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Wen-Liang Hwang and Jinn Ho

Institute of Information Science, Academia Sinica, Taiwan

Abstract

We propose an approach called the Null Space Component Analysis (NCA)

algorithm to solve the noisy blind source separation (BSS) problem. In a set

of m linearly independent source signals, each signal is associated with a sep-

arating operator that includes the signal in its null space and repels other

signals from the space. The signal model induced by the m operators repre-

sents the space where each operator separates a single signal from the other

signals. We show that the model can act as a constraint on the source signals

in the noisy BSS problem. In contrast to the ICA-based and the sparsity-

based approaches, NCA is a deterministic and data-adaptive algorithm that

can solve both the under-determined and the over-determined BSS problem.

To demonstrate the algorithm’s efficiency, we process several signals, includ-

ing real-life signals obtained from biomedical systems, and compare the results

with those derived by other methods.

Keywords. Blind Source Separation, Null Space Operator

1 Introduction

The blind source separation (BSS) problem is a fundamental issue in applications

of biomedical engineering, signal processing, and communications. Various topics

related to the problem, including its history, are discussed in Common and Jutten’s

handbook [1]. The problem involves separating the source signals from observation

signals under various source signal mixing models. Initially, linear instantaneous

(memoryless) mixing models were used [2], followed by linear convolution mixing

models [3]. More recently, nonlinear mixing models [4, 5, 6], bounded component

analysis [7, 8], and the sparsity-based approach [9, 10] have been exploited.
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In this paper, we consider the most basic BSS model, which assumes that the

source signals are instantaneously mixed by an n ×m matrix. Our objective is to

estimate the m source signals and the mixing matrix from n observation signals for

any m and n ≥ 2. Darmois [11] observed that the problem is ill-posed because it

does not provide a solution for Gaussian and temporally independent and identi-

cally distributed (i.i.d.) source signals. Usually, the problem can be well-posed by

imposing assumptions on the source signals. For example, the second-order methods

were developed for temporally correlated sources [12]. Otherwise, one can assume

that the source signals are temporally i.i.d., but non-Gaussian. The assumption

is the basis for the well known independent component analysis (ICA) algorithm

[13, 14, 15]. If the number of observations is greater than or equal to the number

of sources, i.e., n ≥ m (the over-deterministic case), the ICA approach can separate

the statistically independent sources provided that at most one of the sources is

Gaussian1.

There have been a number of attempts to extend the ICA approach in order to

address the problem in noisy environments. Several methods based on estimating

the probability functions of the source signals or their high order statistics have been

proposed to solve the noisy BSS problem. The methods can be classified according

to which one of the following three key properties they exploit: 1. the noise variance

is known [16, 17]; 2. the bias removal technique, which removes the bias introduced

by noise in the mixing matrix, is used for pre-whitening [18, 19, 20, 21]; or 3. the

source density is modeled [22]. An overview of some of the methods can be found

in [23]. Each of the above methods has a limitation [24].For example, the higher

order statistics methods are sensitive to outliers; the bias removal technique must

estimate the noise variance; and the source modeling approach requires more data

to estimate the parameters.

In contrast to the ICA approach, the sparsity-based approach can solve the

under-determined BSS problem effectively [25, 26, 27, 28] when the number of ob-

servations n is less than the number of source signals m . The sparsity-based ap-

proach, or sparse component analysis (SCA), assumes that the source signals are

1For simplicity, we assume that the true order of the source signals is obtained. The ICA

essentially computes the pseudo inverse W of the mixing matrix A from the observation X , to

obtain the source signals S by

S =p WX =p WAS =p (ATA)−1ATAS, (1)

where =p is the equality defined in the sense of probability. In order for the existence of (ATA)−1,

A must be a full column rank over-deterministic matrix with n ≥ m.
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sparse with respect to some dictionaries. Let X be the observation signal matrix,

A be the mixing matrix, and S be the source signal matrix. In addition, let D be

a linear redundant transform (called the dictionary) such that the source signals,

represented as row vectors in S, have sparse representations, i.e., sTi = DcTi , and the

coefficient (column) vector cTi is k-sparse if it contains k non-zero entries at most.

After estimating the mixing matrix, e.g., with the clustering approach proposed in

[29], the sparse assumption on the source signals can be represented as an L1 norm

optimization problem by solving the minimum of
∑m

i=1 ||cTi ||1 with the constraints

X = AS and si = ciD
T . The SCA approach assumes the dictionary D that makes

the source signals sparse is known as a priori information [30]. In fact, it is known

that the Gabor dictionary is the sparse representation of oscillatory signals, and the

wavelets comprise the sparse representation of piecewise-smooth signals. However,

in general, a dictionary that can sparsely represent the source signals is dependent

on the signals and cannot be determined easily without relying on a learning method

[31].

Several adaptive techniques have been developed to solve the single channel

source separation problem (a.k.a. the multiple inputs single output (MISO) prob-

lem), which attempts to separate superimposed source signals with a single ob-

servation signal. Like the BSS problem, well-posed solutions can be obtained by

imposing assumptions on the source signals; for example, the empirical mode de-

composition (EMD) algorithm assumes source signals are intrinsic mode functions

[32]. Our approach is motivated by a recently proposed solution to the MISO prob-

lem that assumes a source signal is in the null space of an adaptive operator (so

that the operator annihilates the signal) [33]. We extend the design concept of a

signal-dependent operator from trying to annihilate a signal to separating one signal

from other signals. Specifically, the separating operator simultaneously annihilates

one signal and removes other signals from its null space. We define a set of signals

{si|i = 1, · · · , m} as separable if there are N×N matrix operators {Ti|i = 1, · · · , m}
such that




TisTi = 0N ,

TisTj 6= 0N , for j 6= i,
(2)

where 0N is a zero vector; and we show that the signals that satisfy the above

definition are linearly independent vectors. Then, we demonstrate that if the rank

constraint is applied on the operators with

Rank(Ti) = N − 1, (3)

the rotation ambiguity that occurs in solving the BSS problem can be removed.
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For convenience, the constraints on the source signals and operators in Equations

(2) and (3) are referred to as the null space component analysis (NCA) constraints

in the BSS problem. Based on the NCA constraints, we use a regularization ap-

proach to formulate the noisy BSS problem as a constrained optimization problem.

The proposed NCA algorithm utilizes the alternating projection method, which it-

eratively derives the source signals, the rank-constrained matrix operators, and the

mixing matrix from the observation signals. The algorithm is a deterministic and

data-adaptive approach. We show that it can separate linearly independent source

signals with an under-deterministic mixing matrix as well as an over-deterministic

mixing matrix to solve the noisy BSS problem. To demonstrate the robustness and

accuracy of the algorithm, we used it to separate noisy synthesized signals as well

as a real-life signal, which involved removing electrocardiography (EOG) artifacts

from electroencephalography (EEG) signals [34, 35].

The remainder of this paper is organized as follows. In Section 2, we introduce

the NCA approach, including the concept of separating operators, the construction

of the operators, the signal models induced by the operators, and the optimization

methods used to derive the operators. In Section 3, we formulate the BSS problem

with the proposed approach. We also show that the rotation ambiguity can be

removed by applying the rank constraint on the operators. In Section 4, we present

the NCA algorithm, which is based on the proposed models, to resolve the noisy BSS

problem; and in Section 5, we discuss some implementation issues and the results of

experiments on simulated and real-world signals. Section 6 contains our concluding

remarks.

2 Null Space Component Analysis (NCA)

Given a set of signals, the NCA approach constructs an operator for each signal

so that only the signal is in the operator’s null space, and all other signals are

excluded. First, we show that the operators exist for linearly independent signals.

Then, we demonstrate that the optimal linear operators can be constructed based

on the information about the signals.

2.1 Separating Operator

Let s1, · · · , sm be a set of m signals represented by row vectors in RN , and let s1

be linearly independent of si for all i = 2, · · ·m. We define the separating operator
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T1 : R
N → RN that separates s1 from {si|i = 2, · · · , m} as follows:




T1sT1 = 0N , 0N in RN whose elements are all equal to 0,

T1sTi 6= 0N for i = 2, . . . ,m.
(4)

The signal s1 is called the separating signal of the operator T1; and the signals

{si|i = 2, · · · , m} are called the supporting signals of T1 because they help T1 to

remove the signal s1. As T1s
T
1 = 0N and sT1 6= 0N , the separating operator T1 is

always a singular operator.

The operator T1 is well-defined because a linear operator can be constructed from

the signals to satisfy the above definition. Let si = ui+vi with ui in the direction of

s1 and vi in the direction perpendicular to s1; then, it is straightforward to verify that

the linear operator T1 =
∑m

i=2 v
T
i vi satisfies Equation (4). The separating operator

T1 is the projection onto the subspace spanned by {vT2 , · · · vTm}. It is obvious that

T1 is not unique. Let ||T1|| = 1 where the operator is normalized with respect to a

certain norm. Then, for numerical applications, we can define

m∑

i=2

(||T1sTi ||22 − ||T1sT1 ||22) (5)

as the separation between {si|i = 2, · · · , m} and s1 under the operator T1. Now, the

optimal separating operator T ∗
1 that yields the maximum separation can be obtained

by solving the following problem:




max||T1||=1

∑m
i=2(||T1sTi ||22 − ||T1sT1 ||22),

||T1sT1 ||22 = 0.
(6)

In practice, the equality constraint in Equation (6) can be relaxed to ||T1s
T
1 ||22 ≤ ǫ;

and the optimal separating operator can be derived by solving




max||T1||=1

∑m
i=2(||T1sTi ||22 − ||T1sT1 ||22),

||T1sT1 ||22 ≤ ǫ.
(7)

Intuitively, T ∗
1 , the solution of Equation (7), yields the largest separation by mapping

the signal sT1 to within a small ball centered at 0N , and simultaneously mapping the

signals si, with i 6= 1, as far away as possible from 0N . It can be shown that T ∗
1 can

be derived by solving

min
||T1||=1

(||T1sT1 ||22 − µ

m∑

i=2

(||T1sTi ||22 − ||T1sT1 ||22)), (8)

where µ ≥ 0 is the Lagrangian multiplier. Using ||T1s
T
1 ||22 ≤ ǫ, Equation (8) has the
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following upper-bound:

||T1s
T
1 ||22 − µ

m∑

i=2

(||T1s
T
i ||22 − ||T1s

T
1 ||22) ≤ ǫ+ (m− 1)µǫ− µ

m∑

i=2

||T1s
T
i ||22

≤ ǫ+ (m− 1)µǫ− µ(

m∑

i=2

||T1s
T
i ||22 − ||T1s

T
1 ||22).

Because ||T1s
T
1 ||22−µ

∑m

i=2(||T1s
T
i ||22−||T1s

T
1 ||22) must be a non-positive value, we can

require that ǫ and µ satisfy

ǫ+ (m− 1)µǫ− µ(
m∑

i=2

||T1s
T
i ||22 − ||T1s

T
1 ||22) ≤ 0. (9)

By rearranging the terms in Equation (9) and letting µ > 0, we obtain

ǫ

µ
≤ ǫ

µ
+ (m− 1)ǫ ≤

m∑

i=2

(||T1s
T
i ||22 − ||T1s

T
1 ||22). (10)

To increase the separation metric
∑m

i=2(||T1s
T
i ||22 − ||T1s

T
1 ||22), ǫ

µ
should be as large

as possible. If ǫ is a small number, µ must also be a small number in order to yield

a large ǫ
µ
value.

2.1.1 Local Linear Separating Operator

The solution of Equation (8) depends on the representation of an operator. A signal

usually contains coherent local components, which suggests that we can derive the

local operator for a segment of the signal, and then combine all the local operators

to form the operator for the whole signal. The resulting operator is called the local

linear separating operator.

Let T1(j) be the j-th row of a matrix operator T1 of size N × N . By the L2

property, we have

||T1sT1 ||22 =
N∑

j=1

||T1(j)sT1 ||22. (11)

Using Equation (11), and normalizing the 2-norm of each row, ||T1(j)||22 = 1, the

objective function of Equation (8) can be re-arranged and re-written in terms of

T1(j) as

min
{T1| ||T1(j)||2=1}

N∑

j=1

T1(j)
[
(1− µ+ µm) sT1 s1 − µ

m∑

i=2

sTi si

]
T1(j)T . (12)

Let T1(j) operate on a local segment of length L1 of a signal. We can impose the

non-zero elements of T1(j) on L1 consecutive elements beginning at j, and use the
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periodic boundary condition to extend the end point if necessary; for example,

T1(j) = [ 0 . . . 0︸ ︷︷ ︸
j−1

∗ . . . ∗︸ ︷︷ ︸
L1

0 . . . 0︸ ︷︷ ︸
N−L1−j+1

]. (13)

If T1(l) and T1(k) with l 6= k are derived independently, the summation and mini-

mization in Equation (12) can be interchanged, and we have

N∑

j=1

min
||T1(j)||2=1

T1(j)
[
(1− µ+ µm) sT1 s1 − µ

m∑

i=2

sTi si

]
T1(j)T . (14)

Obviously, the solution T1(j)
∗ of Equation (14) is the eigenvector that corresponds

to the smallest eigenvalue of the L1 × L1 symmetric submatrix
[
(1− µ+ µm) sT1 s1 − µ

m∑

i=2

sTi si

]

j:((j+L1−1) mod (N+1))+1,j:((j+L1−1) mod (N+1))+1

. (15)

The index range of the submatrix is the same as the support interval of T1(j), and

corresponds to the signal segment that contributes to the calculation of Equation

(14) for row j. The optimal local separating operator T ∗
1 is the matrix formed by

concatenating the N row vectors {T ∗
1 (j)}

T ∗
1 = [T ∗T

1 (1) · · · T ∗T
1 (N)]T . (16)

2.1.2 Group of Separating Operators

For a collection of signals, we have defined the separating operator that separates

one of the signals, say s1, from the others. The sole requirement for the existence

of the separating operator is that the signal s1 is linearly independent of the other

signals. We can extend this definition to cover an arbitrary collection of m linearly

independent signals. Let Ti be the separating operator of si with the supporting

signals {sj|j 6= i}. Then, {Ti} can be defined as the group of separating operators

for {si} such that



TisTi = 0N ,

TisTj 6= 0N , for j 6= i,
(17)

It is straightforward to extend the technique used to derive an optimal local

linear separating operator (described in the previous section) to obtain the group

of separating operators. Each operator Ti is associated with an interval Li and is

obtained by solving

min
{||Ti||=1}


‖TisTi ‖22 − µ

m∑

j=1

(
‖TisTj ‖22 − ‖TisTi ‖22

)

 , (18)

where ||Ti|| = 1 means that each row of Ti is normalized to 1 with the L2 norm.
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2.1.3 Disjoint Subspaces Signal Model

We can induce the signal model for a group of m separating operators {Ti}. The

operator Ti partitions the space RN into two subspaces Mi and Ni, where Ni is the

null space and

RN = Mi ⊕Ni. (19)

Let Σi be the set of signals that satisfies



TiΣi = 0N ,

TjΣi 6= 0N for j 6= i;
(20)

Σi can be characterized as follows:

Σi = Ni ∩ (∩j=m
j=1,j 6=iMj). (21)

It is clear that Σi and Σj are disjoint because Σi∩Σj = {0N} for i 6= j. If Ti is a linear

operator, then Σi (the finite number of intersections of subspaces) is a subspace in

RN . Therefore, the signal model induced by the linear separating operators is the

vector subspace Σ1 ⊕ · · · ⊕ Σm.

3 NCA for BSS

The BSS problem involves the retrieval of m unobserved sources, denoted as {si},
from n observed mixtures, {xj}. Each signal, either si or xj , is a row vector of size

N (the number of sampling points). The problem can be formulated as follows:

xi =
m∑

j=1

aijsj, ∀ i ∈ {1, . . . , n}. (22)

Equation (22) can be re-written in matrix form with

X = AS, (23)

where A is the mixing matrix, mapping from Rm to Rn; and X = [xT
1 · · ·xT

n ]
T and

S = [sT1 · · · sTm]T are matrices of size n×N and m×N respectively.

3.1 NCA Constraints for BSS

Based on the NCA approach, we introduce the NCA constraints for the BSS prob-

lem. The BSS model is affected by scaling, permutation, and rotation ambiguities2.

2For any solution A and S of Equation (23), AC−1 and CS is also a solution. By using

singular value decomposition (SVD), C can be factorized as a multiplication of the permutation,

orthonormal, and scaling matrices.
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Because of the scaling ambiguity, we usually assume that the variance of si is 1 or

the 2-norm of each column of A is 1. The permutation ambiguity prevents us from

determining the correct order of the source signals because

X = AP TPS, (24)

where P is a permutation matrix. The rotation ambiguity corresponds to

X = ABBTS, (25)

where B is an orthonormal matrix. The ICA approach exploits the i.i.d. but non-

Gaussian source signal model to resolve the rotation ambiguity, but it still holds the

scaling and permutation ambiguities.

The idea of the NCA approach is that the linearly independent sources and

the separating operators can be used as constraints for the solution of the BSS

problem. The source signals s1, · · · , sm, which solve the BSS problem with the

ordered operators [T1, · · · , Tm], are defined as the signals that satisfy





X = AS,

TisTi = 0,

TisTj 6= 0 for i 6= j.

(26)

We can impose the additional constraint on the rank of the operators in Equation

(26) and obtain





X = AS,

TisTi = 0,

TisTj 6= 0 for i 6= j

Rank(Ti) = N − 1.

(27)

The signal model and operators that satisfy the last three equations in Equation (27) are

called the NCA constraints for the BSS problem. The main reason for imposing the rank

constraint on operators for solving the BSS problem is to remove the rotation ambiguity,

as stated in the following lemma.

Lemma 1. Let [T1, · · · ,Tm] be a tuple of operators. Then, the BSS problem can be

uniquely determined up to the scaling of signals by imposing the NCA constraints in

Equation (27).

Proof.

Scaling ambiguity: Let D be a diagonal matrix with diagonal elements {di|di 6= 0}.
The scaling ambiguity of the BSS problem still exists after replacing S withDS in Equation
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(27) because





X = AD−1DS,

TidisTi = diTisTi = 0,

TidjsTj = djTisTj 6= 0 for i 6= j,

(28)

is satisfied.

Permutation ambiguity: The permutation ambiguity can be removed from the

BSS problem because of the order of the operators in Equation (27). Specifically,

we replace S with PS, where P is a permutation matrix, and let (PS)i represent

the i-th signal (row) of PS. Then, Ti(PS)Ti = 0 if and only if P = I, the identity

matrix; because Tis
T
i = 0 and Tis

T
j 6= 0 for j 6= i.

Rotation ambiguity: The rotation ambiguity can be removed from the BSS prob-

lem because of the rank constraint on the operators. We replace S in Equation (27)

with BTS, where B is an orthonormal matrix, and use (BTS)i to denote the i-th

signal of BTS. The constraint on the operator rank in Equation (27) enforces that

Ti(B
TS)Ti = 0 if and only if B = I because Tis

T
i = 0 and Rank(Ti) = N − 1. We

conclude from the proof that with the NCA constraint and the order operators, the

BSS problem can be uniquely determined up to the scaling of the signals. �

The rotation ambiguity is resolved by imposing the NCA constraint on the rank

of the operators, not by imposing an additional assumption on the source signals.

Note that the lemma does not imply that the true order of the source signals can be

determined. It simply indicates that the order of the source signals can be derived

after the order of the operators is provided.

4 NCA for Noisy BSS

Noisy BSS assumes that the observations in the BSS model are noisy and that they

take the following form:

X = AS + V, (29)

where V = [vT1 , · · · , vTn ]T is an n × N matrix and vi is sampled from i.i.d. white

Gaussian noise with mean 0 and variance σ2. By taking the log-likelihood of the

Gaussian joint distribution of X − AS and omitting the constant term in the log-

10



likelihood, we obtain

log L(X|AS) =

N∑

i=1

−1

σ2
(X[i] −AS[i])T (X[i] −AS[i]) (30)

=
−1

σ2
Trace(

∑

i

(X[i] −AS[i])(X[i] −AS[i])T ) (31)

=
−1

σ2
||X −AS||2F . (32)

The maximum of the log-likelihood is the minimum of ||X − AS||2F , the Frobenius

norm of X−AS. The NCA approach proposes to solve the noisy BSS problem with

the following formulation, which is more robust against the noisy environment:




min
S,A,{Ti}

1
λ

∑m
i=1

[
‖TisTi ‖22 − µ

∑m
j=1

(
‖TisTj ‖22 − ‖TisTi ‖22

)]
+ ‖X −AS‖2F

Rank(Ti) = N − 1,

||Ti|| = 1, i.e. the 2-norm of each row is normalized to 1,

(33)

where each column of A is normalized to 1 and λ and µ are non-negative Lagrangian

multipliers. Equation (33) is the final formulation we use to develop our algorithm.

4.1 The NCA Algorithm

If S in Equation (33) is fixed, the mixing matrix A and the rank-constrained op-

erators can be derived separately; and if A and the operators are fixed, the source

signals can be derived by quadratic optimization. This observation motivates us

to begin with the initial estimated source signals and use an alternating projection

method to derive the operators, the mixing matrix, and the source signals.

The NCA algorithm is comprised of four steps: 1. estimate the initial source

signals; 2. estimate the rank-constrained operators with fixed source signals; 3.

estimate the mixing matrix with fixed source signals; and 4. estimate the source

signals from the fixed operators and the mixing matrix. We consider steps 2, 3,

and 4 in the next three subsections; and analyze the computational complexity and

convergence of the algorithm in Subsection 4.1.4. Various methods for estimating

the initial source signals are discussed in Section 5.1.

4.1.1 Estimating the Rank-constrained Operators

Each operator in Equation (33) can be derived separately by using the method

proposed in Section 2.1.1. We use {T̂i} to denote the derived operators according

to Equations (11)-(16). If the operators do not meet the rank requirement, the

operator T̂i can be modified based on the following optimization problem:
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min
||Ti||=1

‖Ti − T̂i‖2F satisfying

{
Rank(Ti) = N − 1,

TisTi = 0N .
(34)

The condition where Tis
T
i = 0 occurs because Ti is the operator that separates the

signal si from the other signals {sTj |j 6= i}. The solution of Equation (34) can be

derived by first solving the following equation:

min
||Ti||=1

‖Ti − T̂i‖2F satisfying

{
Rank(Ti) ≤ N − 1,

TisTi = 0N .
(35)

Then, the rank of the obtained operator is modified to N − 1.

Let T̂i = UiΣiV
T
i be the SVD of T̂i, where Ui = [u1, · · · , uN ]. First, we construct

an orthonormal basis { sTi
||si||2 , w1, · · · , wN−1} in RN by performing the Gram Schmidt

procedure on { sTi
||si||2 , u1, · · · , uN−1}. Then, we project each column of T̂i into the

space of {w1, · · · , wN−1}. This corresponds to finding the coefficients that minimize

min
{bk,j}k=1,··· ,N−1

N∑

j=1

‖
N−1∑

k=1

bk,jwk − T̂i(j)T ‖2, (36)

where T̂i(j)
T denotes the j-th column of T̂i. Let Wi = [w1, · · · , wN−1] and let

bj = [b1,j , · · · , bN−1,j ]
T . The coefficient vector bj that solves Equation (36) is

bj =
(
Wi

TWi

)−1
Wi

T T̂i(j)
T

(37)

for j = 1, · · · , N .

Let Bi = [b1, · · · , bN ] be an N−1×N matrix. The operator that solves Equation

(35) can be expressed as (WiBi)
T , where Wi is an N × N − 1 matrix. Note that

(WiBi)
T sTi = 0N because Wi

T sTi = 0N−1; and Rank(Bi) ≤ N − 1 because the

columns of Bi are not necessarily independent of each other. To make the rank of

(WiBi)
T equal to N − 1, we apply SVD to Bi and replace the zero singular values

with small positive numbers. The rank of the resultant matrix B̃i is N −1; and that

of the new operator (WiB̃i)
T is also N −1 because of the following rank inequality:

(Rank(Y ) + Rank(Z)− k) ≤ Rank(Y Z) ≤ min(Rank(Y ),Rank(Z)), (38)

where Y and Z are matrices of size N × k and k ×N respectively.

Finally, we normalize the 2-norm of each row in the operator (WiB̃i)
T by mul-

tiplying an N × N diagonal matrix Di to the right of (WiB̃i)
T . The final operator

is

Ti = B̃T
i W

T
i Di, (39)

which satisfies Equation (34).
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4.1.2 Estimating the Mixing Matrix

If the source signals S are given, the mixing matrix A, with normalized column

norm, for the following noisy BSS model

X = AS + V, (40)

where V is an n×N matrix of white Gaussian noise, can be derived by solving the

following optimization problem:

min
A

||X −AS||2F , (41)

whose solution is

Ã = XST (SST )−1. (42)

Because it is assumed that the source signals are linearly independent, SST is a

full rank square matrix; therefore, (SST )−1 exists. Then, we normalize the column

norm of A by multiplying it by a diagonal matrix DA to obtain

A = DAÂ. (43)

4.1.3 Estimating the Source Signals

Next, we consider the estimation of the source signals with fixed A and {Ti}, and
the Lagrangian multipliers µ and λ. In the Appendix, we show that the necessary

condition for the source signals to optimize the equation

min
S

1

λ

m∑

i=1


‖TisTi ‖22 − µ

m∑

j=1

(
‖TisTj ‖22 − ‖TisTi ‖22

)

+ ‖X −AS‖2F , (44)

is the solution of the following Sylvester equation:

0m = [(m− 1)µ + 1]

m∑

i=1

eie
T
i S(T T

i Ti) + (−µ)




m∑

j=1

eje
T
j S




m∑

k 6=j

T T
k Tk






+ (−λ)ATX + λATAS,

(45)

where {ei} is the standard (column) basis in Rm.

To calculate the source signals S, we use the Kronecker product, denoted as ⊗.

Let the vec linear operator transform a matrix U into a column vector by stacking

the columns of U on top of one another. A basic connection between the vec and

the Kronecker product indicates that if U , V , and W are three matrices such that

the matrix product UVW is defined, then

vec(UVW ) = (W T ⊗ U) vec(V ). (46)
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Applying the vec operator to Equation (45) and using Equation (46), we can derive

that

vecS =

{
1

λ

m∑

i=1

[
(mµ+ 1) T T

i Ti + (−µ)

m∑

k=1

T T
k Tk

]
⊗ eie

T
i

+
(
IN×N ⊗ATA

)
}+

vec
(
ATX

)
,

(47)

where + denotes the pseudo-inverse operation. The first term on the right-hand side

of the open braces in Equation (47) is the bias term induced by the operators.

4.1.4 Convergence and Computational Complexity

We summarize Sections 4.1.1, 4.1.2, and 4.1.3 in the following algorithm.

Algorithm NCA:

INPUT: observation signals X (matrix of size n × N), initial signals S0 (matrix of

size m× N), stopping thresholds ǫs, Lagrangian µ > 0, Lagrangian λ > 0, and the

parameters {Li|i = 1, · · · , m} for m local linear operators.

OUTPUT: m source signals S and the n×m mixing matrix A with the normalized

column norm.

Step 1. Let k = 0.

Step 2. Estimate m separating operators Ti
k from Sk (Section 4.1.1).

Step 3. Estimate the mixing matrix Ak from Sk (Section 4.1.2).

Step 4. Estimate the source signals Sk+1 with fixed Ti
k and Ak (Section 4.1.3).

Step 5. If RMSE(Sk, Sk+1) ≥ ǫs, where RMSE calculates the root mean square

error of Sk+1 against Sk, then set k = k + 1 and go to Step 2.

Step 6. Output: the source signals S = Sk+1 and the mixing matrix A = Ak.

The algorithm derives the operators, the mixing matrix, and the sources alternately

after the initial source signals and the parameters are given. We discuss the estima-

tion of the initial source signals and the selection of the parameter values in Sections

5.1 and 5.2 respectively. Next, we analyze the convergence and computational com-

plexity of the NCA algorithm.

A. Convergence: The NCA method applies a sequence of orthogonal projections

onto three sets of mixing matrices, source signals, and rank-constrained operators.

Because the set of rank-constrained operators is not convex, the convergence of

the alternating projection method to the intersection of sets is not guaranteed [36].

Depending on the initial point, there can be a situation where the sets do intersect,

but the sequence of projections converges to a limited cycle, i.e., a periodic iteration

14



between points in the sets. However, in this case, the distance between the signals

derived by two consecutive iterations can still converge and this is used by the NCA

algorithm as the heuristic stopping condition.

B. Computational Complexity: The complexity of deriving the operators, the

mixing matrix, and the source signals is analyzed as follows.

Operators: The operator T̂i in Equation (35) is obtained by concatenating N

(column) eigenvectors, each of which corresponds to the smallest eigenvalue of an

Li×Li matrix (See Equation (15)) and can be derived with time complexity O(L3
i ).

Hence, the time complexity to obtain T̂i is O(NL3
i ). The SVD of T̂i takes O(N3)

and the matrix Bi (Equation (39)) can also be obtained in O(N3) time. As a result,

O(NL3
i + N3) is used to derive the operator Ti. Let L = max{Li|i = 1, · · · , m}.

Overall, the algorithm takes O(mNL3 +mN3) time to derive all the m operators.

Mixing Matrix: The mixing matrix is derived by Equation (42). Each element in

the m × m matrix SST and n × m matrix XST is obtained by the inner product

operation on length N vectors. Therefore, computing SST and its inverse takes

O(m3 +m2N); computing XST takes O(mnN); and computing the matrix-matrix

product (XST )(SST )−1 takes O(m2n). Overall, the algorithm takes O(m3+m2N +

mnN +m2n) time to derive the mixing matrix A.

Source Signals: The source signals are derived by Equation (47) in which the

computational cost is dominated by the pseudo-inverse operation, which can be

obtained by computing the SVD of an Nm×Nm matrix. Therefore, the algorithm

takes O(N3m3) time to estimate the source signals.

In practice, we can assume the size of the signal N >> max{m,n, L}. Hence,

the computational complexity of an iteration of the NCA algorithm is O(N3).

5 Implementation Issues and Experiment Results

Next, we consider some implementation issues. We discuss the estimation of the ini-

tial source signals, the determination of the parameter values, and the performance

measurements in Sections 5.1, 5.2, and 5.3 respectively. Then, in Section 5.4, we

present the results of experiments performed on synthesized and real-life biomedical

signals.

5.1 Estimation of Initial Source Signals

Factoring the matrix X into two matrices S and A is not a convex problem and

the set of rank-constrained matrices is not convex; therefore, the final result of the
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NCA algorithm depends on the initial source signals. Although good initial source

signals can be derived by other BSS methods, in the following, we propose three

initial source signal estimation methods, denote as A, B, and C, which we use in

the experiments to derive the initial source signals.

Methods A and B use the prior information about the signals to determine if

the sources are narrow-band or wide-band signals. Method C, which is particularly

useful for processing biomedical signals, uses the reference signals and signals or-

thogonal to the references as initial source signals. Methods A and B are based on

the NSP algorithm [33, 37], which is an MISO approach that decomposes an observa-

tion signal into the superimposition of narrow band signals. Let X = [xT
1 , · · · , xT

n ]
T

represent the matrix of observation signals, where the row vector xi is the i-th ob-

servation. The NSP algorithm decomposes xi into the sum of r subcomponents u
j
i

and a residual vi as follows:

xi =

r∑

j=1

u
j
i + vi. (48)

A. Narrow-band Source Signals: The objective is to divide all subcomponents

{uj
i} into m groups, and choose a representative from each group as an initial source

signal. Because the initial source signals should be linearly independent, signals in

the same group should be as linearly dependent on each other as possible. This

helps us avoid selecting subcomponents that are almost linearly dependent as initial

signals. To realize the objective, we use the hierarchical clustering method [38],

which clusters {uj
i} based on the similarity metric defined as follows:

|(uji )(ulk)T |
||uji ||||ulk||

. (49)

B. Wide-band Source Signals: The NSP subcomponents {uj
i} are narrow-band.

To generate initial wide-band source signals, we subtract from an observation signal

the subcomponent belonging to the other observation signals. For example, given

two wide-band observations x1 and x2 , let V1 and V2 be the subspaces spanned by

the narrow-band subcomponents {uj
1} and {uj

2} respectively. Then the initial source

signals s01 and s02 are obtained by

s01 = x1 − PV2
(x1), (50)

s02 = x2 − PV1
(x2) (51)

respectively, where PVi
(xj), with i 6= j, is the orthogonal projection of xj onto

the subspace Vi. Because PVi
(xj) is a narrow-band signal in xj , xj − PVi

(xj) is a

wide-band signal.
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C. Reference Signals are Provided: In certain applications, especially biomedi-

cal systems, some reference source signals are provided. The references can be used

as the initial source signals. The other initial signals can be derived based on the

orthogonal complement of the space of the reference signals. Let r1, · · · rk be the

reference signals, and let the space of those signals be
∑k

l=1 alrl. The observation

signal x can be decomposed into two orthogonal components, one in the subspace of

the references and the other in its complement subspace. The second component can

be used as an initial source signal. The projection of x in the subspace of references

is
∑k

l=1 a
∗
l rl, where the parameters {a∗l } minimize the objective

||x−
k∑

l=1

alrl||2. (52)

By the orthogonality principle, the parameters a∗l are the solution of

(x−
∑

l

alrl)r
T
i = 0, for i = 1, · · · k. (53)

The above equation can be re-written as the linear system Ra∗ = b, with R[i, j] =

rir
T
j , b[i] = xrTi , and a[i]∗ = a∗i . The component x−

∑k
l=1 a

∗
l rl is in the complement

subspace of the reference signals and can be used as an initial source signal.

5.2 Determining the Parameter Values

Finding good parameter values is more of an art than anything else. Here, we provide

some guidelines for determining the parameter values of the NCA algorithm. There

are m + 2 parameters in the algorithm: µ, λ, and Li (the window size of each

operator).

The parameter µ is related to an operator’s signal separation power. According to

the analysis in Equation (10), µ must be a small number in order to generate a large

separation distance for signals inside and outside an operator’s null space. In the

NCA algorithm, this parameter is a constant number for all application examples.

The value of λ, which balances the BSS model and the NCA model, cannot be

too small; otherwise, the minimization of the objective function in Equation (33)

would be dominated by the minimization of the NCA model rather than by the BSS

model. In the NCA algorithm, the value of λ is selected from the interval [λ1, λ2] as

a geometric series with a constant ratio, δλ.

The parameter Li is the scale of the operator i and is also associated with the

dimension of the null space of the operator. Let Y denote an Li × Li symmetric

matrix of Equation (15). In addition, let us arrange the Li real eigenvalues of the
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symmetric matrix according to their absolute values in non-decreasing order. The

spectral decomposition of Y is

Y =

Li∑

i=1

aiu
T
i ui, (54)

where the scalars {ai} and the column vectors {uT
i } are the eigenvalues and the

eigenvectors of Y respectively, with |ai| ≥ |ai+1| for 1 ≤ i ≤ Li − 1. Because the

eigenvector uT
Li

associated with the smallest eigenvalue is used as the operator, the

null space of the local operator uT
Li

is spanned by the first Li−1 eigenvectors. Hence,

the higher the value of Li, the larger will be the dimension of the operator’s null

space. This analysis can be used as a guideline to determine the value of Li for

separating local narrow band signals. Because most of the local energy of a local

narrow band signal is concentrated along the eigenvector associated with the largest

eigenvalue, the signal can be annihilated by an operator derived with Li set at 2 or

3.

Careful examination of the structure of a submatrix in Equation (15) reveals

that an operator depends on the separating signal (the signal to be annihilated by

a local operator) as well as on all the supporting signals (the signals to be expelled

from the null space of the local operator). The nontrivial dependency between the

signals inside and outside an operator’s null space complicates the analysis when

selecting of the scale of the operator. Therefore, we use a two-level coarse-to-fine

approach to determine Li values: initially, all Li are assigned the same value; then,

the value of each Li is refined separately.

In the first level, we select an interval [l1, l2]; then, we sample the values in the

interval with a geometric sequence. Let c be a value sampled in this way. We

set Li = c for all i and take one value of λ (as previously described) as the input

parameter of the NCA algorithm. After trying all combinations of Li and λ values

for the algorithm, we obtain a set of mixing matrix and source signal pairs. From

the set, we choose the pair (A1, S1) that yields the best match to the BSS model

against the observation X , i.e., ||X−A1S1||2F is the minimum. Let Li = ĉ and λ = λ̂

be the parameter values used to obtain the pair (A1, S1). In the second level, we

refine the Li value of each operator separately by searching for the solution that

minimizes ||X − AS||2F in the neighborhood of ĉ.
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5.3 Performance Measurement

The signal-to-interference ratio (SIR) metric is used to evaluate the performance of

a BSS method [4]. The input SIR, SIRin, measures the performance of mixed signals

before they are processed by the BSS method. Let xi be the observation of channel

i with

xi =

m∑

j=1

ai,jsj + ni, (55)

where ai,j denotes the mixing coefficient, sj is the source j, ni denotes the noise,

and m is the number of sources. SIRin calculates the signal-to-noise ratio (SNR) of

the k-th scaled source signal ai,ksk in observation channel i as follows:

SIRin
k (i) = 10 log10

a2i,k||sk||2

||xi − ai,ksk||2
. (56)

When all n observation channels are considered, the maximum SIRin
k , is defined as

SIRin
k = max

i=1,··· ,n
SIRin

k (i). (57)

We use the same approach to define the output SIR, SIRout. Let Âo and Ŝo

denote, respectively, the mixing matrix and the source signals derived by the BSS

method; and let A and S be the true mixing matrix and the source signals respec-

tively. The order of the estimated source signals in Ŝo can be permuted to match

that in S by solving the following optimization problem:

Po = argmin
P

||S − P T Ŝo||2F , (58)

where P is a permutation matrix. Then, we define Â = ÂoPo and Ŝ = P T
o Ŝo as the

estimated mixing matrix and the source signals respectively. SIRout calculates the

SNR of the k-th scaled signal ai,ksk from the BSS solution (Â, Ŝ) as follows:

SIRout
k (i) = 10 log10

a2i,k||sk||2

||ai,ksk − âi,kŝk||2
, (59)

where âi,k and ŝk are the estimated ai,j and sk in Â and Ŝ respectively. We also

define the maximum output SIR for the source signal k as

SIRout
k = max

i=1,··· ,n
SIRout

k (i). (60)

As defined in [4], the SIR gain for the source signal k is

SIRIk = SIRout
k − SIRin

k , (61)
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Figure 1: Left: the piecewise smooth signal; middle: the chirp signal; right: the

superposition of two sinusoidal waves. The normalized inner-products of the source

signals are: 0.0131 (the chirp and the superposition of sinusoidal waves), 0.5184 (the

chirp and the piecewise smooth signal), and 0.1070 (the superposition of sinusoidal

waves and the piecewise smooth signal).

and the average SIR gain for all source signals is

SIRI =
1

m

m∑

k=1

SIRIk. (62)

The SIR and SSIR measurements are shown in dB.

Table 1 (SIRI for 3× 3 BSS Systems)

p = 0.2863 std(noise) = 0 std(noise) = 0.01 std(noise) = 0.02

SIRI(A,ANCA) 11.3754 3.9935 0.8269

SIRI(A,AFastICA) 7.4330 0.3489 0.1603

SIRI(A,AWPICA) 7.6447 0.7890 1.2383

SIRI(A,ADSS) 7.2440 1.2050 -0.2048

p = 0.4365 std(noise) = 0 std(noise) = 0.01 std(noise) = 0.02

SIRI(A,ANCA) 14.3899 7.2692 4.4084

SIRI(A,AFastICA) 9.3325 3.0004 1.9854

SIRI(A,AWPICA) 9.4009 -1.1946 2.4601

SIRI(A,ADSS) 12.0154 4.0593 1.4415

p = 0.5588 std(noise) = 0 std(noise) = 0.01 std(noise) = 0.02

SIRI(A,ANCA) 9.9917 7.3172 4.1820

SIRI(A,AFastICA) 10.9433 4.0130 2.2885

SIRI(A,AWPICA) 14.1846 2.9122 2.9302

SIRI(A,ADSS) 19.3100 3.8601 3.1988
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Table 2 (SIRI for 2× 3 BSS Systems)

p = 0.2863 std(noise) = 0 std(noise) = 0.01 std(noise) = 0.02

SIRI(A,ANCA) 3.3239 3.0391 3.3626

SIRI(A,AWPICA) 1.8656 0.7667 0.7817

SIRI(A,ADSS) 15.2357 6.0105 3.5799

p = 0.4365 std(noise) = 0 std(noise) = 0.01 std(noise) = 0.02

SIRI(A,ANCA) 6.0557 4.3030 5.4705

SIRI(A,AWPICA) 2.4199 2.6492 1.7195

SIRI(A,ADSS) 13.7027 5.0468 5.1443

p = 0.5588 std(noise) = 0 std(noise) = 0.01 std(noise) = 0.02

SIRI(A,ANCA) 7.9840 6.7063 4.3999

SIRI(A,AWPICA) 4.7564 3.4830 3.4788

SIRI(A,ADSS) 13.4106 4.8929 4.2294
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Figure 2: The SIRin (horizontal axis) vs SIRout (vertical axis) graph for the 3 × 3

BSS systems in data set 1. The performance curves of NCA, FastICA, WPICA,

and DSS are shown in red, blue, green, and black respectively. Top row: subgraphs

corresponding to p = 0.2863; middle row: subgraphs corresponding to p = 0.4365;

bottom row: subgraphs corresponding to p = 0.5588. Left-hand column: subgraphs

of the piecewise smooth signal; middle column: the chirp signal; right-hand column:

the superposition of two sinusoids. The experiment setting for a subgraph can be

derived from the location of the row and column of the subgraph. For example, (b2)

is for the chirp and p = 0.4365. There are three points on each curve of a subgraph,

namely: the leftmost point, the middle point, and the rightmost point, which are

measured with the noise standard deviation set at 0.02, 0.01, and 0.0 (noiseless)

respectively.
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Figure 3: The SIRin (horizontal axis) vs SIRout (vertical axis) graph for the 2×3 BSS

systems in data set 1. The performance curves of NCA, WPICA, and DSS are shown

in red, green, and black respectively. Top row: subgraphs corresponding to p =

0.2863; middle row: subgraphs corresponding to p = 0.4365; bottom row: subgraphs

corresponding to p = 0.5588. Left-hand column: subgraphs of the piecewise smooth

signal; middle column: subgraphs of the chirp signal; right-hand column: subgraphs

of the superposition of two sinusoids. The experiment setting for a subgraph can be

derived from the location of the row and the column of the subgraph. For example,

(a3) is for the piecewise signal and p = 0.5588. There are three points on each curve

of a subgraph, namely: the leftmost point, the middle point, and the rightmost

point which are measured with the noise standard deviation set at 0.02, 0.01, and

0.0 (noiseless) respectively.
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Figure 4: The wideband signals are generated by a t-copula distribution with 3

degrees of freedom.

Table 3 (SIRI for 3× 3 BSS Systems)

p = 0.2863 std(noise) = 0 std(noise) = 0.01 std(noise) = 0.02

SIRI(A,ANCA) 13.8268 5.4092 2.5503

SIRI(A,AFastICA) 5.2779 0.8495 -0.4347

SIRI(A,AWPICA) -2.1236 1.0433 0.5606

SIRI(A,ADSS) 2.2782 -1.5640 -2.4184

p = 0.4365 std(noise) = 0 std(noise) = 0.01 std(noise) = 0.02

SIRI(A,ANCA) 18.0551 8.6005 6.3164

SIRI(A,AFastICA) 8.9703 3.5462 2.1530

SIRI(A,AWPICA) 3.7952 5.2919 3.6666

SIRI(A,ADSS) 7.9019 2.0146 0.4421

p = 0.5588 std(noise) = 0 std(noise) = 0.01 std(noise) = 0.02

SIRI(A,ANCA) 15.1815 10.3131 9.9406

SIRI(A,AFastICA) 12.0891 5.3413 5.0667

SIRI(A,AWPICA) 9.8762 8.7152 7.9393

SIRI(A,ADSS) 15.1092 4.9441 4.5777

Table 4 (SIRI for 2× 3 BSS Systems)

p = 0.2863 std(noise) = 0 std(noise) = 0.01 std(noise) = 0.02

SIRI(A,ANCA) 8.5296 5.9812 5.6888

SIRI(A,AWPICA) 2.0010 1.9346 3.0715

SIRI(A,ADSS) 7.9958 3.5221 2.6384

p = 0.4365 std(noise) = 0 std(noise) = 0.01 std(noise) = 0.02

SIRI(A,ANCA) 8.7460 8.0618 6.6911

SIRI(A,AWPICA) 5.6664 5.8222 5.1919

SIRI(A,ADSS) 8.4533 4.3198 3.4721

p = 0.5588 std(noise) = 0 std(noise) = 0.01 std(noise) = 0.02

SIRI(A,ANCA) 8.9486 9.7891 8.9387

SIRI(A,AWPICA) 10.9817 8.1801 8.5304

SIRI(A,ADSS) 10.4865 4.6377 4.5834
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5.4 Experiment Results

Numerical experiments were performed to evaluate the source signal separation and

mixing matrix estimation capabilities of the proposed algorithm. We considered

three cases. In the first two cases, we experimented on synthesized data in noiseless

and noisy environments, and measured the performance with the SIR and SIRI met-

rics. In the noiseless case, we compared our algorithm’s performance with that of

FastICA [41], Denoising Source Separation (DSS) [42, 43], a robust blind source sep-

aration method based on the E-M algorithm; and the Wavelet Packet Preprocessor

for Independent Component Analysis (WPICA) [29, 44], which is based on adaptive

selection of a sparse representation in a wavelet package tree. As the results of Fas-

tICA, DSS, and WPICA depend on randomly generated parameters, we took the

average results after executing each method 20 times. The results of all executions

of each method were aligned to ensure that the permutation order was consistent in

all the executions. In the final case, we compared our approach’s performance with

that of FastICA on a set of real-life biomedical EEG signals.

Each source signal in the following two synthesized data sets is normalized to

1 with the L2-norm. In a noisy environment, random elements in the matrix V of

Equation (29) are sampled from i.i.d. Gaussian white noise. We set the standard

deviation in the experiments at 0.01 or 0.02, corresponding to 1% or 2% of the source

signal’s energy respectively.

A. Synthesized Data Set 1

We used the proposed approach to separate the blind mixture of a chirp sig-

nal (cos(4t + 0.2 t2)), a signal comprised of sinusoidal waves (sin(10(0.05π + t) +

2 sin(0.5t)), and a piecewise smooth signal formed by concatenating the pieces from

left to right: 2, 0, 2.1 sin(t), t2, and (0.05+ π
3
)2+ 1

3

√
t. The source signals are shown

in Figure 1. Note that wavelets are sparse representations of the source signals

[45]. The initial source signals for the NCA method were derived by the procedure

described in Section 5.1.A.

The source signals are mixed by unknown mixing matrices to obtain the respec-

tive 3× 3 (over)-deterministic and 2× 3 under-deterministic BSS system as follows:




x1

x2

x3


 =




p r q

q p r

r q p







s1

s2

s3


 and (63)
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[
x1

x2

]
=




p√
1−r2

r√
1−q2

q√
1−p2

q√
1−r2

p√
1−q2

r√
1−p2







√
1− r2s1√
1− q2s2√
1− p2s3


 , (64)

where p2 + q2 + r2 = 1. For the sake of clarity, we set q = p2 and r = p3; therefore,

the mixing matrices are determined by the parameter p. Under this setting, the

dominating component of xi in the 3 × 3 BSS system is the source signal si. The

influence of the source signal si on the observation channels is also determined by

the parameter p. The larger the value of p, the smaller will be the influence of the

source signal si on the observation channel xi and the greater will be the influence

of si on the other observation channels. Note that the source signals in Equation

(64) are scaled to ensure that the source signals 1 and 2 in the 3× 3 and 2× 3 BSS

systems have the same SIRin values.

Figures 2 and 3 plot, respectively, the SIRin versus the SIRout graphs of source

signals obtained by different BSS methods for 3 × 3 and 2 × 3 BSS systems with

various p values. In each subgraph, three sets of measurements are plotted for each

BSS method: one in a noiseless environment and two in a noisy environment. The

performances in terms of SIRI for the 3 × 3 and 2 × 3 systems are summarized in

Tables 1 and 2 respectively. In the tables, the method that yields the highest score in

each category is highlighted . For the 3×3 BSS systems, the NCA method achieves

the best performance in all cases except when the source signal is a piecewise smooth

signal, the environment is noiseless, and the mixing matrix parameter p is 0.5588.

For the 2×3 BSS systems, the DSS method outperforms the NCA method in all

cases, except when the source signal is the superposition of two sinusoids, the noise

standard deviation is 0.02, and the mixing matrix parameter p is set at 0.4365 or

0.5588. The superior performance of the DSS method is mainly due to the almost

perfect recovery of the chirp signal in a low noise environment. In the noiseless case,

the SIRout of the DSS is more than 30 dB higher than that of other methods, as

shown in (a2), (b2), and (c2) of Figure 3. Note that FastICA is not optimized for

a noisy environment. Moreover, it cannot be implemented with under-deterministic

systems, so we do not compare it with such systems.

B. Synthesized Data Set 2

In the second case, shown in Figure 4, the original source signals are three

wide-band signals generated from a t-copula with a linear correlation matrix and 3

degrees of freedom. The t-copula is a multivariate probability distribution for which

the marginal probability is the student t distribution; and the correlations between
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the source signals are represented as the following 3× 3 symmetry matrix:



1 0.2 0.5

0.2 1 0.5

0.5 0.5 1


 , (65)

where the element (i, j) indicates the normalized correlation between the i-th and j-

th source signals. The 3×3 and 3×2 mixing matrices used to obtain the observation

signals are based on Equations (63) and (64) respectively.

The performances in terms of SIRI for the 3×3 and 2×3 systems with different

p values are shown in Tables 3 and 4 respectively. In the tables, the method that

yields the highest score in each category is highlighted. On this data set, except

for the noiseless 2 × 3 system with p = 0.5588 shown in Table 4, the NCA method

achieves the best performance in all cases irrespective of the source signals, mixing

matrices, and parameter values used.

The parameter values for the two synthesized data sets of the NCA methods were

derived by the method described in Section 5.2. Each point of the NCA method

in Figures 2 and 3 represents a different parameter value. The parameter µ is a

constant, and is set at 10−5 in all the experiments. The value of λ is in the range

0.05 to 50, and the geometric ratio δλ between two successive items is set at 2 . The

local scale size L of an operator is selected in the range 2 to 80, and the geometrical

ratio δL between two successive items is set at 2.

Summarizing the results of the two data sets, we conclude that 1. the NCA

method is more robust than the compared method for the noisy BSS problem; and

2. when p is large, the SIRI gain of NCA over the compared methods is reduced.

This might be caused by the initial source signal estimation method because, in gen-

eral, the performance of a signal channel decomposition method deteriorates when

the energy of the source signals is almost equally mixed in the observation channel.

C. Real-life Data

Next, we compare the performances of NCA and FastICA on a set of real-life

signals. The experiment involved separating electroocculographic (EOG) artifacts

from electroencephalography (EEG) recordings. EEG signals record voltage fluctu-

ations caused by ionic current flows in the neurons of the brain. To obtain EEG

signals, multiple electrodes are placed on the subject’s scalp (as shown in the right-

hand subfigure of Figure 5(b)) to measure the brain’s spontaneous electrical activity

over a short period of time. In EEG signals, the major noise source is the electro-

occulographic (EOG) artifacts caused by eye movements. The artifacts are difficult
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to suppress, but the EOG signals can be measured during the EEG recording by

placing the electrodes under the eyes, as shown in the left-hand subfigure of Fig-

ure 5(b). The recorded EOG signals are used as reference signals to solve the BSS

problem.

Our subject was a healthy young man who was in resting state during the col-

lection of EEG and EOG signals. The original size of each observation signal was

100, 000 samples. We took the sampling points from 42, 000 to 46, 000, and reduced

the size of the segment through down-sampling by a factor of four. The resultant

observations are shown in Figure 5(a). From the top to the bottom, the observation

signals are read from F5, F3, F1, FZ, F2, F4, and F6 respectively. Based on those

seven signals and the status of the subject, we assume the BSS problem estimates

a 7× 3 non-negative mixing matrix and three source signals; two of the signals are

EOGs and the third is an EEG. The FastICA results are shown in Figure 6(b). The

source signals are based on the average results after executing the FastICA algo-

rithm 20 times, with the results of each execution well-aligned. The NCA results

are shown in Figure 6(c). The two EOG signals in Figure 6(a) are used as initial

sources; and the third initial source is the complement signal of the average of the

seven observation signals in the space of the reference signals. The complement

signal is derived by Method C described in Section 5.1.

The similarity of the source signals derived by various methods is measured by

the absolute value of the normalized inner products of the signals. Let s1 and s2

be two (row) signals. The normalized inner product, which is defined as
(s1)sT2

||s1||||s2|| ,

normalizes the norm of a signal so that the scaling uncertainty of the BSS problem

can be ignored in the comparison. The similarity, denoted as C, is shown in Table 5,

where Ŝ and SICA represent the source signals of NCA and FastICA respectively, and

S0 denotes the reference signals. In the C(Ŝ, S0) column of Table 5, the second and

third NCA source signals, Ŝ2 and Ŝ3, are similar to the two reference EOG signals,

S01 and S02. Moreover, in the same column, the first NCA source signal, Ŝ1, is not

similar to any reference signal. Therefore, we can infer that NCA’s first signal is an

EEG signal whose EOG artifacts have been removed and are contained in the second

and third source signals. In the C(SICA, S0) column of the table, FastICA’s second

source signal, SICA2, is similar to all the reference signals. However, FastICA’s first

and third source signals, SICA1 and SICA3, are not similar to any reference signals

because their C-values measured with the references are small. Thus, the FastICA

method finds two EEG signals (SICA1 and SICA3) and one EOG signal (SICA2).

Finally, the C(SICA, Ŝ) column shows that the conclusions derived by FastICA and
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NCA are consistent because the EEG and EOG signals obtained by both methods

have high C-values.

Table 5

C(Ŝ, S0) C(SICA, S0) C(SICA, Ŝ)

S01 S02 S01 S02 Ŝ1 Ŝ2 Ŝ3

Ŝ1 0.2081 0.0383 SICA1 0.1302 0.2179 SICA1 0.6681 0.2989 0.0859

Ŝ2 0.8471 0.6072 SICA2 0.6314 0.7562 SICA2 0.1062 0.7631 0.8518

Ŝ3 0.8006 0.7186 SICA3 0.0860 0.0123 SICA3 0.6887 0.3208 0.1701

6 Concluding Remarks

We have proposed a deterministic method called the Null Space Component Analysis

(NCA) algorithm to solve the noisy BSS problem. NCA is an adaptive approach

because it derives signal-dependent operators to separate signals. Theoretically, we

show that the NCA model can resolve the rotation ambiguity in the BSS problem

and separate linearly independent source signals. It can also be applied to over-

deterministic and under-deterministic BSS systems. Numerically, we demonstrate

the efficiency of the NCA algorithm in a noisy environment and on real-life EEG

signals by comparing its performance with that of other methods. The proposed

method could be improved and extended in several directions, such as applying it to

time-frequency representations of signals, and approximating the NCA constraint

with convex functions.

A Appendix

We derive the necessary condition for the source signals in the optimization prob-

lem defined in Equation (44). First, we divide the following equation into three

components;

min
S

1

λ

m∑

i=1

[
‖Tis

T
i ‖22 − µ

m∑

j=1

(
‖Tis

T
j ‖22 − ‖Tis

T
i ‖22
)
]
+ ‖X − AS‖2F , (66)
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1. For the first component, we have

[(m− 1)µ+ 1]

m∑

i=1

‖Tis
T
i ‖22

= [(m− 1)µ+ 1]

m∑

i=1

siT T
i Tis

T
i

= [(m− 1)µ+ 1] [s1, . . . , sm]




T T
1 T1 0 . . . 0

0 T T
2 T2 . . . 0

...
...

. . .
...

0 0 . . . T T
m Tm



[s1, . . . , sm]

T
. (67)

Let ei be the standard basis of Rm. Equation (67) can be expressed as

[(m− 1)µ+ 1]

m∑

i=1

eTi ST T
i TiS

T ei

= [(m− 1)µ+ 1]

m∑

i=1

Tr
[(
eTi S

) (
T T
i TiS

Tei
)]

= [(m− 1)µ+ 1]
m∑

i=1

Tr
(
T T
i TiS

T eie
T
i S
)
, (68)

where Tr(·) is the trace operation. If we take the derivative of Equation (68) with

respect to S, we obtain

2 [(m− 1)µ+ 1]

m∑

i=1

eie
T
i ST T

i Ti. (69)

2. For the second component, we have

(−µ)
m∑

j=1

m∑

k 6=j

‖Tks
T
j ‖22

= (−µ)
m∑

j=1

eTj S

(
m∑

k 6=j

T T
k Tk

)
ST ej

= (−µ)
m∑

j=1

Tr

[(
m∑

k 6=j

T T
k Tk

)
ST eje

T
j S

]
. (70)

Taking the derivative of Equation (70) with respect to S, we obtain

2 (−µ)
m∑

j=1

eje
T
j S

(
m∑

k 6=j

T T
k Tk

)
. (71)

3. For the third component, we have

‖X − AS‖2F
= Tr[(X −AS)T (X − AS)]

= Tr(XTX)− 2Tr(XTAS) +Tr(STATAS).

(72)
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Taking the derivative of Equation (72) with respect to S, we obtain

−2ATX + 2ATAS. (73)

Finally, we combine the results derived from each component to obtain the necessary

condition for S:

0m = [(m− 1)µ+ 1]

m∑

i=1

eie
T
i S(T T

i Ti) + (−µ)

[
m∑

j=1

eje
T
j S

(
m∑

k 6=j

T T
k Tk

)]

+ (−λ)ATX + λATAS.

(74)
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Figure 5: Recordings of the EOG and EEG signals of a healthy subject in a resting

state: (a) the EEG observation signals (Ch1-Ch7) are read from electrodes, as shown

in subfigure (b); (b) the positions of the EOG and EEG electrodes. The blue region

in the right-hand subgraph indicates the positions for recording the EEG signals.

The EOG reference signals are read from the blue boxes under the eyes in the

left-hand subgraph. 35
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Figure 6: Comparison of the source separation results of the NCA and FastICA

methods. (a) The EOG reference signals: S01 (top) and S02 (bottom). (b) The

source signals derived by FastICA: from top to bottom, the signals are SICA1, SICA2,

and SICA3. (c) The source signals derived by NCA: from top to bottom, the signals

are Ŝ1, Ŝ2, and Ŝ3. The results of FastICA are the averages of running the algorithm

20 times. The parameter values of the NCA method are as follows: the λ is set at

0.1, the local scale size L of all seven operators is set at 3, and µ is set at 10−5.
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