training data (each trial had 1, 500

items of data).

4.2.2 Sparse Approximations

The goal of this experiment is to determine whether a dictionary can represent the original

signals as sparse approximations. The experiment models the original signals by their sparse

representations whose dictionaries are obtained by the learning algorithms. The performance is

measured by the signal-to-noise ratio, where the noise term is derived from the error obtained

by subtracting the original signals from their sparse approximations. Thus, the higher the

signal-to-noise ratio, the better will be dictionary learning algorithm.

Let D, X and W be the learned dictionary, the training signals, and the coefficients respec-

14



tively. Then the SNR is calculated as follows:

log10(
tr(XXT )

tr((X −DW )(X −DW )T )
), (56)

where tr is the trace operation. In this experiment, we also measure and compare the ac-

tual execution times of the different dictionary updating methods. The experiments for sparse

approximation conducted on two sets of data as follows.

A. Random signals

The training data set contains 4, 000 vectors of size 16 generated by the normal or uniform

random processes. The size of the dictionary is 16 × 32, and the initial dictionary is selected

from the first 32 training signals. Table 6 shows the resulting SNRs of the dictionary learning

algorithms.

B. Image blocks

The training data set contains 12, 288 blocks of size 8 × 8 randomly selected from some

generic 512 × 512 grey scale images. In the experiments, the 8 × 8 blocks are mapped to 1D

vectors of size 64 after their DC values have been removed. The dictionary size is set at 64×128.

The initial dictionary is obtained by concatenating the DCT basis and the Haar basis. In Figure

1, we compare the SNRs after each iteration of the five dictionary learning algorithms on the

training data set. The results show that the proximal point-based learning methods yield better

SNRs than the K-SVD learning method in a smaller number of iterations. They also converge

to better dictionaries if more iterations are performed.

4.2.3 Image Processing Applications

The experiment results in the previous two subsections show that the dictionaries learned by

the PMK-SVD learning method outperform those learned by the PK-SVD method. Thus,

in the following, we only compare the performance of the PMK-SVD dictionary and K-SVD

dictionary (a state-of-the-art algorithm) on two image processing applications: (1) filling in the

missing pixels of a corrupted image; and (2) image compression.

For both applications, the dictionaries are learned by the following procedure. The training

data consists of 53, 629 blocks of size 8× 8, selected randomly from 23 images. The DC values

of the training vectors are removed so that the mean of each resultant training vector is zero. In

the dictionary learning phase, we set the sparsity level at 8 and let the size of the dictionary be

64× 513. The first column of the dictionary is a constant-value vector that represents the DC,

so it is not updated during the dictionary learning phase. The other 512 atoms of the original

dictionary are selected at random from the training data. We performed 80 iterations for each

dictionary learning method.

A. Filling in the Missing Pixels
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The objective is to recover the values of the missing pixels with the help of the learned

dictionary. To this end, we remove a fraction of each training vector’s pixels (between 0.2 and

0.7) by setting their values at zero. The pixels to be removed are selected at random. Let D̂

be a learned dictionary. To reconstruct the image from the corrupted one, the missing pixels of

each block are filled by the following process

Let x denote a block of pixels, and let a matrix Q indicate the positions of the non-corrupted

pixels in x. Then, their product, Qx, is a vector that only includes the non-corrupted coefficients

in x; and QD̂ denotes the matrix in which each column only includes the positions of the non-

corrupted coefficients in x in the corresponding column of D. Then, for each corrupted item of

training data x, we solve the following sparse coding problem:

min
wQ

∥wQ∥0 subject to ∥Qx−QD̂wQ∥ ≤ ϵ. (57)

The value of ϵ is set at 0.001, and we allow wQ to have at most 32 non-zero coefficients by the

ORMP algorithm. The reconstructed block x̂ can be obtained from

x̂ = D̂ŵQ, (58)

where ŵQ is the solution of Equation (57).

The performance of the learned dictionary D̂ is measured by calculating the distortion, in

terms of the SNR, between the original and the reconstructed images. In Figure 4, the original

test image Hepburn (which is not one of the training images) is shown in the top row. The

second row of Figure 4 shows the images that correspond to a percentage of corrupted pixels.

From left to right, the percentages of missing pixels are 20%, 30%, 40%, 50%, 60%, and 70%.

Figure 2 compares the SNRs. We observe that SNR gain of the PMK-SVD dictionary over

the K-SVD dictionary ranges from 0.7 to 2.0 dB.

B. Image Compression

An image is encoded by dividing it into 8× 8 disjoint blocks, which are represented by the

columns of a matrix X. Then, the ORMP algorithm and the learned dictionary D̂ are used to

perform sparse approximation of each column in X. The derived coefficients form the coefficient

matrix W .

An image is compressed by storing only the locations and values of the non-zero coefficients

in W . Therefore, a compressed block can be represented by the following run-length structure:

{Blocks} = {NumCoeff ,Coeff 1,Run1,Coeff 2,Run2, ...}, (59)

where NumCoeff represents the number of non-zero coefficients, Coeffi denotes the value of the

i-th non-zero coefficient, and Runi is the number of zeros between the i-th and the i + 1-th

non-zero coefficients. The non-zero coefficients are quantized by scalar quantization. Note that
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the amount of quantization applied to the DC values is much smaller than that used for the

other coefficients.

After the sparse representation and the run-length coding of a block, entropy coding is

applied to the NumCoeff, Coeff, and Run in the coding structure in Equation (59). Huffman

Coding is used for entropy coding, and three coding tables are constructed to represent the three

kinds of coding symbols. The coding bitstream of the whole image is formulated as follows:

{Image} = {ImageSize,NumBlocks,Block1,Block2, ...}, (60)

where ImageSize records the size of the image, NumBlocks is the total number of blocks, and

Block i is the coded stream of the i-th block. The rate is the number of the bits used to represent

the image with the above structure. We assume that the dictionary D̂ used in the coding process

is known to both the encoder and the decoder, so it does not occupy any bits in the coded stream.

At the receiver site, if we use Ŵ to denote the sparse coefficients after re-scaling the quantized

coefficients, the reconstructed image, denoted by X̂, can be obtained by

X̂ = D̂Ŵ . (61)

The coding performance is measured by the Peak Signal-to-Noise Ratio (PSNR) where theMean-

Squared-Error (MSE) is derived from the difference between the originalX and the reconstructed

images X̂.

By applying different quantization steps to encode the sparse coefficients of the blocks, we

can obtain the Rate-Distortion curve (R-D curve). Figure 3 shows the R-D curve for coding

the image Hepburn by using different dictionaries. Compared to the K-SVD dictionary, the

PMK-SVD dictionary can reduce each pixel by 0.01 to 0.1 bits with approximately the same

PSNR value.

5 Concluding Remarks

The state-of-the-art dictionary updating algorithms do not impose a constraint on the derived

dictionary; thus, the variation in the sequence of derived dictionaries can be large. This may

create the overshoot problem in the neighborhood of the optimal dictionary and slow down

the convergence. We impose a regularization term on dictionary modifications to overcome the

problem. We formulate the approach as the proximal point method and have successfully in-

corporated the method into the MOD and K-SVD dictionary updating methods. The proximal

point-based MOD and K-SVD updating algorithms are called P-MOD and PK-SVD respectively.

We also show that the algorithms can be combined to form a hybrid dictionary updating method

called PMK-SVD. Theoretically, the derived method can converge and obtain an optimal dic-

tionary. In the experiments, we compared the performance of the dictionaries on the following
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applications: sparse approximation of signals and images, filling the missing pixels in an image,

and image compression. In all cases, the dictionary derived by the PMK-SVD updating method

outperformed those constructed by the compared methods. In our future work, we will extend

the proposed method to learn the analytical dictionary proposed in [31].
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Table 1: The One-Atom-PK-SVD dictionary updating method

Algorithm One-Atom-PK-SVD(Ẽ,dold,λs)

Input Ẽ ∈ RN×SL
K : see Equation (26)

dold ∈ RN : the atom from the previous proximal iteration

λs ∈ R : the Lagrangian multiplier

Output dnew ∈ RN : the atom for the current proximal iteration

xnew ∈ RN×K : the coefficients for the current proximal iteration

Step 1. Perform SVD on Ẽ := U∆V T (Equation (40)). Complexity

do ← v1 (v1 is the first column of U). O(N2(SLK )

x̂← v1 (v1 is the first column of U). +N(SLK )2

µ← σ2
1 (σ2

1 denotes ∆(1, 1)2). +(SLK )3)

dnew ← do

xnew ← µx̂

If λ = 0, return dnew and xnew;

2. Estimate the norm of x (Equation(41)): O(N2)

∥xo∥2 ←
∑

σ2
i (d

T
o vi)

2,

where σi are singular values of Ẽ, and vi are the columns of U .

3. Update the norm of x (Equation (45)): O(N(SLK ))

∥xnew∥ ←

 ∥xo∥, if ∥xo∥2 + λs − µ = 0, or
λs∥ẼT dold∥
∥xo∥2+λs−µ

otherwise.

4. Derive Pdnew (Equation (37)) and xnew:

Perform SVD to obtain the pseudo inverse ẼT+. O(N(SLK )2

+N2(SLK )

+N3)

P ← ẼT+ẼT . O(N2(SLK ))

Pdnew ← 1
λs(µ∥x

new∥ − ∥xnew∥3)ÊT+x̂+ Pdold; O(N2)

xnew ← ∥xnew∥x̂. O(SLK )

5. Update the atom dnew as follows:

dnew ←

 dnew − (||xnew||2+λ)dnew−Ẽxnew+λdold

||xnew||2+λ
if P = I, or

Pdnew + (I − P )dold otherwise.
O(N2)

6. If ∥dnew − do∥ > ϵ2, let do ← dnew and go to Step 2;

else return dnew and xnew.
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Table 2: The PK-SVD dictionary updating method

Algorithm PK-SVD(D0,W 0,Y ,λs)

Input D0 ∈ RN×K : the original dictionary

W 0 ∈ RK×L : coefficients from the sparse coding step

Y ∈ RN×L : training signals

λs ∈ R : Lagrangian multiplier

Output D ∈ RN×K : the updated dictionary

W ∈ RN×K : the updated coefficients

Step 1. n← 1; Complexity

2. Loop : For k ← 1 to K, (update dn−1
k , the k-th column of Dn−1).

2.1. Obtain Ωn−1
k and Ẽn−1

k (Equations (25) and (26)). O(KLN)

2.2. [dnk , x
n
k ]←One-Atom-PK-SVD(Ẽn−1

k , dn−1
k , λs). O(N2(SLK )

+N(SLK )2 +(SLK )3)

2.3. Let the k-th column of Dn be dnk and

let the coefficients in Wn with support on Ωn−1
k be xnk . O(N + (SLK ))

2.4. End of Loop

3. If ||Dn −Dn−1||F ≤ ϵ or n ≥ maxiter, return Dn and Wn

(maxiter is an integer specified by the users).

4. n← n+ 1; go to Step 2.

Table 3: The PK-SVD dictionary learning algorithm

Algorithm PK-SVD-Learning

Input D ∈ RN×K : the original dictionary

Y ∈ RN×L : the training signals

λs ∈ R : the Lagrangian multiplier

Output D ∈ RN×K : the updated dictionary

W ∈ RN×K : the updated coefficients

Step Loop: until some stopping conditions are satisfied.

1. Sparse coding : use Y and D to derive sparse solution W .

2. Perform dictionary updating with the PK-SVD method

[D,W ]← PK-SVD(D,W ,Y ,λs).

End of Loop

3. Return D and W .
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Table 4: The hybrid dictionary learning algorithm derived by combine the P-MOD and PK-SVD

dictionary updating methods.

Algorithm PMK-SVD-Learning

Input D ∈ RN×K : the original dictionary

λp ∈ R : Lagrangian multiplier of the P-MOD method

λs ∈ R : Lagrangian multiplier of the PK-SVD method

Y ∈ RN×L : the training signals

Output D ∈ RN×K : the learned dictionary

W ∈ RN×K : the learned coefficients

Step Loop: until some stopping conditions are satisfied.

1. Sparse coding : use Y and D to derive the sparse solution W .

2. Dictionary updating by the P-MOD method (Equation (18) and λp) :

perform maxiter1 times of dictionary updating step with D as the initial dictionary

(maxiter is an integer specified by the users).

Let Dpmod be the resultant dictionary.

3. Perform dictionary updating by the PK-SVD method

[D,W ]← PK-SVD(Dpmod,W ,Y ,λs).

4. Reduce the dictionary search region of the P-MOD method :

reduce the value of λp;

End of Loop

5. Return D and W .

Table 5: Comparison of the average dictionary recovery ratios of different methods. Columns 5

and 6 show, respectively, the average recovery ratio gains of PK-SVD and PMK-SVD over

K-SVD.

Noise Level ODL RLS K-SVD PK-SVD PMK-SVD

(dB) Recovery Recovery Recovery Recovery Recovery

Ratio (%) Ratio (%) Ratio (%) Ratio Gain (%) Ratio Gain (%)

5 15.20 14.14 60.20 +1.90 +3.10

10 56.82 56.82 83.20 +0.48 +1.94

15 69.48 69.16 88.04 +0.50 +2.36

20 73.50 73.48 89.78 +0.88 +1.72

Noise-less 72.34 73.20 90.76 +0.52 +2.40

24



Table 6: The SNR gains of PK-SVD and PMK-SVD over K-SVD on signals generated by

the uniform or normal distribution; the number of training signals is 2000; S is the sparsity

level; and 30 iterations are performed to learn a dictionary.

Type S KSVD PK-SVD PMK-SVD RLS ODL

SNR(dB) SNR Gain SNR Gain SNR Gain SNR Gain

Uniform 4 13.186 0.004 0.020 -0.078 -0.080

Uniform 6 17.327 0.012 0.051 -0.190 -0.189

Uniform 8 22.151 0.121 0.301 -0.276 -0.456

Normal 4 7.822 0.013 0.047 -0.133 -0.154

Normal 6 12.107 0.007 0.090 -0.153 -0.227

Normal 8 16.980 0.198 0.223 -0.430 -0.577
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Figure 1: Comparison of the performance of sparse approximation of image blocks. The training

data comprises 1000 blocks (top row), 2000 blocks (middle row), and 4000 blocks (bottom row)

selected at random from the images in Figure ??. The length of each signal is 64, and the

number of iterations is set at 30. The sparsity levels are set at 8(left-hand column), 12(middle

column), and 16(right-hand column). The PMK-SVD method achieves the best performance

in all iterations.
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Figure 2: Comparison of the PSNRs when the dictionaries learned by K-SVD and PMK-SVD

are used to recover the missing pixels of the Hepburn image (Figure 4). The curve labeled

“Corrupted” corresponds to the PSNR of the image with the missing pixels.
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Figure 3: Comparison of the R-D curves obtained by the dictionaries learned by K-SVD and

PMK-SVD for the Hepburn image. Top: at a low bit rate between 0.7 and 2 bits per pixel;

Bottom: at a very low bit rate between 0.5 and 0.7 bits per pixel.
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Figure 4: Filling the missing pixels of the Hepburn Image. Top: the original image. Second

row from left to right: the percentages of the missing pixels are 20%, 30%, 40%, 50%, 60%,

and 70%. The images in the third and fourth rows of each column are reconstructed by using

the K-SVD and the PMK-SVD learning methods respectively for the corrupted image in the

same column.
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