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ABSTRACT
Many dynamic binary translation (DBT) systems and

just-in-time compilers target traces, i.e. frequently-taken

execution paths, as code regions to be translated/op-

timized. The Next-Tail-Execution (NET) trace selec-

tion method used in HP Dynamo is an early example

of such techniques. Many current trace optimization

schemes are actually variations of NET. These NET-like

trace optimizations work very well for most traces, but

they also suffer the same problem: the selected traces

may contain a large number of early exits that could

branch out in the middle of traces. If early exits are

taken frequently during program execution, the bene-

fit of trace optimization could be lost due to the over-

head of costly compensation code in the trace epilogue.

We refer to traces/regions with frequently taken early-

exits as delinquent traces/regions. Our empirical study

shows that at least 9 of the 12 SPEC CPU2006 integer

benchmarks have delinquent traces, i.e., if we use NET

to select traces, each of these nine benchmarks will take

more than 100 early exits per million executed instruc-

tions in their traces.

In this paper, we significantly improve the performance

of NET by merging delinquent traces into larger code

regions. We propose a light-weight region formation

technique called Early-Exit Guided region selection
(EEG)to improve the performance by iteratively detect-

ing and merging delinquent regions into larger code re-

gions. Hardware assisted dynamic profiling is first used

to identify hot code regions without incurring significant

runtime overhead. Key software counters are then in-

strumented at the exit points of the hot regions to detect

early exits. When a counter exceeds certain threshold

value, the code region that begins at the branch target of

that early exit is merged into the main code region. We

also employ a heuristic to decide whether it is beneficial

to merge the selected regions or not. We will not merge

two regions if the cost of spill code is too high for the

merged code.

We implement our EEG algorithm in two LLVM-based

parallel dynamic binary translators. These two parallel

dynamic binary translators are for ARM and IA32 in-

struction set architecture (ISA) respectively, and both

use multiple compilation threads to compile different

code regions concurrently. We evaluate the performance

of EEG with two benchmark suites: the SPEC CPU2006

single-threaded benchmark suite with reference inputs,
and the PARSEC multi-threaded benchmarks with na-
tive inputs. The experimental results show that, com-

pared to NET, EEG can achieve a performance improve-

ment of up to 67% (13% on average) for SPEC CPU2006

integer benchmarks, and up to 20% (10% on average)

for PARSEC multi-threaded benchmarks.

1. INTRODUCTION
Dynamic binary translation (DBT) is a just-in-

time (JIT) compilation from binary code of a guest
ISA to a host ISA. Cross-ISA binary translators en-
able an application to migrate from one hardware
platform to another, or can provide a virtualized
platform to run an application without the specific
hardware. For example, DEC FX!32 enables an ap-
plication to migrate from IA-32 to Alpha, and In-
tel IA-32EL [4] enables an application to migrate
from IA-32 to Itanium. Other migration examples
include Apple Rosetta. QEMU [5], VMWare use
binary translation technique to provide server vir-
tualization.
DBT needs to generate costly recovery code in

the epilogue to handle the case when the uncommon



conditional path is taken, referred to as an early exit
from the trace. If early exits are taken frequently,
the benefit of trace optimization could be lost due
to the overhead of costly compensation code in the
epilogue of the trace. We refer to traces with fre-
quently taken early-exits as delinquent traces.

Many DBT systems [7, 10, 6] follow the well-
known runtime trace selection algorithm, called Next-
Tail-Execution (NET), developed for HP Dynamo [3].
Instead of profiling execution path at runtime, NET
forms a trace by selecting the blocks that are most
recently executed. The idea is that when an in-
struction becomes hot, it is likely that the following
instructions are also hot.
However, since NET does not use any edge profil-

ing information to select traces adaptively, early ex-
its may occur when program behavior changes. For
example, in our empirical study, we found that NET
builds a trace with many frequently taken early ex-
its for the SPEC CPU2006 456.hmmer benchmark.
In 456.hmmer, there is a frequently executed for-
loop that contains numerous compare-and-jump in-
structions (see Figure 1(b)).
NET separates the for-loop in Figure 1(b) into

four traces as shown in Figure 1(a). Each rectangle
represents a trace. The percentage of total execu-
tion time of each trace is shown on the left top cor-
ner of the trace. The probability of how likely an
exit will be taken is also shown.
As shown in Figure 1(a), NET builds a trace for

a loop starting at 0x80522be, but the probability
of taking an early exit during the loop execution
is 98%. Such a high probability for an early ex-
ist certainly eliminates the performance benefit that
was expected from the loop trace. Our proposed re-
gion formation technique (to be described later) will
merge these four traces into a large region shown in
Figure 1(b). This region formation scheme removes
early exits and forms a region that accounts for 81%
of the total execution time

9.57% 80522ce8052280

80522be
80522ce98.14%

52.00%19.33%80522e5 27.69%

80522be 80522ce
80522e5
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25.74%

81.26%

early exit
trace head
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Figure 1: An example of delinquent traces of
NET in 456.hmmer benchmark.

The insight we gain from this example is that

when the program execution takes early exits fre-
quently, the program behavior has changed, and the
hot paths might have changed as well. By merging a
region with another region that begins at the branch
target of an early exit, we could form a larger re-
gion with less early exits. By merging delinquent
traces/regions into larger regions, we can improve
the performance.
In this paper, we propose a light-weight region

formation technique called Early-Exit Guided (EEG)
region selection to detect and merge delinquent re-
gions. There are two key issues in our region forma-
tion technique: (1) which region should be merged,
(2) when to merge a region. The simplest approach
to address the first issue is to instrument coun-
ters into all traces and regions. However, this ap-
proach is prohibitively expensive and may merge
too many regions that are not frequently executed.
Instead, we employ hardware-assisted dynamic pro-
filing to select hot regions and to avoid monitoring
and merging unimportant regions. To address the
second issue, we monitor regions by instrumenting
counters to detect early exits. When the counter
of an early exit exceeds a threshold, we merge this
region with a region that begins at the branch tar-
get of the early exit. We also employ a heuristic
to decide whether it is beneficial to merge selected
regions. We will not merge regions if there is too
much spill code in the translated code.
The main contributions of this work are as fol-

lows:

1. This work is the first effort on empirical study
of the early exit problem in NET. Our profiling
and experiment results show that NET gener-
ates substantial amount of delinquent traces,
and that more than 100 early exits are taken
for every million executed instructions in 9 of
the 12 SPEC CPU2006 integer benchmarks.

2. We propose an elegant and effective region se-
lection technique to solve the delinquent trace
problem in NET. The proposed Early-Exit Guided
region selection (EEG) uses hardware-assisted
dynamic profiling and instrumented software
counters to detect and merge delinquent traces/re-
gions into larger regions.

3. We implement the region selection strategy in
two LLVM-based parallel dynamic binary trans-
lators. These two parallel dynamic binary trans-
lators are for ARM and IA32 instruction set
architecture (ISA) respectively, and both use
multiple compilation threads to compile differ-
ent code regions concurrently. By off-loading



region compilation to different cores, our sys-
tem can perform more aggressive and sophis-
ticated optimizations at the region and trace-
level with very little overhead to DBT.

4. Experimental results show that the performance
of the code produced by EEG is better than
the code produced by NET, by up to 67%
(13% on average) for SPEC CPU2006 inte-
ger benchmarks, and achieves up to 20% (10%
on average) improvement for PARSEC multi-
threaded benchmarks. For ARM-to-x86 64 DBT,
it has only 2.06X slowdown compared to native
execution of SPEC CPU2006 integer bench-
marks, as opposed to 2.35X slowdown using
the NET scheme. For IA32-to-x86 64, it has
1.8X, 2.12X, and 1.96X slowdown with SPEC
CPU2006 integer, floating, and PARSECmulti-
threaded benchmarks respectively, compared
to 2.0X,2.15X, 2.1X slowdown using the NET
scheme.

The rest of the paper is organized as follows. Sec-
tion 2 presents our Region-Based Multi-threaded
dynamic binary translator. Section 3 describes our
early exit detection technique and early-exit guided
region selection strategy. Section 4 presents our ex-
perimental results. Section 5 describes related work,
and Section 6 gives some concluding remarks.

2. REGION-BASED MULTI-THREADED
DYNAMIC BINARY TRANSLATOR
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Figure 2: Control flow of execution threads
and optimization threads

In this section, we describe the design of our region-
based multi-threaded dynamic binary translator. We
use the LnQ [12] dynamic binary translation frame-
work to build our region-based multi-threaded dy-
namic binary translation system. LnQ uses LLVM [1]
compilation infrastructure to build the backend just-
in-time compilers, and uses QEMU [2] as the emula-
tion engine. We inherit the retargetability of LnQ,

and extend the framework to accommodate a opti-
mization thread pool. We implement the early-exit
guided region selection on top of this framework.
Figure 2 shows the control flow of our region-based
multi-threaded dynamic binary translators.
We use blocks, traces, and regions to refer to

blocks, traces and regions of the guest program. We
use fragment to denote a code segment translated
by our binary translator. Therefore we have block
fragment, trace fragment, and region fragment, each
contains translated code of a block, a trace, or a
region respectively.
Each fragment has prologues to load the guest

architecture states, such as guest CPU registers, to
host registers before execution. Also, we have epi-
logues to store modified dirty states into memory
before leaving fragments. To achieve retargetability,
prologues and epilogues are necessary because the
host CPU architecture may not has enough registers
to hold all registers of the guest CPU. Therefore, we
do not specify register binding between guest archi-
tecture states and host architecture states. Each
fragment has its own register binding scheme de-
cided by the LLVM register allocator.
Our dynamic binary translation system has exe-

cution threads and optimization threads. Execution
threads are responsible for running the translated
segments and translating block segments. That is,
if an execution thread reaches a new guest basic
block during execution, the execution thread gener-
ates block fragments using LLVM compiler. Opti-
mization threads generate traces and regions frag-
ments with LLVM JIT compilation. All threads
have their own LLVM compiler to compile blocks,
traces or regions, and threads can compile blocks,
traces or regions concurrently. To enable concurrent
DTB compilation, each thread has its own mem-
ory chunk to store the translated fragments. Al-
though we use multiple memory chunks for trans-
lated fragments, we adopt shared code cache design
in our DBT system. Such design allows the execu-
tion threads to transfer execution among all chunks.
Thus, logically we have one software code cache for
all translated fragments.
Furthermore, our DBT system is able to sepa-

rate trace compilations from program execution. By
running multiple optimization threads to compile
traces or regions concurrently, we off-load the com-
pilation to other CPU cores and, hence, the execu-
tion threads are not interrupted. Execution threads
may create region compilation tasks and send them
to the Task Queue when traces or regions are formed
as described in Section 3. We use a lock-free concur-
rent FIFO queue [13] to implement our task queue



so that execution threads can insert trace/region
compilation tasks into the queue while the optimiza-
tion threads can probe those tasks from the queue
without locks. This design enable our DBT to pre-
serve good scalability when it runs multi-threaded
guest applications.

3. EARLY EXIT INDEX AND EARLY-
EXIT GUIDED REGION SELECTION

In this section, we first describe the NET algo-
rithm used in our system, and how we define an
early exit index to quantify how often early exits
are taken in a trace. Finally we describe our early
exit guided region selection technique.

3.1 Trace Selection Algorithm
We adopt a modified NET algorithm similar to [6]

to builds traces. The difference to the NET algo-
rithm is that our algorithm considers all basic blocks
as possible trace heads, while the NET algorithm
only considers potential loop beginning blocks as
trace heads. Our algorithm has two advantages.
First, the NET algorithm [3] was designed for sin-
gle core. Because of the limited capacity of a sin-
gle core, NET can only selectively build traces. In
contrast, our algorithm can take advantage of multi-
core platforms and use multiple optimization threads
to compile different traces concurrently. Therefore,
it can afford to try all blocks as trace heads. Sec-
ond, applications such as chess programs may con-
tain hot regions that are not loops. By considering
all blocks as possible trace heads, we can discover
more hot traces than NET does.
We use counters to record the number of times

each block is executed. A block becomes a trace
head when the block has been executed more than
a pre-determined number of times. We form a trace
by appending blocks along the execution path until
one of the following terminal conditions is met.

1. A branch to the trace head is taken.

2. The number of blocks exceeds a threshold.

3. The next block is the head of another trace.

4. A guest system call instruction is encountered.

3.2 Early Exit Index
We first define an early exit of a code region. A

code region can be represented by a control flow
graph where a node represents a basic block and
an edge from node A to node B indicates that the
execution can proceed from block A to block B. A
trace can be a simple path or a cycle in the control

flow graph that has single entry and multiple exits.
If a trace is a path, then all exit edges along the
path are early exits except the exit edges of the last
node of the trace. If a trace is a cycle, all exit edges
are early exits except the edges of the last node that
leaves the trace.
We define an Early Exit Index (EEI) to measure

the frequency of an early exit being taken in a trace.
Formally, EEI is the number of early exits being
taken for every million instructions executed.

EEI =

∑
i∈Γ ni × ρi

N

Let Γ be the set of traces, ni be the number of
times early exits being taken in trace i. Let ρi be
the percentage of instructions executed in trace i,
and N be the number of million instructions exe-
cuted. We use the number of early exits in trace i,
ρi, as the weight so that the index indicates the av-
erage number of early exits being taken per million
instructions executed in all traces.

3.3 Early-Exit Guided Region Selection
In this section, we describe our proposed Early-

Exit Guided (EEG) region selection scheme. It de-
tects and merges regions that have frequently taken
early exits. The key issues in EEG are (1) how to
efficiently detect delinquent regions; and (2) when
to merge them at runtime. We address them as
follows.
The simplest approach to address the first issue

is to instrument counters into all traces and regions.
However, this approach is inefficient and may merge
too many regions that are not frequently executed.
Instead, we use a dynamic profiling approach with
the help of on-chip hardware performance monitor
(HPM) to select hot regions.
We create a profiling thread called profiler at the

beginning of execution to perform dynamic profil-
ing. The profiler collects program counters per one
million retired instructions. When a threshold num-
ber of samples are collected, the profiler accumu-
lates the sample counts for each trace to determine
the degree of hotness of each trace. The hotness of
a trace is measured by the following equation.

HT = max{α, β}
Here, α is the percentage of instructions executed

in the trace during the last sampling period, and
β is the percentage of instructions executed in the
trace during the entire execution. Intuitively, α rep-
resents the hotness of the trace during in the last
period, and β represents the accumulated hotness



during the entire execution. We choose the maxi-
mum of α and β as its hotness measure.

When the hotness of a trace exceeds a thresh-
old, we start monitoring this trace by instrument-
ing counters to its early exits. Currently, we only
instrument early exits of conditional branches. If
a counter exceeds a predefined threshold, it indi-
cates some early exit starts being taken frequently.
The monitored region is merged with the region
that begins at the branch target of the early exit.
The merged region is then translated by our LLVM-
based DBT, and then the monitored region is re-
placed by the merged region. Note that the newly
merged region is not monitored until it becomes hot
again.
We argue that the overhead of the instrumen-

tation is negligible in that early exits should be
rarely taken. A frequently taken early exit would
have triggered region formation when the counter
exceeded a threshold, so the overhead of instru-
mented code is negligible.
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Figure 3: Illustration of region selection.
Figure 3(a) is the CFG of a hot region in
a guest application. Figure 3(b) shows three
traces formed by NET.

We use Figure 3 as an example to illustrate our
region selection strategy. Figure 3(a) is the control
flow graph (CFG) of a hot region in a guest applica-
tion. During execution, it first forms three traces as
in Figure 3(b). Trace A would be the first selected
for early exit detection since a loop is likely to be-
come hot. Thus the early exit of Trace A, plotted
as the red dashed line from Trace A to Trace B, is
monitored with an instrumented counter.
We merge Trace A and Trace B to form a region

when the early exit is taken frequently. As shown in

SPEC CPU2006 PARSEC

CPU Intel Core2 Intel X5550
GHz 3.33 Intel 2.67
#Chips 1 2
#Cores 4 4
#Threads 2 2
L2 Cache 128KB 128KB
L3 Cache 8192KB 8192KB
Memory 12GB 20GB
GCC Version 4.3.4(IA32)/4.4.2(ARM) 4.3.4(IA32)

GCC Flags
-m32 -O2(IA32) -m32 -msse3

-O2(ARM) -ftree-vectorize
Input Size Ref. Inputs Native Inputs
OS Linux Gentoo 64 bit kernel 2.6.30

Table 1: Summary of experiment environ-
ments

Figure 3(c), a region consisting of traces A and B is
formed. After the segment of Region A is generated,
we replace Trace A with Region A so that Trace F
now branches to Region A rather than to Trace A.
Figure 3(d) shows the final result after detecting
early exit of B to F.

3.4 Spill Index of a Region
The benefits of EEG region selection come from

eliminating the overhead caused by frequently-taken
early exits and potential optimization opportunities
from a larger region. Despite the fact that we can
always eliminate the overhead of frequently-taken
early exits via regions merging, we may not always
have potential optimization opportunities from the
merged region. In particular, when the quality of
the translated code of a region is not good enough,
it is not beneficial to merge such region.
The Spill Index is the percentage of spill code

(i.e., the code for load/store operations between
registers and stack) in the translated code. In our
DBT system, we use Spill Index to assess the quality
of the code generated by the LLVM compiler, and
to decide whether the merging process for a region
should be terminated. The definition of Spill Index
is reasonable because high percentage of spill code
often forestalls good performance due to improper
register allocation of LLVM compiler. A region with
high percentage of spill code is not suitable to be
merged into a larger region.

4. EXPERIMENTS
In this section, we evaluate the performance of

EEG in our LLVM-based parallel DBT systems.
We first describe our measurement methodology,
and then present detailed analysis of overall per-
formance, the early exit index and its impact on
performance, and the scalability of our DBT sys-
tem.
We evaluate the performance of EEG with two



benchmark suites: the SPEC CPU2006 single-threaded
benchmark suite with reference inputs, and the PAR-
SECmulti-threaded benchmarks with native inputs.
We run the SPEC CPU2006 benchmarks on an In-
tel Core2 CPU 975 machine. Table 1 gives the
hardware specification of the experiment platforms.
We compile benchmarks into IA32 and ARM in-
structions, and run the binary code on our dynamic
binary translators, IA32-to-x86 64 and ARM-to -
x86 64. For ARM-to-x86 64, we run SPEC CINT2006
integer benchmarks because SPEC 2006 floating-
point benchmarks are not supported on ARM plat-
forms yet. We do not report the results of h264ref
because the SPEC runspec tool reports a mis-match
error even when it runs h264ref in a native ARM
machine.
For SPEC CFP2006, we collect experimental re-

sults of the 8 widely used benchmarks, povray,

GemsFDTD, lesliesd, lbm, calculix, cactusADM,

soplex, and dealll. For PARSEC benchmarks,
we run the IA32 version and collect the results of 8
benchmarks. We report the median of 5 runs for all
performance metrics.
We run Trace- and Region- configuration DBT’s

in our experiments and use Trace-configuration DBT
as our baseline. Trace-configuration DBT uses NET
to select traces as described in Section 3. We set
block count threshold to 50 and allow at most 16
blocks in a trace. Region-configuration DBT uses
NET and EEG region selection algorithm as de-
scribed in Section 3.3. We use Perfmon2 [14] for
hardware-assisted dynamic profiling. The early exit
threshold is set to 1000 and the Spill Index is set
to 15%, i.e. when the percentage of spill code in
the translated code exceeds 15%, the region can
not be further merged. For Trace- and Region-
configurations DBT’s, we use two optimization threads
to compile regions.

4.1 Performance Results of SPEC CPU2006
The performance results are shown in Figure 4.

The average performance improvement of Region
over Trace are 13.1%, 13.7% and 1.5% for SPEC
CINT2006 IA32 binary, SPEC CINT2006 ARM bi-
nary, and SPEC CFP2006 IA32 binary, respectively.
For SPEC CINT2006 - IA32, Region achieves up
to 67% and 11.9% performance improvement over
Trace for integer and floating benchmarks, respec-
tively. For ARM-to-x86 64, Region improves the
performance of the sjeng benchmark by 49%. Among
all CINT2006 benchmarks, only xalancbmk and gcc
have performance slowdown. Among all SPEC CFP2006
benchmarks, only povray has performance slowdown.
These performance penalties rang from 0.60%. to
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Figure 4: Performance of EEG region selec-
tion with NET.

2.1%.
Recall that the benefits of EEG region selection

come from eliminating the overhead caused by frequently-
taken early exits and potential optimization oppor-
tunities from larger regions. Therefore, to further
understand the performance gain of our region se-
lection, we use hardware performance monitor to
profile the execution on Trace- and Region-configuration
DBT’s. We notice that one major contribution to
performance gain comes from the reduction of mem-
ory instructions, as shown in Table 2.

4.2 Early Exit Index
We then measure the Early Exit Indices of bench-

marks in Trace configuration. We insert counter
for each side exit of traces to collect the number of
early exits taken of each trace. We also use Perf-
mon2 [14] to measure the percentage of execution of
traces by sampling program counters per one million
executed instructions. The EEI results are shown
in Figure 5, where EEIC and EEII are early exit
indices for conditional and indirect branches, re-
spectively. First, we observe that 9 benchmarks in
SPEC CINT2006 have EEI larger than 100 in both
ARM and IA32 benchmarks.
Most of these benchmarks benefit from our EEG

region selection because EEG eliminates the over-
head caused by frequently-taken early exits. For ex-
ample, IA32 hmmer benchmark and ARM libquan-

tum have high EEI values and both achieves 67%
and 49% performance improvements. As shown in
Table 2, both applications have large percentages of
memory operations reduced via merging delinquent
regions. For IA32 hmmer, 36% of stores and 75%
of loads are reduced; and for ARM libquantum, we
also observe 59% and 73% of reduction in stores and
loads.
As mentioned in Section 3.4, the benefits of EEG



CINT2006 IA32-to-x86 64 ARM-to-x86 64 CFP2006 IA32-to-x86 64

Benchmarks
Reduced Mem. Ops Improved Reduced Mem. Ops Improved

Benchmarks
Reduced Mem. Ops Improved

Stores Loads Perf. Stores Loads Perf. Stores Loads Perf.

perlbench 1.60% 13.46% 2.41% -19.23 -6.55% 2.40% cactusADM -0.08% 0.06 % 0.59%
bzip2 7.64% 33.04% 10.50% 21.59% 36.99% 15.22% leslie3d -0.86% -0.31% -0.97%
gcc 0.98% 5.50 % -0.25% -3.90% -2.57% -1.73% dealII 9.26% 19.56% 11.90%
mcf 23.62% 50.93% 10.46% 31.17% 67.07% 17.58% soplex 12.24% 18.49% 4.95%
gobmk 10.66% 26.90% 18.84% 0.16% 10.93% 28.19% povray -2.56% 3.75 % -1.19%
hmmer 36.21% 75.70% 67.14% 0.32% 3.75 % -0.07% calculix -3.08% -1.54% -0.40%
sjeng 25.55% 42.09% 25.64% 15.51% 28.25% 43.29% GemsFDTD -0.14% 0.05 % -1.02%
libquantum 19.67% 57.66% 7.77% 59.36% 73.42% 49.52% lbm -0.81% -0.53% -0.86%
h264ref -7.83% 13.42% 0.49% N/A N/A N/A
omnetpp 16.00% 21.39% 8.91% -4.18% 0.48 % -0.69%
astar 13.78% 45.62% 17.70% 13.89% 31.69% 13.06%
xalancbmk 3.52% 5.30 % 1.60% 2.29% 14.18% -2.08%

Table 2: Reduced memory operations by region formation
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Figure 5: Early Exit Index

region selection come from eliminating the overhead
caused by frequently-taken early exits and poten-
tial optimization opportunities from a larger region.
Benchmarks such as sjeng and gobmk have small
EEI values, but achieve good performance improve-
ments, i.e. they have 43% and 28% performance
improvements respectively. The reason is that the
LLVM JIT compiler has the opportunities to per-
form more optimizations with a larger region.
Some benchmarks, such as IA32 libquantum, have

high EEI values but relatively small performance
improvement. The reason is that, althoug EEG
reduces significant amount of memory operations,
as shown in Table 2, IA32 libquantum is a CPU
intensive application and therefore, the eliminated
execution time from those memory operations has
limited impact on overall execution time.
Finally, the hmmer benchmark has very different

EEI values in IA32 and ARM architectures. The
reason lies in the differences of the guest instruc-
tions in P7Viterbi function of hmmer benchmark.
In P7Viterbi, hmmer updates global values accord-
ing to different conditions in a performance criti-
cal for-loop. In IA32 hmmer, the compiler we used
generates a series of compare and jumps instruc-
tions. As shown in Figure 1, this for-loop is sepa-
rated into 4 traces by NET. Consequently, the tran-
sition among these four traces results in high EEI
value. By merging these four traces, EEG success-
fully form a hot region that contains the perfor-
mance critical for-loop, and thus achieve significant
performance improvement – only 1.09X slowdown
compared to native execution, as opposed to 1.82X
slowdown using the NET scheme.
On the other hand, in ARM hmmer, the compiler

generates a series of conditional moves for that loop.
As a result, the loop in ARM hmmer has only two
basic blocks, which can perfectly be included in a
trace. Hence, EEI in ARM hmmer becomes very
small. That is the reason why EEG region selec-
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Figure 6: Effect of Spill Index on IA32 SPEC
CINT2006.
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Figure 7: Performance compared to native
execution of benchmarks.

tion gain very little performance improvement in
this case.
For SPEC CFP2006, all the EEI values are rela-

tively small compared to those in SPEC CINT2006,
which indicates that traces in floating benchmarks
have fewer early exits than those in integer bench-
marks. As a results, 6 floating benchmarks does
not gain performance, only dealII and soplex are
improved by 12% and 5% from our EEG region se-
lection.

4.3 Effect of The Threshold of Spill Index
Figure 6 show the effect of the threshold of spill

Index on the performance of EEG region selection in
IA32 integer benchmarks. Here we use the perfor-
mance of 5% threshold as the performance baseline.
As shown in Figure 6, in 9 out of 12 benchmarks,
spill index has no effect on the performance. The
main reason is that there are 8 general purpose reg-
isters in IA32 and 16 in x86 64. Thus, register pres-
sure may not be a problem when translating IA32
to x86 64.

However, as shown in Figure 7, the performance

Benchmarks
Trace Region #Region Avg.
AvgBlk AvgBlk /#Trace Merge

CINT2006 - IA32 2.86 12.35 7.61% 2.15
CINT2006 - ARM 2.51 13.06 7.11% 2.18
CFP2006 3.38 12.09 3.97% 1.76

Table 3: Statistics of Selected Regions

of EEG region selection is more sensitive in ARM in-
teger benchmarks. This is because there are 16 gen-
eral purpose registers in ARM architecture. Con-
sequently, the LLVM JIT compiler tends to have
register pressure issues when translating ARM in-
structions to x86 64 host. If we allow regions with
high spill indices, i.e., high percentage of spill code
in the translated code, to be merged, the perfor-
mance tends to degrade. For example, in ARM hm-

mer, we have 12% degradation when the threshold
of spill index increases from 15% to 20%. Similarly,
in IA32 omnetpp, we have 8% performance degra-
dation when the threshold of spill index increases
from 15% to 20%.

4.4 Region Statistics
Table 3 shows the statistics of selected regions.

On average, there are 2.51 to 3.38 guest basic blocks
in each trace in SPEC CPU2006. Through EEG
region selection, we enlarge the size of regions to
12.09 to 13.06 guest basic blocks. Therefore, about
7% and 4% of traces are selected as regions through
EEG region selection in integer and floating bench-
marks, respectively. The average number of times
that a region is merged is 2.18.

4.5 Performance Results of PARSEC
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Figure 8: Performance compared to Trace of
PARSEC.

Figure 8 shows the performance of EEG region
selection on PARSEC multi-threaded benchmarks.
EEG achieves 6% to 10% performance improvement
compared to Trace configuration on average for the



PARSEC benchmarks . We achieves up to 10%
improvement when using 8 guest threads in both
configurations. However, the performance drops to
6% when 16 threads are used. Since in both Trace
and Region configurations there are 2 optimization
threads competing CPU with the execution threads,
the degradation may come from the profiling thread
in Region configuration. We plan to dynamically
adjust the sampling frequency of profiler in our fu-
ture work.

4.6 Performance Comparison to Native Ex-
ecution
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Figure 9: Performance compared to native
execution of SPEC CPU2006.

In the last set of experiments, we show the per-
formance of our region-based DBT systems com-
pared to native execution. As shown in Figure 9,
our IA32-to-x86 64 dynamic translator has 1.82X,
2.12X slowdown with SPEC CPU2006 integer and
floating-point benchmarks respectively, compared
to 2.06X, 2.15X slowdown using Trace configura-
tion. For ARM-to-x86 64 DBT, it has only 2.06X
slowdown compared to native execution of SPEC
CPU2006 integer benchmarks, as opposed to 2.35X
slowdown using the NET scheme. Furthermore, our
system results in less than 1.5X slowdown for 5
ARM integer benchmarks; in particular, mcf and
libquantum have only 1.02X and 1.08 slowdown ra-
tio compared to native execution on x86 64 host .
As shown in Figure 10, our systems achieve 1.96X

to 2.29X slowdown ratio compared to native exe-
cution on x86 64 host for PARSEC multi-threaded
benchmarks. In Figure 10, the geometric mean of
slowdown ratios increases from 2.10X to 2.29X when
guest threads increases from 8 to 16 threads. As
mentioned above, the overhead of dynamic profiling
becomes significant due to CPU competition when
all 16 CPU cores are used.

5. RELATED WORKS
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Figure 10: Performance comparison with na-
tive execution of PARSEC multi-threaded
benchmarks.

We give an overview of the related work, and
point out their differences with our approaches. We
focus on dynamic binary translation, trace-based
JIT compilation and region-based JIT compilation.
Dynamo [3] was the first trace-based optimizing com-
piler that used the Next-Tail-Execution (NET) al-
gorithm. Dynamo pioneered many early concepts
of trace selection and trace runtime management.
Though NET performs well in practice, as shown
in our experiments, NET is likely to select delin-
quent traces and hence has room for improvement.
Hiniker et al. [10] proposed LEI and their trace com-
bination algorithm, which needs to interpret each
taken branches to select traces. As pointted out
in [11], our approach uses hardware performance
monitor sampling technique to efficiently select can-
didate regions to be merged. Ha et al. [9] and Bohm
et al. [6] both propose the strategy of spawning one
or multiple optimizations threads for JIT trace com-
pilation so that concurrent interpretation and JIT
trace compilation can be achieved. In contrast we
use optimization threads to compile not only traces
but also regions. COREMU [16], a full-system em-
ulator based on QEMU, emulates multiple cores
by creating multiple instances of sequential QEMU
emulators. The system is parallelized by assigning
multiple QEMU instances to multiple threads.
Gal et al. [8] merges traces via trace trees tech-

nique that focuses on loop traces. Our work focuses
on all delinquent traces, not limited to loop traces.
Their region formation must enter interpreter mode
while selecting instructions to merge until terminal
conditions meet. While our approach effectively se-
lect all blocks in region that starts at the target
address of the early exit. In addition, we use mul-
tiple helper threads for region compilations which



minimize the compilation overheads.
Suganuma et al. [15] studied region-based compi-

lation for JAVA JIT compilation which is to perform
partials inlining at runtime. Rather than inlining
the entire function, this work studied how to select
regions to inline by eliminating rarely executed sec-
tions of code of the called function. They dynam-
ically profile the execution counts of basic blocks
with instrumentation counters, and use static code
analysis of JAVA bytecode to identify rarely exe-
cuted code such as exception handling. Their ap-
proach does not fit our scenario because, unlike JIT
compiler in JAVA, it is difficult to identify rarely
executed region through static binary code analysis
in binary translation.

6. CONCLUSION
In this paper, we propose a light-weight region

formation technique called Early-Exit Guided re-
gion selection (EEG) to significantly improve the
performance of NET by merging delinquent traces
into larger code regions. Hardware-assisted dynamic
profiling is first used to identify hot code regions
without incurring significant runtime overhead. Key
software counters are then instrumented at the exit
points of the hot regions to detect early exits. When
a counter exceeds certain threshold value, the code
region that begins at the branch target of that early
exit is merged into the main code region. We also
employ a heuristic to decide whether it is beneficial
to merge the selected regions or not.
We implement our EEG algorithm in two LLVM-

based parallel dynamic binary translators. These
two parallel dynamic binary translators use multi-
ple compilation threads to compile different code re-
gions concurrently. We evaluate the performance of
EEG with two benchmark suites: the SPEC CPU2006
single-threaded benchmark suite with reference in-
puts, and the PARSEC multi-threaded benchmarks
with native inputs. The experimental results show
that, compared to NET, EEG can achieve a perfor-
mance improvement of up to 67% (13% on average)
for SPEC CPU2006 integer benchmarks, and up to
20% (10% on average) for PARSEC multi-threaded
benchmarks. It also reduces memory operations in
a benchmark by up to 76%.
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