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ABSTRACT
With rapid advances in mobile computing, multi-core pro-
cessors and expanded memory resources are being made
available in new mobile devices. This trend will enable a
wider range of existing applications to be migrated to mo-
bile devices, for example, running desktop applications in
IA-32 (x86) binaries on ARM-based mobile devices transpar-
ently using dynamic binary translation (DBT). However, the
overall performance could significantly affect the energy con-
sumption of the mobile devices because it is directly linked
to the number of instructions executed and the overall exe-
cution time of the translated code. Hence, even though the
capability of today’s mobile devices will continue to grow,
the concern over translation efficiency and energy consump-
tion will put more constraints on a DBT for mobile devices,
in particular, for thin mobile clients than that for severs.
With increasing network accessibility and bandwidth in var-
ious environments, it makes many network servers highly
reachable to thin mobile clients. Those network servers are
usually equipped with a substantial amount of resources.
This opens an opportunity for DBT on thin clients to lever-
age such powerful servers. However, designing such a DBT
for a client/server environment requires many critical con-
siderations.

In this work, we looked at those design issues and devel-
oped a distributed DBT system based on the client/server

model. We proposed a DBT system that consists of two
dynamic binary translators. An aggressive dynamic binary
translator/optimizer to serve the translation/optimization
requests from thin clients are run on the server. A thin
DBT that executes light-weight binary translation and ba-
sic emulation functions is run on each thin client. With
such a two-translator client/server approach, we successfully
off-load the DBT overhead of the thin client to the server
and achieve significant performance improvement over the
non-client/server model. Experimental results show that the
DBT of the client/server model could achieve 14% speedup
over that of non-client/server model for x86-32 to ARM em-
ulation using SPEC CINT2006 benchmarks with test inputs
and are only 3.4X and 2.2X slower than the native execution
with test and reference inputs, respectively, as opposed to
7.1X and 5.1X slow-down on QEMU.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; D.2.4
[Distributed Systems]: Client/server; D.3.4 [Processors]: Code
generation; D.3.4 [Processors]: Run-time environments

General Terms
Design, Performance

Keywords
Systems, networks, and architectures for high-end computing,

Virtualization of machines, networks, and storage, Resource man-

agement, energy and cost minimizations

1. INTRODUCTION
Dynamic binary translators (DBTs) that can emulate a guest
binary in one instruction-set architecture (ISA) on a host
machine with a different ISA are gaining importance. Con-
sidering the fast growing smart phone and tablet market,
for example, many popular applications are either compiled



for the ARM ISA or including libraries in ARM native code
in the APK package (such libraries may be called via JNI).
For vendors offering products in ISAs different from ARM,
their customers may not be able to enjoy those applications.
Using DBT to migrate such applications is one way to get
around this dilemma. For example, DBT has been used to
help application migration on workstations and PCs such as
FX!32 [6] and IA-32 EL [4] that have enabled IA-32 applica-
tions to be executed on Alpha and Itanium machines, respec-
tively. With rapid advances in mobile computing, multi-core
processors and expanded memory resources are being made
available in new mobile devices. This trend will enable a
wider range of existing applications to be migrated to mo-
bile devices, for example, running desktop applications in
IA-32 (x86) binaries on ARM-based mobile devices. How-
ever, performance of the translated binaries on such host
mobile devices is very sensitive to the following factors: (1)
emulation overhead before the translation; (2) translation
and optimization overhead; and (3) the quality of the trans-
lated code. Such performance could significantly affect the
energy consumption of the mobile devices because it is di-
rectly linked to the number of instructions executed and the
overall execution time of the translated code. Hence, even
though the capability of today’s mobile devices will continue
to grow, the concern over translation efficiency and energy
consumption will put more constraints on a DBT for mobile
devices, in particular, for thin mobile clients than that for
severs.

With increasing network accessibility and bandwidth in var-
ious environments, e.g. 4G networks or wireless LAN in
public areas, an increasing number of network servers are
becoming accessible to thin mobile clients. Those network
servers are usually equipped with a substantial amount of re-
sources. This opens up opportunities for DBT on thin clients
to leverage much powerful servers. However, designing such
a DBT for a client/server environment requires many critical
considerations.

In this work, we looked at those design issues and developed
a distributed DBT system based on the client/server model.
We proposed a DBT system that consists of two dynamic
binary translators: an aggressive dynamic binary transla-
tor/optimizer on the server to service the translation/opti-
mization requests from thin clients, and a thin DBT on each
thin client that executes light-weight binary translation and
basic emulation functions on each thin client.

In our DBT system, we use QEMU [5] as the thin DBT. It
could emulate and translate application binaries from several
target machines such as x86, PowerPC, ARM and SPARC
on popular host machines such as x86, PowerPC, ARM,
SPARC, Alpha and MIPS. We use the LLVM compiler [15],
also a popular compiler with sophisticated compiler opti-
mizations, on the server side. With such a two-translator
client/server approach, we successfully off-load the DBT
overhead of the thin client to the server and achieve signif-
icant performance improvement over the non-client/server
mode.

The main contributions of this work are as follows:

• We developed a client/server-based DBT framework

whose two-translator design can tolerate network dis-
ruption and outage for translation/optimization ser-
vices on a server. Moreover, we showed that the trans-
lation overhead and network latency could be success-
fully hidden by an asynchronous communication scheme.

• Experimental results show that the DBT of the clien-
t/server model can achieve 14% speedup over that of
non-client/server model for x86-to-ARM emulation us-
ing SPEC CINT2006 benchmarks with test inputs, and
are only 3.4X and 2.2X slower than the native execu-
tion with test and reference inputs, respectively, as
opposed to 7.1X and 5.1X slow-down on QEMU.

The rest of this paper is organized as follows: Section 2
provides the details of our two-translator client/server-based
DBT system. Section 3 evaluates the effectiveness of our
DBT framework. Section 4 gives some related work. Finally.
Section 5 concludes the paper.

2. A CLIENT/SERVER-BASED DBT FRAME-
WORK

In this section, we first give a brief overview of a DBT sys-
tem, and present the issues that need be considered for such
a distributed DBT system. Then we elaborate on the imple-
mentation details of our proposed client/server-based DBT
framework.

2.1 Design Issues
A typical DBT system consists of three main components:
an emulation engine, a translator, and a code cache. As
the DBT system starts the execution of a guest program, it
fetches a section of guest binary code, translates it into host
binary code, and places the translated code into the code
cache. The emulation engine controls the program trans-
lation and its execution. The section of guest binary code
to be translated could be a single basic block, a code trace
(a region of code with a single entry and possibly multiple
exits), or an entire procedure.

It is crucial for a distributed DBT system to divide system
functionality between server and client so as to minimize the
communication overhead. The all-server approach places
the entire DBT system on the server side. It translates the
guest binary into server ISA binary, runs the translated code
directly on server, and sends the results back to the client.

However, the all-server DBT is not feasible for applications
that need to access peripherals or resources (e.g. files) on
the client. For example, an application running on the server
will not be able to display a picture on the client because it
can only access the screen of the server. To ensure correct
execution of all applications, we must run at least portions
of the translated code on the client when needed.

Although it is possible to divide the execution of translated
code between client and server, the system resources, such as
heap and stack, must be carefully monitored so that the em-
ulation can be migrated correctly between client and server.
System resource monitoring at the binary level and the mi-
gration method between client and server are challenging is-
sues that deserve further studies and are outside of the scope
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Figure 1: The architecture of the distributed DBT system.

of this paper. In this work, we assume that the translated
code is executed entirely on the client.

It is also crucial for the process of translation and code op-
timization in a distributed DBT system to tolerate network
disruptions. To do so, we need the client to perform stand-
alone translation and emulation when network connection
or translation service on a remote server becomes unavail-
able. While in a normal operation mode, the DBT system
should take advantage of the compute resources available on
the server to perform more aggressive dynamic translation
and optimization. Based on these considerations, we pro-
posed a DBT system that consists of two dynamic binary
translators: (1) a thin DBT that performs light-weight bi-
nary translation and basic emulation function on each thin
client, and (2) an aggressive dynamic binary translator/op-
timizer on the server to service the translation/optimization
requests from thin clients.

2.2 Architecture
The organization of the proposed two-translator distributed
DBT system and its major components are shown in Fig. 1.

2.2.1 Client
The design goal of the DBT on a thin client is to emit high-
quality translated code while keeping the overhead low. The
DBT on a thin client consists of all components available
in a typical DBT system (the left module enclosed by the
dotted line in Fig. 1). In order to achieve low translation
overhead, the thin client uses a light-weight translator. It
contains only basic function to translate a guest binary to
its host machine code. It does not have aggressive code op-
timizations nor analysis during translation. Although the
performance may be poor, the thin client can perform its
own emulation without the help from the server if the net-
work becomes unavailable.

When the light-weight DBT detects a section of code worthy
of further optimization, the optimization manager issues a
request to the server for such service. After it receives the
optimized code back from the server, it needs to perform
relocation for those relative addresses and commits the op-
timized code to the code cache. The entry of the old code is
patched with a branch to the optimized code so that the sub-
sequent execution will be on the optimized, better-quality
host code.

Note that since the address to place the optimized code is not
known to the server, the server cannot perform relocation of
relative addresses (chaining code region or trampoline, for
instance) for the client. To assist the client with relocating
addresses, the server attaches the patching rules with the
optimized code and wrap them in the message to the client
so the client can easily patch the addresses.

In our implementation, we use the Tiny Code Generator
(TCG) in QEMU, a well-known retargetable DBT system
that supports both full-system virtualization and process-
level emulation, as our light-weight translator. TCG trans-
lates guest binary at the granularity of a basic block, and
emits translated code to the code cache. The emulation
module (i.e. the dispatcher in QEMU) coordinates the trans-
lation and the execution of the guest program. It kicks start
TCG when an untranslated block is encountered. The pur-
pose of the emulation module and the light-weight transla-
tor is to perform the translation as quickly as possible, so
we could switch the execution to the translated code in the
code cache as early as possible. When the emulation module
detects that some cyclic execution path has become hot and
is worthy of further optimization, it sends a request to the
server together with the translated guest binary in its TCG
IR format. The request will be serviced by the aggressive
translator/optimizer running on the server.

The optimization manager running on another thread is re-
sponsible for network communication and the relocation of
received codes. Since both require low overhead and the op-
timization manager is usually at the idle state, the execution
thread is not interfered by the optimization manager.

Other implementation details for the client are described in
the following.

Sending all sections of codes in a program to the server for
optimization is impractical because this will result in sub-
stantial amount of network communication and not all op-
timized code can achieve performance gain. For example,
optimizing the cold code regions might not be beneficial for
the performance. To overcome this problem, we must ensure
the performance gain brought by optimization can amortize
the communication cost and the translation overhead on the
server. Our strategy is that the translation of cold code
regions is conducted by the light-weight DBT on the thin
client. Only the hot code regions that form repeated exe-
cution are sent to the server for optimization. In this work,
we target the cyclic execution path (e.g. loop or recursive
function) as the optimization candidates since the optimized
code is likely to be highly-utilized. The repetition detection
scheme, Next Executing Tail (NET) [8], is applied to de-
tect all possible cyclic execution paths which are formatted
as the traces. Through this design, the number of network
communication can be significantly reduced.

Unlike many existing approaches, the client in our frame-
work does not attach any address information in the opti-
mization request regarding where the optimized code will be
placed. The reason is that, to provide such address informa-
tion, the client needs to lock and reserve sufficient space for a
region of memory in the optimized code cache from sending
the request until receiving the optimized code. There are



three drawbacks in such approach: (1) the client does not
have information on how much space to reserve before opti-
mization; (2) a long waiting time is incurred by the locking;
(3) the next optimization request will be blocked until the
previous optimization is completed. Instead, our approach
allows contiguous sending of optimization requests without
blocking, and the serialization only occurs when the opti-
mized code is copied into the optimized code cache.

2.2.2 Server
The purpose of the server is to provide the translation/op-
timization service for the thin clients. The more powerful
server allows the translator to perform more CPU-intensive
optimizations and analyses that often require a large amount
of memory resources, and thus infeasible on the resource-
limited thin clients. For example, building and traversing a
large control flow graph (CFG) requires considerable com-
putation and memory space. Furthermore, the server can
act as a memory extension to the thin clients. The code
cache on the server keeps all translated and optimized codes
for the thin clients throughout their emulation lifetime. The
thin client can take advantage of this persistent code cache
as it flushes its code cache or requests the same application
that has been translated for another client previously. When
the server receives an optimization request on a section of
code that is already available in its code cache, the server
can send the optimized code back to the client immediately
without re-translation/optimization. The response time can
be significantly reduced.

For the more aggressive translator/optimizer on the server,
we use an enhanced LLVM compiler because it consists of
a rich set of aggressive optimization passes and a just-in-
time runtime system. When the LLVM optimizer receives
an optimization request from the client, it converts its TCG
IRs to LLVM IRs directly, instead of converting guest bi-
nary from its original ISA [14]. This approach simplifies the
translation process on the server side tremendously because
TCG IR consists of only about 142 different operation codes
instead of a much larger set in most guest ISAs. A rich set
of program analyses and powerful optimizations in LLVM
can help to generate very high quality host code. For ex-
ample, redundant memory operations can be eliminated via
register promotion in one of LLVM’s optimizations. LLVM
can also select the best host instructions sequences, e.g., it
can replace several scalar operations by one single SIMD
instruction.

2.3 Asynchronous Translation
The two translators in our distributed DBT system, one on
the client and one on the server, are independent and work-
ing concurrently. When a thin client sends an optimization
request to the server, its light-weight translator will continue
its own work without having to wait for the result from the
server. Such asynchrony is enabled by an optimization man-
ager running on another thread. The advantage of such an
asynchronous translation model is threefold, (1) the network
latency can be hidden, (2) the translation overhead incurred
by the aggressive translator is also hidden, and (3) the thin
client can continue the emulation process while the server
performs further optimization on its request.

In summary, our two-translator design allows the thin client

Table 1: Experiment setup.
Server Client

Processor Intel Core i7 3.3 GHz ARMv7 1.0 GHz
# Cores 4 2
Memory 12 GBytes 1 GBytes
OS Linux 2.6.30 Linux 2.6.39
Network 100Mbps Ethernet / WLAN 802.11g

Optimization flags
Native -O3 -ffast-math -mfpu=neon -mcpu=cortex-a8
(ARM) -ftree-vectorize
X86-32 -O3 -ffast-math -msse2 -mfpmath=sse

-ftree-vectorize

to perform the emulation independently and concurrently.
It allows our distributed DBT system to tolerate network
disruption or outage during the service by the server. Our
asynchronous translation design can also hide network la-
tency and offload the translation overhead from the client.

3. PERFORMANCE EVALUATION
In this section, we present the performance evaluation of
the server/client-based DBT framework. Detailed analysis
of overall performance is also provided to verify the effec-
tiveness of the proposed framework.

3.1 Experimental Setup
All performance evaluation is conducted using an Intel quad-
core machine as the server and an ARM PandaBoard em-
bedded platform [20] as the thin client. The detailed config-
uration is listed in Table 1. The experiment results on the
SPEC CINT2006 benchmark suite are collected with both
test and reference inputs. LLVM version 2.8 is used as the
aggressive translator on the server side and the default op-
timization level (-O2) is used for the JIT compilation. The
client/server communication is through TCP/IP protocol.

All benchmarks are compiled with GCC 4.4.2 for the em-
ulated x86-32 executables. We compare the results to the
native runs whose executables are compiled to GCC 4.5.2
on the ARM host. The compiler optimization flags used
for each architecture are listed in Table 1. Three different
configurations are used to evaluate the effectiveness of the
framework:

• QEMU, which is the vanilla QEMU version 0.13 with
the TCG fast translator.

• Client-Only, which runs both fast translator and ag-
gressive translator on the thin client. Each translator
runs on one thread.

• Client/Server, which runs fast translator on the thin
client and aggressive translator on the server.

The QEMU configuration is used to demonstrate the perfor-
mance of the thin translator itself, and is also the baseline
performance when the network is unavailable. The evalua-
tion in the following experiments is based on the 100Mbps
Ethernet and WLAN of 802.11g is used in Section 3.4 for
comparison.
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Figure 2: CINT2006 results of x86-32 to ARM emulation with test and reference input. Cache size: Unlimited.

Table 2: Measures of x86-32 to ARM emulation for CINT2006 benchmarks with test inputs. Unit of time: second. Cache
size: Unlimited.

Native Client-Only Client/Server
Benchmark # Blocks # Traces Total Total Trace Trans ICount Total Trace Trans ICount Reduction

Time Time Time (C) (109) Time Time (S) (109) Rate
bzip2 7170 1022 62 113 21 73 108 2.4 45 37%
gcc 64604 17680 8 90 87 67 58 26.6 25 62%
mcf 3156 319 28 39 5 17 37 .6 12 31%
gobmk 74477 23732 112 512 228 273 449 37.3 157 43%
hmmer 4633 303 20 60 6 66 59 1.0 57 13%
sjeng 4967 1284 29 100 16 63 97 2.4 40 36%
libquantum 2797 177 .5 2.4 2 4 1.8 .4 1 60%
h264ref 9046 1577 118 336 34 256 327 4.3 207 19%
astar 4812 605 42 89 8 65 87 1.1 45 31%
xalancbmk 30139 2562 .6 11 10 11 9 8.1 4 60%

3.2 Performance of the Server/Client Frame-
work

Fig. 2 illustrates the overall performance results of x86-32 to
ARM emulations over the native runs for SPEC CINT2006
benchmarks with test and reference inputs. The Y-axis is
the normalized execution time over native execution time.
The performance of perlbench and omnetpp in Fig. 2(a),
and omnetpp in Fig. 2(b) are not listed because both QEMU
and our framework failed to emulate these benchmarks. The
size of code cache and optimized code cache on the client is
set to unlimited in this experiment in order to exclude the
overhead of translated code evictions.

Fig. 2(a) presents the results with test inputs. In Fig. 2(a),
the slowdown factors of QEMU over native execution range
from 2.9X to 17X and the geometric mean is 7.1X. With
the optimization from the aggressive translator, significant
improvement can be observed from the results of Client-
Only whose geometric mean is 3.9X. Three benchmarks, gcc,
libquantum, and xalancbmk, have slight performance degra-
dation with Client-Only over QEMU. The reason is that the
execution thread continues its execution while the aggressive
optimizer running on another thread consumes much time
to complete. Thus, the optimized code may miss the best
timing to be utilized and the interference incurred by the
optimization thread causes the performance degradation.

As for the Client/Server mode, the performance of bench-
marks, gcc, gobmk, libquantum and xalancbmk, has the most
significant improvement over the Client-Only mode. The
other benchmarks have slight improvement. Table 2 lists
the detailed information of total execution time, number of

traces translated, and the translation time of traces at the
client side and the server side. For gcc and gobmk, these
two benchmarks have relatively much more code regions
to be optimized to traces (column 3 in Table 2). There-
fore, it is beneficial to process such large amount of opti-
mizations on the powerful server instead of the thin client.
Client/Server achieves about 34% and 12% performance im-
provement over Client-Only for gcc and gobmk, respectively.
For libquantum and xalancbmk, the completion time of the
translated traces with powerful server is earlier than that
processed by the client. Furthermore, Client/Server can
catch the timing for the execution thread to utilize the op-
timized code, which may not be possible with the Client-
Only mode. The results show that Client/Server can further
improve libquantum and xalancbmk whereas Client-Only
causes performance degradation compared with QEMU. The
performance of Client/Server is about 3.4X slower than the
native execution in average.

In Fig. 2(b), the results show that both Client-Only and
Client/Server mode outperform QEMU for all benchmarks
with reference inputs. The reason is that the translated
codes are highly utilized with reference inputs and the trans-
lation time only accounts for a small portion of the total
execution time. Once the optimized codes are emitted in
the optimized code cache, the thin client can benefit from
the better codes compared with the poor code executed by
QEMU. Since the Client/Server mode tends to eliminate
the optimization overhead which is insignificant to the total
execution, no significant performance gain is observed with
Client/Server over Client-Only. The only exception is gcc

where about 630 seconds are reduced (10% improvement)
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Table 3: Measures of translation quality between QEMU
and our DBT system. Unit of size: KBytes.

QEMU Client/Server
Benchmark Guest Host Expa. Guest Host Expa.
bzip2 181 2050 11.36 117 439 3.74
gcc 1038 14586 14.15 856 5429 6.34
mcf 59 783 13.19 23 124 5.46
gobmk 1450 18396 12.69 1212 6699 5.53
hmmer 90 1149 12.80 23 149 6.41
sjeng 102 1232 12.07 78 393 5.02
libquantum 56 726 12.98 11 66 6.21
h264ref 306 2940 9.59 292 855 2.93
astar 104 1233 11.92 42 216 5.13
xalancbmk 550 7087 12.90 213 1247 5.87
average 12.36 5.26

with Client/Server and the average slowdown over native
run is 2.2X.

We use hardware performance counter and Linux Perf Event
toolkit [17] with event instructions to calculate the total in-
struction executed on the thin client with test inputs. The
values are listed in column 7 and 10 in Table 2 for the Client-
Only and the Client/Server mode, respectively. The instruc-
tion count is derived from execution, light-weight and ag-
gressive translations with Client-Only and from execution,
light-weight translation and network processing with Clien-
t/Server. The instruction reduction rate is presented in col-
umn 11 where about 13% (hmmer) to 62% (gcc) instruction
counts are reduced. The results show that the Client/Server
mode achieves both performance gain and saving in power
consumption because fewer instructions are executed with
the Client/Server mode.

Fig. 3 compares the breakdown of time in the Client-Only
and Client/Server mode in terms of the emulation compo-
nents: Execution, Dispatch and Translation. We also use
the hardware performance counter to sample the Instruction
Pointer (IP) during execution to estimate the time spent in
these three components. The benchmarks with ‘-Net’ as
the postfix in X-axis refer to the results of Client/Server.
For Client-Only, Translation denotes the time for generat-
ing host code (from both light-weight and aggressive trans-
lation). For Client/Server, it denotes the time from light-
weight translation plus the time for network transferring
of optimization request/optimized code to/from the server,
and the time for post-processing the received code. Dis-
patch is the time for QEMU core components, including
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Figure 4: Comparison of asynchronous and synchronous
translation for SPEC CINT2006 with test inputs. Cache
size: Unlimited.

block/trace table look up, and execution flow control be-
tween QEMU and the code cache. Execution is the time for
executing translated host codes. As Fig. 3 shows, with the
help of server to perform aggressive translation, the ratio of
Translation is reduced dramatically with Client/Server over
Client-Only. In particular, for xalancbmk, the one with the
largest percentage of translation time, its ratio reduces by
77.8%; gcc, which generates the largest number of traces,
benefits most from the client/server model achieving 91%
reduction in translation time.

Table 3 compares the quality of the translated host codes
generated by QEMU and our DBT system. Guest denotes
the total size of original guest binary code disassembled;
Host represents the total size of the translated host code.
The expansion rate, Host divided by Guest, is also listed in
the table. As shown in Table 3, QEMU translates each guest
binary instruction to 10˜14 host instructions. With LLVM
aggressive translator, our system can reduce the number of
translated host instructions to 4˜6 and thus achieves the
goal of generating better quality codes.

3.3 Comparison of Asynchronous and
Synchronous Translation

To evaluate the effectiveness of asynchronous translation, we
compared it with synchronous translation. We also set the
size of caches on the client to unlimited in this experiment
to eliminate the impact of code eviction.

Fig. 4(a) illustrates the performance speedup of asynchronous
mode compared with synchronous mode for SPEC CINT2006
benchmarks with test inputs. The breakdown of time in
terms of the communication time, Comm, the translation
time at server, Trans, and the rest of time, Other, is pre-
sented in Fig. 4(b). Different to asynchronous mode, when
the client in synchronous mode sends the optimization re-
quest to remote server, it will suspend and resume its execu-
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Figure 5: Impact of persistent code cache with continuous
emulation with the same program.
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Figure 6: Comparison of CINT2006 benchmarks with test
inputs with different code cache pressure.

tion until the optimized codes are sent back from the server
and emitted in the optimized code cache. The communica-
tion time, Comm, in synchronous mode includes the time to
send the optimization request message, network latency, and
the time to receive and post-process the received codes. For
asynchronous mode, Comm only consists of message send
and receive, and the time to post-process the received codes.
Since asynchronous translation does not wait for the aggres-
sive translation on the server, Trans in this mode is zero.

In Fig. 4(b), the result shows that a significant propor-
tion of the emulation in synchronous mode is for communi-
cation and translation, especially for the benchmarks, gcc,
gobmk, libquantum and xalancbmk. By using asynchronous
translation, we can see that the ratio of communication and
translation time is reduced significantly, and thus results in
about 31% improvement in average (shown in Fig. 4(a))
against synchronous translation for test inputs. As for ref-
erence inputs, no obvious improvement is observed because
the translation time only constitutes a small portion of the
overall emulation time.

3.4 Impact of Persistent Code Cache
In this experiment, we evaluate two scenarios: first, one
client emulates a program and another client coming later

emulates the same program; second, we add pressure to the
client and force it to flush its local code caches. These two
cases are used to evaluate the impact of the server’s persis-
tent code cache as the translated code can be re-used.

Fig. 5 presents the performance results of the first case. As
the first client starts the emulation, no pre-compiled code is
cached and the server needs to perform translation. The re-
sult of this first client is marked with NoCache in the figure.
For the second client requesting the same program which
has been compiled for previous client, the optimized code is
reused and the result is marked with Cache. We also com-
pare this case with synchronous and asynchronous mode.
As the result shows, the performance is improved with the
server-side caching because the response time is shortened
for the optimization request. The impact of caching is more
noticeable with synchronous mode because the waiting time
for one of the clients can be reduced because the code is
already cached on the server. Benchmark gcc, libquantum
and xalancbmk, are improved by about 40%, 54% and 73% in
synchronous mode, respectively, where in average 14% per-
formance gain is achieved. As for the asynchronous mode,
the client does no waiting for optimization. Furthermore, it
continues the execution with the help from the light-weight
translator. Therefore, the benefit from caching is not signif-
icant for the client: only 2% improvement in average.

gobmk is the only benchmark that has negative impact with
caching. The reason is that there are 7 different input data in
this benchmark. As the emulation starts with the first input
data, the server keeps some optimized code in its persistent
code cache. As the emulation restarts with the succeeding
inputs, the server will send the cached code back to the client
if available. However, this code for previous input data may
not be suitable for current input data, which in turn results
in early exit of trace [11], and thus causes performance loss.

In the second case, the code cache size on the client is set
to be fewer than the total size of the translated host code
for the emulated benchmarks. As the code cache is full,
the client is forced to flush both the code cache and the
optimized code cache. The total size of the translated host
code from the light-weight and aggressive translator is listed
in column 2 and 5 of Table 3, respectively. In this case, we
set the pressure to 2 where the code cache size is half of the
total translated code size and 4 for a quarter. For CINT2006
benchmarks with test inputs, the light-weight translator in
our DBT system always full-fills the code cache earlier than
the optimized code cache, thus, changing the pressure of the
code cache is enough to cause the optimized code cache to
flush at the same time. The amount of code cache flushes
is listed in Table 4. Since we failed to emulate benchmark
sjeng and h264ref under pressure 4, the result of them is
not shown.

We compare the performance of Client-Only and Client/Server
with or without server-side caching. The performance result
is shown in Fig. 6. Under pressure 2, most benchmarks,
e.g. mcf, hmmer etc., only incur a few flushes (row 2 in
Table 4) and not much performance loss is observed with
these benchmarks for both Client-Only and Client/Server
modes. For bzip2 and gobmk, Client/Server with caching
outperforms Client-Only with a factor of 15% and 57%, re-



Table 4: The number of code cache flush under different pressures.
Benchmark bzip2 gcc mcf gobmk hmmer sjeng libquantum h264ref astar xalancbmk

Pressure=2, # Flush 12 59 2 29 3 7 2 49 2 2
Pressure=4, # Flush 59 201 6 709 7 – 6 – 6 5
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Figure 7: Comparison of Ethernet and WLAN for SPEC
CINT2006 with test inputs. Cache size: Unlimited.

spectively, compared to only 4% and 14% with unlimited
code cache size. The reason is that the aggressive transla-
tion will be redone by the client itself as the local caches
are flushed with Client-Only mode. For Client/Server with
caching, it can benefit from the cached codes on the server.
Thus, the performance gap between Client-Only and Clien-
t/Server increases as code caches are flushed. For Clien-
t/Server without caching, although it cannot benefit from
server-side caching, it can still get help from the server for
retranslation of code and therefore the performance is better
than Client-Only.

Under pressure 4, most benchmarks still have few code cache
flushes and the performance results are similar to those of
pressure 2. For bzip2, Client/Server with caching outper-
forms Client-Only with a factor of 32%. For gcc and gobmk,
the performance gap between Client-Only and Client/Server
is not as significant compared with pressure 2. The reason
is that: first, these two benchmarks tend to generate large
number of optimization requests and second, the code cache
size is too small to accomodate the benchmark’s working
sets, so huge amount of code cache flushes is incurred (201
and 709 for gcc and gobmk, respectively). Therefore, the
optimized code is not fully utilized during two flush inter-
vals and the frequent sending of optimization requests to the
server cause no gain but a lot of penalty on the client even
if the server can cache the optimized code.

3.5 Comparison of Different Network Infras-
tructure

Fig. 7(a) presents the performance of Ethernet and WLAN
with synchronous and asynchronous translation. Compared
with Ethernet, the performance with WLAN and synchronous
mode is worse than Ethernet because of longer network la-
tency. The long latency can cause significant performance
degradation on programs that generate large number of op-
timization requests because it may cause the client to miss
the best timing to utilize the optimized code generated by
the server. Such result caused by long network latency can
be observed from the benchmarks: gcc, gobmk, libquantum
and xalancbmk. With asynchronous translation, the long
latency is hidden and the performance of these four bench-
marks has dramatic improvement. Especially for gcc, the
slowdown factor over native execution drops from 22X to
9.2X, and it drops from 48X to 19X for xalancbmk. The ge-
ometric mean is only 3.7X compared with 3.4X for 100Mbps
Ethernet.

Fig. 7(b) illustrates the breakdown of time of WLAN with
synchronous and asynchronous mode. We can see that, com-
pared with 100Mbps Ethernet (Fig. fig:async(b)), wireless
communication results in longer communication time (the
Comm component) for all benchmarks. Similar to the re-
sult in Fig. 4(b), the benchmarks, gcc, gobmk, libquantum
and xalancbmk benefits most from asynchronous translation,
resulting in about 35% improvement in average against syn-
chronous translation for test inputs.

4. RELATED WORK
Dynamic binary translation is widely used for many pur-
poses: transparent performance optimization [3, 12, 22],
runtime analysis [18, 19, 21] and cross-ISA emulation [4,
6]. With the advances of mobile hardware, many researches
have started to exploit the technology of virtualization on
embedded systems.

Xen on ARM [13] and KVM for ARM [7] proposed software
solutions to enable full system virtualization before the hard-
ware virtualization technology comes to the ARM platforms.
Their approaches have specialized VMM system and need to
modify the source codes of the guest VMs in order to directly
run the guest VMs on the ARM processors. Such approaches
lose transparency and require the guest VMs and the host
machines to be of the same architecture. In contrast, we
focus on user-mode emulation. Our approach is based on
dynamic binary translation and allows cross-ISA emulation
without any modification to the emulated programs.

Guha et al. [10] and Baiocchi et al. [1] attempted to mitigate
the memory pressure for embedded system by reducing the
memory footprint in the code cache. [10] discovered that
many codes in exit stubs are consumed to keep track of the
branches of a trace. [1] also found that DBT introduces large
amount of meta-codes in the code cache for its own purposes.
They proposed techniques to re-arrange the meta-codes so
that more space can be reclaimed for the actual application



codes.

Baiocchi et al. [2] study the issue of code cache management
for dynamic binary translators. Targeting on embedded de-
vices with three-level cache storages, ScratchPad memory,
SDRAM and external Flash memories. The authors pro-
posed policies to fetch or evict translated codes among these
three storage levels based on their size and access latency.
Instead of using external memory, our work uses remote
server’s memory space as the extension to the thin client’s
code cache.

DistriBit [9, 16] also proposed the dynamic binary transla-
tion system in a client/server environment. The thin client
in their system only consists of the execution cache and en-
gine, and does not have a translator. The whole translation
process is shifted to the server as a remote service. The au-
thors also proposed a cache management scheme in which
the cache management decisions of the client are totally
guided by the server in order to reduce the management
overhead of the thin client. Since only the server has the
translation ability in their DBT system, the system would
stop functioning if the translation service is not available;
the emulation also needs to be suspended for every trans-
lation until the client receives the response from the server.
Instead of using only one translator, our DBT system keeps
a thin translator on the client. Thus, our system can toler-
ate network loss or outage of service on the server and still
keep low overhead. Moreover, the performance of emulation
can be improved by asynchronous translation with the two-
translator approach where the communication latency can
be hidden.

Zhou et al. [23] proposed the framework of code server and
the thin client downloads the execution code to its code
cache on-demand. In their work, the application code has
to be pre-installed on the server before the clients can con-
nect to it. In contrast, our DBT system does not require
such pre-installation of application code. The server only
needs to provide the translation service, and the client sends
optimization requests to the server at runtime.

5. CONCLUSION
In this work, we developed a distributed DBT system based
on the client/server model. We proposed a DBT system that
consists of two dynamic binary translators: an aggressive
dynamic binary translator/optimizer on the server to service
the translation/optimization requests from thin clients, and
a thin DBT on each thin client that executes light-weight
binary translation and basic emulation functions on each
thin client.

Such a two-translator client/server approach allows the pro-
cess of translation and code optimization in a distributed
DBT system to tolerate network disruptions. The client can
perform stand-alone translation and emulation when net-
work connection or translation service on a remote server
becomes unavailable. While in a normal operation mode, the
DBT system can take advantage of the compute resources
available on the server to perform more aggressive dynamic
translation and optimization.

With such a two-translator client/server approach, we also

successfully off-load the DBT overhead of the thin client
to the server and achieve significant performance improve-
ment over the non-client/server mode. Experimental results
show that the DBT of the client/server model can achieve
14% speedup over that of non-client/server model for x86-
to-ARM emulation using SPEC CINT2006 benchmarks with
test inputs, and are only 3.4X and 2.2X slower than the na-
tive execution with test and reference inputs, respectively,
as opposed to 7.1X and 5.1X slow-down on QEMU. The re-
sults also show that the Client/Server mode achieves saving
in power consumption because fewer instructions are exe-
cuted with the Client/Server mode.
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